forked from huggingface/diffusers
-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathtest_pipelines.py
1101 lines (897 loc) · 45.9 KB
/
test_pipelines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import json
import os
import random
import shutil
import sys
import tempfile
import unittest
import unittest.mock as mock
import numpy as np
import PIL
import safetensors.torch
import torch
from parameterized import parameterized
from PIL import Image
from requests.exceptions import HTTPError
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMPipeline,
DDIMScheduler,
DDPMPipeline,
DDPMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionImg2ImgPipeline,
StableDiffusionInpaintPipelineLegacy,
StableDiffusionPipeline,
UNet2DConditionModel,
UNet2DModel,
logging,
)
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
from diffusers.utils import CONFIG_NAME, WEIGHTS_NAME, floats_tensor, is_flax_available, nightly, slow, torch_device
from diffusers.utils.testing_utils import CaptureLogger, get_tests_dir, require_torch_gpu
torch.backends.cuda.matmul.allow_tf32 = False
class DownloadTests(unittest.TestCase):
def test_download_only_pytorch(self):
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
_ = DiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
)
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname, os.listdir(tmpdirname)[0], "snapshots"))]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a flax file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
assert not any(f.endswith(".msgpack") for f in files)
# We need to never convert this tiny model to safetensors for this test to pass
assert not any(f.endswith(".safetensors") for f in files)
def test_returned_cached_folder(self):
prompt = "hello"
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
_, local_path = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None, return_cached_folder=True
)
pipe_2 = StableDiffusionPipeline.from_pretrained(local_path)
pipe = pipe.to(torch_device)
pipe_2 = pipe_2.to(torch_device)
generator = torch.manual_seed(0)
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
generator = torch.manual_seed(0)
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
assert np.max(np.abs(out - out_2)) < 1e-3
def test_download_safetensors(self):
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
_ = DiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe-safetensors",
safety_checker=None,
cache_dir=tmpdirname,
)
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname, os.listdir(tmpdirname)[0], "snapshots"))]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a pytorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
assert not any(f.endswith(".bin") for f in files)
def test_download_no_safety_checker(self):
prompt = "hello"
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
pipe = pipe.to(torch_device)
generator = torch.manual_seed(0)
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
pipe_2 = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
pipe_2 = pipe_2.to(torch_device)
generator = torch.manual_seed(0)
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
assert np.max(np.abs(out - out_2)) < 1e-3
def test_load_no_safety_checker_explicit_locally(self):
prompt = "hello"
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
pipe = pipe.to(torch_device)
generator = torch.manual_seed(0)
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None)
pipe_2 = pipe_2.to(torch_device)
generator = torch.manual_seed(0)
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
assert np.max(np.abs(out - out_2)) < 1e-3
def test_load_no_safety_checker_default_locally(self):
prompt = "hello"
pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
pipe = pipe.to(torch_device)
generator = torch.manual_seed(0)
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname)
pipe_2 = pipe_2.to(torch_device)
generator = torch.manual_seed(0)
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
assert np.max(np.abs(out - out_2)) < 1e-3
def test_cached_files_are_used_when_no_internet(self):
# A mock response for an HTTP head request to emulate server down
response_mock = mock.Mock()
response_mock.status_code = 500
response_mock.headers = {}
response_mock.raise_for_status.side_effect = HTTPError
response_mock.json.return_value = {}
# Download this model to make sure it's in the cache.
orig_pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
orig_comps = {k: v for k, v in orig_pipe.components.items() if hasattr(v, "parameters")}
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.request", return_value=response_mock):
# Download this model to make sure it's in the cache.
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None, local_files_only=True
)
comps = {k: v for k, v in pipe.components.items() if hasattr(v, "parameters")}
for m1, m2 in zip(orig_comps.values(), comps.values()):
for p1, p2 in zip(m1.parameters(), m2.parameters()):
if p1.data.ne(p2.data).sum() > 0:
assert False, "Parameters not the same!"
