-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatrix-style.py
105 lines (93 loc) · 3.26 KB
/
matrix-style.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# UNIQUE PATHS :
def uniquePaths(self, m: int, n: int) -> int:
dp = [[0] * (n + 1)] * (m + 1)
dp[1][1] = 1
for i in range(1, m + 1):
for j in range(1, n + 1):
dp[i][j] = dp[i][j - 1] + dp[i - 1][j]
return dp[m][n]
# MIN PATH SUM :
def minPathSum(self, grid) -> int:
m, n = len(grid), len(grid[0])
dp = [[0] * n for _ in range(m)]
dp[0][0] = grid[0][0]
# First-row:
for i in range(1, n):
dp[0][i] = dp[0][i - 1] + grid[0][i]
# First-col:
for j in range(1, m):
dp[j][0] = dp[j - 1][0] + grid[j][0]
# Edge cases :
for i in range(1, m):
for j in range(1, n):
dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]
return dp[m - 1][n - 1]
# UNIQUE PATHS - WITH OBSTACLES :
def uniquePathsWithObstacles(self, obstacleGrid) -> int:
m = len(obstacleGrid)
n = len(obstacleGrid[0])
dp = [[0] * (n + 1)] * (m + 1)
dp[1][1] = 1
for i in range(1, m + 1):
for j in range(1, n + 1):
if obstacleGrid[i - 1][j - 1] == 1:
dp[i][j] = 0
else:
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
return dp[m][n]
# MIN PATH SUM IN TRIANGLE [BOTTOM-UP APPROACH] :
def minimumTotal(triangle) -> int:
n = len(triangle)
dp = [[0] * (i + 1) for i in range(n)]
for i in range(n - 1, -1, -1):
for j in range(i + 1):
if i == n - 1:
dp[i][j] = triangle[i][j]
else:
dp[i][j] = triangle[i][j] + min(dp[i + 1][j], dp[i + 1][j + 1])
return dp[0][0]
# MINIMUM FALLING PATH SUM IN 2D GRID :
def minFallingPathSum(matrix) -> int:
n, m = len(matrix), len(matrix[0])
for i in range(n):
for j in range(m):
if i > 0:
# Leftmost:
if j == 0:
matrix[i][j] += min(matrix[i - 1][j], matrix[i - 1][j + 1])
# Middle:
if j - 1 >= 0 and j + 1 < m:
matrix[i][j] += min(matrix[i - 1][j - 1], matrix[i - 1][j], matrix[i - 1][j + 1])
# Rightmost:
if j == m - 1:
matrix[i][j] += min(matrix[i - 1][j], matrix[i - 1][j - 1])
return min(matrix[n - 1])
# MAXIMAL SQUARE :
def maximalSquare(matrix) -> int:
if not matrix or len(matrix) < 1:
return 0
else:
n, m = len(matrix), len(matrix[0])
dp = [[0] * (m + 1) for _ in range(n + 1)]
max_area = 0
for i in range(1, n + 1):
for j in range(1, m + 1):
if matrix[i - 1][j - 1] == '1':
dp[i][j] = 1 + min(dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1])
max_area = max(max_area, dp[i][j])
return (max_area * max_area)
# MAXIMUM CONSECUTIVE DAYS FOR VACATION WITH OBLIGATIONS :
def maximumVacationDays(n: int, m: int, k: int, arr: List[int]) -> int: # type: ignore
result = 0
dp = [[0] * (k + 1) for _ in range(n + 1)]
for i in range(1, n + 1):
for j in range(k + 1):
if i in arr:
if j > 0:
dp[i][j] = dp[i - 1][j - 1] + 1
else:
dp[i][j] = 0
else:
dp[i][j] = dp[i - 1][j] + 1
result = max(result, dp[i][j])
return result