-
Notifications
You must be signed in to change notification settings - Fork 218
/
Copy pathhierarchy_spice.py
879 lines (745 loc) · 35.6 KB
/
hierarchy_spice.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
# See LICENSE for licensing information.
#
# Copyright (c) 2016-2024 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
import os
import re
import math
import textwrap as tr
from pprint import pformat
from openram import debug
from openram import tech
from openram import OPTS
from collections import OrderedDict
from .delay_data import delay_data
from .wire_spice_model import wire_spice_model
from .power_data import power_data
from .logical_effort import convert_relative_c_to_farad, convert_farad_to_relative_c
class spice():
"""
This provides a set of useful generic types for hierarchy
management. If a module is a custom designed cell, it will read from
the GDS and spice files and perform LVS/DRC. If it is dynamically
generated, it should implement a constructor to create the
layout/netlist and perform LVS/DRC.
Class consisting of a set of modules and instances of these modules
"""
def __init__(self, name, cell_name):
# This gets set in both spice and layout so either can be called first.
self.name = name
self.cell_name = cell_name
self.sp_file = OPTS.openram_tech + "sp_lib/" + cell_name + ".sp"
# If we have a separate lvs directory, then all the lvs files
# should be in there (all or nothing!)
try:
from openram.tech import lvs_name
lvs_dir = OPTS.openram_tech + lvs_name + "_lvs_lib/"
except ImportError:
lvs_dir = OPTS.openram_tech + "lvs_lib/"
if not os.path.exists(lvs_dir):
lvs_dir = OPTS.openram_tech + "lvs_lib/"
self.lvs_file = lvs_dir + cell_name + ".sp"
if not os.path.exists(self.lvs_file):
self.lvs_file = self.sp_file
# Holds subckts/mods for this module
self.mods = set()
# Holds the pins for this module (in order)
# on Python3.7+ regular dictionaries guarantee order too, but we allow use of v3.5+
self.pins = OrderedDict()
# An (optional) list of indices to reorder the pins to match the spice.
self.pin_indices = []
# THE CONNECTIONS MUST MATCH THE ORDER OF THE PINS (restriction imposed by the
# Spice format)
# internal nets, which may or may not be connected to pins of the same name
self.nets = {}
# If this is set, it will not output subckt or instances of this (for row/col caps etc.)
self.no_instances = False
# If we are doing a trimmed netlist, these are the instance that will be filtered
self.trim_insts = set()
# Keep track of any comments to add the the spice
try:
self.comments
except AttributeError:
self.comments = []
self.sp_read()
############################################################
# Spice circuit
############################################################
def add_comment(self, comment):
""" Add a comment to the spice file """
try:
self.comments
except AttributeError:
self.comments = []
self.comments.append(comment)
def add_pin(self, name, pin_type="INOUT"):
""" Adds a pin to the pins list. Default type is INOUT signal. """
debug.check(name not in self.pins, "cannot add duplicate spice pin {}".format(name))
self.pins[name] = pin_spice(name, pin_type, self)
def add_pin_list(self, pin_list, pin_type="INOUT"):
""" Adds a pin_list to the pins list """
# The pin type list can be a single type for all pins
# or a list that is the same length as the pin list.
if isinstance(pin_type, str):
for pin in pin_list:
self.add_pin(pin, pin_type)
elif len(pin_type)==len(pin_list):
for (pin, type) in zip(pin_list, pin_type):
self.add_pin(pin, type)
else:
debug.error("Pin type must be a string or list of strings the same length as pin_list", -1)
def add_pin_indices(self, index_list):
""" Add pin indices for all the cell's pins. """
self.pin_indices = index_list
def get_ordered_inputs(self, input_list):
""" Return the inputs reordered to match the pins. """
if not self.pin_indices:
return input_list
new_list = [input_list[x] for x in self.pin_indices]
return new_list
def update_pin_types(self, type_list):
""" Change pin types for all the cell's pins. """
debug.check(len(type_list) == len(self.pins),
"{} spice subcircuit number of port types does not match number of pins\
\n pin names={}\n port types={}".format(self.name, list(self.pins), type_list))
for pin, type in zip(self.pins.values(), type_list):
pin.set_type(type)
def get_pin_type(self, name):
""" Returns the type of the signal pin. """
pin = self.pins.get(name)
debug.check(pin is not None, "Spice pin {} not found".format(name))
return pin.type
def get_pin_dir(self, name):
""" Returns the direction of the pin. (Supply/ground are INOUT). """
pin_type = self.get_pin_type(name)
if pin_type in ["POWER", "GROUND"]:
return "INOUT"
else:
return pin_type
def get_inputs(self):
"""
These use pin types to determine pin lists.