def test_download_from_variant_folder(self):
for safe_avail in [False, True]:
import diffusers
diffusers.utils.import_utils._safetensors_available = safe_avail
other_format = ".bin" if safe_avail else ".safetensors"
with tempfile.TemporaryDirectory() as tmpdirname:
StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/stable-diffusion-all-variants", cache_dir=tmpdirname
)
all_root_files = [
t[-1] for t in os.walk(os.path.join(tmpdirname, os.listdir(tmpdirname)[0], "snapshots"))
]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a variant file even if we have some here:
# https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
assert not any(f.endswith(other_format) for f in files)
# no variants
assert not any(len(f.split(".")) == 3 for f in files)
diffusers.utils.import_utils._safetensors_available = True
def test_download_variant_all(self):
for safe_avail in [False, True]:
import diffusers
diffusers.utils.import_utils._safetensors_available = safe_avail
other_format = ".bin" if safe_avail else ".safetensors"
this_format = ".safetensors" if safe_avail else ".bin"
variant = "fp16"
with tempfile.TemporaryDirectory() as tmpdirname:
StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/stable-diffusion-all-variants", cache_dir=tmpdirname, variant=variant
)
all_root_files = [
t[-1] for t in os.walk(os.path.join(tmpdirname, os.listdir(tmpdirname)[0], "snapshots"))
]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a non-variant file even if we have some here:
# https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
# unet, vae, text_encoder, safety_checker
assert len([f for f in files if f.endswith(f"{variant}{this_format}")]) == 4
# all checkpoints should have variant ending
assert not any(f.endswith(this_format) and not f.endswith(f"{variant}{this_format}") for f in files)
assert not any(f.endswith(other_format) for f in files)
diffusers.utils.import_utils._safetensors_available = True
def test_download_variant_partly(self):
for safe_avail in [False, True]:
import diffusers
diffusers.utils.import_utils._safetensors_available = safe_avail
other_format = ".bin" if safe_avail else ".safetensors"
this_format = ".safetensors" if safe_avail else ".bin"
variant = "no_ema"
with tempfile.TemporaryDirectory() as tmpdirname:
StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/stable-diffusion-all-variants", cache_dir=tmpdirname, variant=variant
)
snapshots = os.path.join(tmpdirname, os.listdir(tmpdirname)[0], "snapshots")
all_root_files = [t[-1] for t in os.walk(snapshots)]
files = [item for sublist in all_root_files for item in sublist]
unet_files = os.listdir(os.path.join(snapshots, os.listdir(snapshots)[0], "unet"))
# Some of the downloaded files should be a non-variant file, check:
# https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
# only unet has "no_ema" variant
assert f"diffusion_pytorch_model.{variant}{this_format}" in unet_files
assert len([f for f in files if f.endswith(f"{variant}{this_format}")]) == 1
# vae, safety_checker and text_encoder should have no variant
assert sum(f.endswith(this_format) and not f.endswith(f"{variant}{this_format}") for f in files) == 3
assert not any(f.endswith(other_format) for f in files)
diffusers.utils.import_utils._safetensors_available = True
def test_download_broken_variant(self):
for safe_avail in [False, True]:
import diffusers
diffusers.utils.import_utils._safetensors_available = safe_avail
# text encoder is missing no variant and "no_ema" variant weights, so the following can't work
for variant in [None, "no_ema"]:
with self.assertRaises(OSError) as error_context:
with tempfile.TemporaryDirectory() as tmpdirname:
StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/stable-diffusion-broken-variants",
cache_dir=tmpdirname,
variant=variant,
)
assert "Error no file name" in str(error_context.exception)
# text encoder has fp16 variants so we can load it
with tempfile.TemporaryDirectory() as tmpdirname:
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/stable-diffusion-broken-variants", cache_dir=tmpdirname, variant="fp16"
)
assert pipe is not None
snapshots = os.path.join(tmpdirname, os.listdir(tmpdirname)[0], "snapshots")
all_root_files = [t[-1] for t in os.walk(snapshots)]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a non-variant file even if we have some here:
# https://huggingface.co/hf-internal-testing/stable-diffusion-broken-variants/tree/main/unet
assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
# only unet has "no_ema" variant
diffusers.utils.import_utils._safetensors_available = True
class CustomPipelineTests(unittest.TestCase):
def test_load_custom_pipeline(self):
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
)
pipeline = pipeline.to(torch_device)
# NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
# under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
assert pipeline.__class__.__name__ == "CustomPipeline"
def test_load_custom_github(self):
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline="one_step_unet", custom_revision="main"
)
# make sure that on "main" pipeline gives only ones because of: https://github.com/huggingface/diffusers/pull/1690
with torch.no_grad():
output = pipeline()
assert output.numel() == output.sum()
# hack since Python doesn't like overwriting modules: https://stackoverflow.com/questions/3105801/unload-a-module-in-python
# Could in the future work with hashes instead.
del sys.modules["diffusers_modules.git.one_step_unet"]
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline="one_step_unet", custom_revision="0.10.2"
)
with torch.no_grad():
output = pipeline()
assert output.numel() != output.sum()
assert pipeline.__class__.__name__ == "UnetSchedulerOneForwardPipeline"
def test_run_custom_pipeline(self):
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
)
pipeline = pipeline.to(torch_device)
images, output_str = pipeline(num_inference_steps=2, output_type="np")
assert images[0].shape == (1, 32, 32, 3)
# compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
assert output_str == "This is a test"
def test_local_custom_pipeline_repo(self):
local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
)
pipeline = pipeline.to(torch_device)
images, output_str = pipeline(num_inference_steps=2, output_type="np")
assert pipeline.__class__.__name__ == "CustomLocalPipeline"
assert images[0].shape == (1, 32, 32, 3)
# compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
assert output_str == "This is a local test"
def test_local_custom_pipeline_file(self):
local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
local_custom_pipeline_path = os.path.join(local_custom_pipeline_path, "what_ever.py")
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
)
pipeline = pipeline.to(torch_device)
images, output_str = pipeline(num_inference_steps=2, output_type="np")
assert pipeline.__class__.__name__ == "CustomLocalPipeline"
assert images[0].shape == (1, 32, 32, 3)
# compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
assert output_str == "This is a local test"
@slow
@require_torch_gpu
def test_load_pipeline_from_git(self):
clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
feature_extractor = CLIPFeatureExtractor.from_pretrained(clip_model_id)
clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
pipeline = DiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
custom_pipeline="clip_guided_stable_diffusion",
clip_model=clip_model,
feature_extractor=feature_extractor,
torch_dtype=torch.float16,
)
pipeline.enable_attention_slicing()
pipeline = pipeline.to(torch_device)
# NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
# https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"
image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
assert image.shape == (512, 512, 3)
class PipelineFastTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
import diffusers
diffusers.utils.import_utils._safetensors_available = True
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
def dummy_uncond_unet(self, sample_size=32):
torch.manual_seed(0)
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=sample_size,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
return model
def dummy_cond_unet(self, sample_size=32):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=sample_size,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModel(config)
@property
def dummy_extractor(self):
def extract(*args, **kwargs):
class Out:
def __init__(self):
self.pixel_values = torch.ones([0])
def to(self, device):
self.pixel_values.to(device)
return self
return Out()
return extract
@parameterized.expand(
[
[DDIMScheduler, DDIMPipeline, 32],
[DDPMScheduler, DDPMPipeline, 32],
[DDIMScheduler, DDIMPipeline, (32, 64)],
[DDPMScheduler, DDPMPipeline, (64, 32)],
]
)
def test_uncond_unet_components(self, scheduler_fn=DDPMScheduler, pipeline_fn=DDPMPipeline, sample_size=32):
unet = self.dummy_uncond_unet(sample_size)
scheduler = scheduler_fn()
pipeline = pipeline_fn(unet, scheduler).to(torch_device)
generator = torch.manual_seed(0)
out_image = pipeline(
generator=generator,
num_inference_steps=2,
output_type="np",
).images
sample_size = (sample_size, sample_size) if isinstance(sample_size, int) else sample_size
assert out_image.shape == (1, *sample_size, 3)
def test_stable_diffusion_components(self):
"""Test that components property works correctly"""
unet = self.dummy_cond_unet()
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image().cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB")