Returns names only, to maintain historical interface.
"""
input_list = []
for pin in self.pins.values():
if pin.type == "INPUT":
input_list.append(pin.name)
return input_list
def get_outputs(self):
"""
These use pin types to determine pin lists.
Returns names only, to maintain historical interface.
"""
output_list = []
for pin in self.pins.values():
if pin.type == "OUTPUT":
output_list.append(pin.name)
return output_list
def get_inouts(self):
"""
These use pin types to determine pin lists.
Returns names only, to maintain historical interface.
"""
inout_list = []
for pin in self.pins.values():
if pin.type == "INOUT":
inout_list.append(pin.name)
return inout_list
def copy_pins(self, other_module, suffix=""):
""" This will copy all of the pins from the other module and add an optional suffix."""
for pin in other_module.pins.values():
self.add_pin(pin.name + suffix, pin.type)
def connect_inst(self, args):
"""
Connects the pins of the last instance added
"""
spice_pins = list(self.insts[-1].spice_pins)
num_pins = len(spice_pins)
num_args = len(args)
# Order the arguments if the hard cell has a custom port order
ordered_args = self.get_ordered_inputs(args)
if (num_pins != num_args):
if num_pins < num_args:
mod_pins = spice_pins + [""] * (num_args - num_pins)
arg_pins = ordered_args
else:
arg_pins = ordered_args + [""] * (num_pins - num_args)
mod_pins = spice_pins
modpins_string = "\n".join(["{0} -> {1}".format(arg, mod) for (arg, mod) in zip(arg_pins, mod_pins)])
debug.error("Connection mismatch:\nInst ({0}) -> Mod ({1})\n{2}".format(num_args,
num_pins,
modpins_string),
1)
ordered_nets = self.create_nets(ordered_args)
self.insts[-1].connect_spice_pins(ordered_nets)
def create_nets(self, names_list):
nets = []
for name in names_list:
# setdefault adds to the dict if it doesn't find the net in it already
# then it returns the net it found or created, a net_spice object
net = self.nets.setdefault(name, net_spice(name, self))
nets.append(net)
return nets
def sp_read(self):
"""
Reads the sp file (and parse the pins) from the library
Otherwise, initialize it to null for dynamic generation
"""
if self.sp_file and os.path.isfile(self.sp_file):
debug.info(3, "opening {0}".format(self.sp_file))
f = open(self.sp_file)
self.spice = f.readlines()
for i in range(len(self.spice)):
self.spice[i] = self.spice[i].rstrip(" \n")
f.close()
# find the correct subckt line in the file
subckt = re.compile("^.subckt {}".format(self.cell_name), re.IGNORECASE)
subckt_line = list(filter(subckt.search, self.spice))[0]
# parses line into ports and remove subckt
self.add_pin_list(subckt_line.split(" ")[2:])
else:
debug.info(4, "no spfile {0}".format(self.sp_file))
self.spice = []
# We don't define self.lvs and will use self.spice if dynamically created
# or they are the same file
if self.lvs_file != self.sp_file and os.path.isfile(self.lvs_file):
debug.info(3, "opening {0}".format(self.lvs_file))
f = open(self.lvs_file)
self.lvs = f.readlines()
for i in range(len(self.lvs)):
self.lvs[i] = self.lvs[i].rstrip(" \n")
f.close()
# pins and subckt should be the same
# find the correct subckt line in the file
subckt = re.compile("^.subckt {}".format(self.cell_name), re.IGNORECASE)
subckt_line = list(filter(subckt.search, self.lvs))[0]
# parses line into ports and remove subckt
lvs_pins = subckt_line.split(" ")[2:]
debug.check(lvs_pins == list(self.pins),
"Spice netlists for LVS and simulation have port mismatches:\n{0} (LVS {1})\nvs\n{2} (sim {3})".format(lvs_pins,
self.lvs_file,
list(self.pins),
self.sp_file))
def check_net_in_spice(self, net_name):
"""Checks if a net name exists in the current. Intended to be check nets in hand-made cells."""