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32))
# make sure here that pndm scheduler skips prk
inpaint = StableDiffusionInpaintPipelineLegacy(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
).to(torch_device)
img2img = StableDiffusionImg2ImgPipeline(**inpaint.components).to(torch_device)
text2img = StableDiffusionPipeline(**inpaint.components).to(torch_device)
prompt = "A painting of a squirrel eating a burger"
generator = torch.manual_seed(0)
image_inpaint = inpaint(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
image=init_image,
mask_image=mask_image,
).images
image_img2img = img2img(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
image=init_image,
).images
image_text2img = text2img(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
).images
assert image_inpaint.shape == (1, 32, 32, 3)
assert image_img2img.shape == (1, 32, 32, 3)
assert image_text2img.shape == (1, 64, 64, 3)
@require_torch_gpu
def test_pipe_false_offload_warn(self):
unet = self.dummy_cond_unet()
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
sd = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd.enable_model_cpu_offload()
logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
with CaptureLogger(logger) as cap_logger:
sd.to("cuda")
assert "It is strongly recommended against doing so" in str(cap_logger)
sd = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
def test_set_scheduler(self):
unet = self.dummy_cond_unet()
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
sd = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, DDIMScheduler)
sd.scheduler = DDPMScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, DDPMScheduler)
sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, PNDMScheduler)
sd.scheduler = LMSDiscreteScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, LMSDiscreteScheduler)
sd.scheduler = EulerDiscreteScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, EulerDiscreteScheduler)
sd.scheduler = EulerAncestralDiscreteScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, EulerAncestralDiscreteScheduler)
sd.scheduler = DPMSolverMultistepScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, DPMSolverMultistepScheduler)
def test_set_scheduler_consistency(self):
unet = self.dummy_cond_unet()
pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
ddim = DDIMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
sd = StableDiffusionPipeline(
unet=unet,
scheduler=pndm,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
pndm_config = sd.scheduler.config
sd.scheduler = DDPMScheduler.from_config(pndm_config)
sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
pndm_config_2 = sd.scheduler.config
pndm_config_2 = {k: v for k, v in pndm_config_2.items() if k in pndm_config}
assert dict(pndm_config) == dict(pndm_config_2)
sd = StableDiffusionPipeline(
unet=unet,
scheduler=ddim,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
ddim_config = sd.scheduler.config
sd.scheduler = LMSDiscreteScheduler.from_config(ddim_config)
sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
ddim_config_2 = sd.scheduler.config
ddim_config_2 = {k: v for k, v in ddim_config_2.items() if k in ddim_config}
assert dict(ddim_config) == dict(ddim_config_2)
def test_save_safe_serialization(self):
pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
with tempfile.TemporaryDirectory() as tmpdirname:
pipeline.save_pretrained(tmpdirname, safe_serialization=True)
# Validate that the VAE safetensor exists and are of the correct format
vae_path = os.path.join(tmpdirname, "vae", "diffusion_pytorch_model.safetensors")
assert os.path.exists(vae_path), f"Could not find {vae_path}"
_ = safetensors.torch.load_file(vae_path)
# Validate that the UNet safetensor exists and are of the correct format
unet_path = os.path.join(tmpdirname, "unet", "diffusion_pytorch_model.safetensors")
assert os.path.exists(unet_path), f"Could not find {unet_path}"
_ = safetensors.torch.load_file(unet_path)
# Validate that the text encoder safetensor exists and are of the correct format
text_encoder_path = os.path.join(tmpdirname, "text_encoder", "model.safetensors")
assert os.path.exists(text_encoder_path), f"Could not find {text_encoder_path}"
_ = safetensors.torch.load_file(text_encoder_path)
pipeline = StableDiffusionPipeline.from_pretrained(tmpdirname)
assert pipeline.unet is not None
assert pipeline.vae is not None
assert pipeline.text_encoder is not None
assert pipeline.scheduler is not None
assert pipeline.feature_extractor is not None
def test_no_pytorch_download_when_doing_safetensors(self):
# by default we don't download
with tempfile.TemporaryDirectory() as tmpdirname:
_ = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/diffusers-stable-diffusion-tiny-all", cache_dir=tmpdirname
)
path = os.path.join(
tmpdirname,
"models--hf-internal-testing--diffusers-stable-diffusion-tiny-all",
"snapshots",
"07838d72e12f9bcec1375b0482b80c1d399be843",
"unet",
)
# safetensors exists
assert os.path.exists(os.path.join(path, "diffusion_pytorch_model.safetensors"))
# pytorch does not
assert not os.path.exists(os.path.join(path, "diffusion_pytorch_model.bin"))
def test_no_safetensors_download_when_doing_pytorch(self):
# mock diffusers safetensors not available
import diffusers
diffusers.utils.import_utils._safetensors_available = False
with tempfile.TemporaryDirectory() as tmpdirname:
_ = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/diffusers-stable-diffusion-tiny-all", cache_dir=tmpdirname
)
path = os.path.join(
tmpdirname,
"models--hf-internal-testing--diffusers-stable-diffusion-tiny-all",
"snapshots",
"07838d72e12f9bcec1375b0482b80c1d399be843",
"unet",
)
# safetensors does not exists
assert not os.path.exists(os.path.join(path, "diffusion_pytorch_model.safetensors"))
# pytorch does
assert os.path.exists(os.path.join(path, "diffusion_pytorch_model.bin"))
diffusers.utils.import_utils._safetensors_available = True
def test_optional_components(self):
unet = self.dummy_cond_unet()
pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
orig_sd = StableDiffusionPipeline(
unet=unet,
scheduler=pndm,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=unet,
feature_extractor=self.dummy_extractor,
)
sd = orig_sd
assert sd.config.requires_safety_checker is True
with tempfile.TemporaryDirectory() as tmpdirname:
sd.save_pretrained(tmpdirname)
# Test that passing None works
sd = StableDiffusionPipeline.from_pretrained(
tmpdirname, feature_extractor=None, safety_checker=None, requires_safety_checker=False
)
assert sd.config.requires_safety_checker is False
assert sd.config.safety_checker == (None, None)
assert sd.config.feature_extractor == (None, None)
with tempfile.TemporaryDirectory() as tmpdirname:
sd.save_pretrained(tmpdirname)
# Test that loading previous None works
sd = StableDiffusionPipeline.from_pretrained(tmpdirname)
assert sd.config.requires_safety_checker is False
assert sd.config.safety_checker == (None, None)
assert sd.config.feature_extractor == (None, None)
orig_sd.save_pretrained(tmpdirname)
# Test that loading without any directory works
shutil.rmtree(os.path.join(tmpdirname, "safety_checker"))
with open(os.path.join(tmpdirname, sd.config_name)) as f:
config = json.load(f)
config["safety_checker"] = [None, None]
with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
json.dump(config, f)
sd = StableDiffusionPipeline.from_pretrained(tmpdirname, requires_safety_checker=False)
sd.save_pretrained(tmpdirname)
sd = StableDiffusionPipeline.from_pretrained(tmpdirname)
assert sd.config.requires_safety_checker is False
assert sd.config.safety_checker == (None, None)
assert sd.config.feature_extractor == (None, None)
# Test that loading from deleted model index works
with open(os.path.join(tmpdirname, sd.config_name)) as f:
config = json.load(f)
del config["safety_checker"]
del config["feature_extractor"]
with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
json.dump(config, f)
sd = StableDiffusionPipeline.from_pretrained(tmpdirname)
assert sd.config.requires_safety_checker is False
assert sd.config.safety_checker == (None, None)
assert sd.config.feature_extractor == (None, None)
with tempfile.TemporaryDirectory() as tmpdirname:
sd.save_pretrained(tmpdirname)
# Test that partially loading works
sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)
assert sd.config.requires_safety_checker is False
assert sd.config.safety_checker == (None, None)
assert sd.config.feature_extractor != (None, None)
# Test that partially loading works
sd = StableDiffusionPipeline.from_pretrained(
tmpdirname,
feature_extractor=self.dummy_extractor,
safety_checker=unet,
requires_safety_checker=[True, True],
)
assert sd.config.requires_safety_checker == [True, True]
assert sd.config.safety_checker != (None, None)
assert sd.config.feature_extractor != (None, None)
with tempfile.TemporaryDirectory() as tmpdirname:
sd.save_pretrained(tmpdirname)
sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)
assert sd.config.requires_safety_checker == [True, True]
assert sd.config.safety_checker != (None, None)
assert sd.config.feature_extractor != (None, None)
@slow
@require_torch_gpu
class PipelineSlowTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_smart_download(self):
model_id = "hf-internal-testing/unet-pipeline-dummy"
with tempfile.TemporaryDirectory() as tmpdirname:
_ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
local_repo_name = "--".join(["models"] + model_id.split("/"))
snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])
# inspect all downloaded files to make sure that everything is included
assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
# let's make sure the super large numpy file:
# https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
# is not downloaded, but all the expected ones
assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))
def test_warning_unused_kwargs(self):
model_id = "hf-internal-testing/unet-pipeline-dummy"
logger = logging.get_logger("diffusers.pipelines")
with tempfile.TemporaryDirectory() as tmpdirname:
with CaptureLogger(logger) as cap_logger:
DiffusionPipeline.from_pretrained(
model_id,
not_used=True,
cache_dir=tmpdirname,
force_download=True,
)
assert (
cap_logger.out.strip().split("\n")[-1]
== "Keyword arguments {'not_used': True} are not expected by DDPMPipeline and will be ignored."
)
def test_from_save_pretrained(self):
# 1. Load models
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
schedular = DDPMScheduler(num_train_timesteps=10)
ddpm = DDPMPipeline(model, schedular)
ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
with tempfile.TemporaryDirectory() as tmpdirname:
ddpm.save_pretrained(tmpdirname)
new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
new_ddpm.to(torch_device)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images
generator = torch.Generator(device=torch_device).manual_seed(0)
new_image = new_ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images
assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"
def test_from_pretrained_hub(self):
model_path = "google/ddpm-cifar10-32"
scheduler = DDPMScheduler(num_train_timesteps=10)
ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
ddpm = ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
ddpm_from_hub = ddpm_from_hub.to(torch_device)
ddpm_from_hub.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images
generator = torch.Generator(device=torch_device).manual_seed(0)
new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="numpy").images
assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"
def test_from_pretrained_hub_pass_model(self):
model_path = "google/ddpm-cifar10-32"
scheduler = DDPMScheduler(num_train_timesteps=10)
# pass unet into DiffusionPipeline
unet = UNet2DModel.from_pretrained(model_path)
ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
ddpm_from_hub_custom_model = ddpm_from_hub_custom_model.to(torch_device)
ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
ddpm_from_hub = ddpm_from_hub.to(torch_device)
ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ddpm_from_hub_custom_model(generator=generator, num_inference_steps=5, output_type="numpy").images
generator = torch.Generator(device=torch_device).manual_seed(0)
new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="numpy").images
assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"
def test_output_format(self):
model_path = "google/ddpm-cifar10-32"
scheduler = DDIMScheduler.from_pretrained(model_path)
pipe = DDIMPipeline.from_pretrained(model_path, scheduler=scheduler)