# Remove spaces and lower case then add spaces.
# Nets are separated by spaces.
net_formatted = ' ' + net_name.lstrip().rstrip().lower() + ' '
for line in self.spice:
# Lowercase the line and remove any part of the line that is a comment.
line = line.lower().split('*')[0]
# Skip .subckt or .ENDS lines
if line.find('.') == 0:
continue
if net_formatted in line:
return True
return False
def do_nets_exist(self, nets):
"""For handmade cell, checks sp file contains the storage nodes."""
nets_match = True
for net in nets:
nets_match = nets_match and self.check_net_in_spice(net)
return nets_match
def contains(self, mod, modlist):
for x in modlist:
if x.name == mod.name:
return True
return False
def sp_write_file(self, sp, usedMODS, lvs=False, trim=False):
"""
Recursive spice subcircuit write;
Writes the spice subcircuit from the library or the dynamically generated one.
Trim netlist is intended ONLY for bitcell arrays.
"""
if self.no_instances:
return
elif not self.spice:
# If spice isn't defined, we dynamically generate one.
# recursively write the modules
for mod in self.mods:
if self.contains(mod, usedMODS):
continue
usedMODS.append(mod)
mod.sp_write_file(sp, usedMODS, lvs, trim)
if len(self.insts) == 0:
return
if len(self.pins) == 0:
return
# write out the first spice line (the subcircuit)
wrapped_pins = "\n+ ".join(tr.wrap(" ".join(list(self.pins))))
sp.write("\n.SUBCKT {0}\n+ {1}\n".format(self.cell_name,
wrapped_pins))
# Also write pins as comments
for pin in self.pins.values():
sp.write("* {1:6}: {0} \n".format(pin.name, pin.type))
for line in self.comments:
sp.write("* {}\n".format(line))
# every instance must be connected with the connect_inst function
# TODO: may run into empty pin lists edge case, not sure yet
connected = True
for inst in self.insts:
if inst.connected:
continue
debug.error("Instance {} spice pins not connected".format(str(inst)))
connected = False
debug.check(connected, "{0} : Not all instance spice pins are connected.".format(self.cell_name))
for inst in self.insts:
# we don't need to output connections of empty instances.
# these are wires and paths
if len(inst.spice_pins) == 0:
continue
# Instance with no devices in it needs no subckt/instance
if inst.mod.no_instances:
continue
# If this is a trimmed netlist, skip it by adding comment char
if trim and inst.name in self.trim_insts:
sp.write("* ")
if lvs and hasattr(inst.mod, "lvs_device"):
sp.write(inst.mod.lvs_device.format(inst.name,
" ".join(inst.get_connections())))
sp.write("\n")
elif hasattr(inst.mod, "spice_device"):
sp.write(inst.mod.spice_device.format(inst.name,
" ".join(inst.get_connections())))
sp.write("\n")
else:
if trim and inst.name in self.trim_insts:
wrapped_connections = "\n*+ ".join(tr.wrap(" ".join(inst.get_connections())))
sp.write("X{0}\n*+ {1}\n*+ {2}\n".format(inst.name,
wrapped_connections,
inst.mod.cell_name))
else:
wrapped_connections = "\n+ ".join(tr.wrap(" ".join(inst.get_connections())))
sp.write("X{0}\n+ {1}\n+ {2}\n".format(inst.name,
wrapped_connections,
inst.mod.cell_name))
sp.write(".ENDS {0}\n".format(self.cell_name))
else:
# If spice is a hard module, output the spice file contents.
# Including the file path makes the unit test fail for other users.
# if os.path.isfile(self.sp_file):
# sp.write("\n* {0}\n".format(self.sp_file))
if lvs and hasattr(self, "lvs"):
sp.write("\n".join(self.lvs))
else:
sp.write("\n".join(self.spice))
sp.write("\n")
def sp_write(self, spname, lvs=False, trim=False):
"""Writes the spice to files"""
debug.info(3, "Writing to {0}".format(spname))
spfile = open(spname, 'w')
spfile.write("*FIRST LINE IS A COMMENT\n")
usedMODS = list()
self.sp_write_file(spfile, usedMODS, lvs=lvs, trim=trim)
del usedMODS
spfile.close()
def cacti_delay(self, corner, inrisetime, c_load, cacti_params):
"""Generalization of how Cacti determines the delay of a gate"""
self.cacti_params = cacti_params
# Get the r_on the the tx
rd = self.get_on_resistance()
# Calculate the intrinsic capacitance
c_intrinsic = self.get_intrinsic_capacitance()
# Get wire values
c_wire = self.module_wire_c()
r_wire = self.module_wire_r()
tf = rd*(c_intrinsic+c_load+c_wire)+r_wire*(c_load+c_wire/2)
extra_param_dict = {}
extra_param_dict['vdd'] = corner[1] #voltage is second in PVT corner
extra_param_dict['load'] = c_wire+c_intrinsic+c_load #voltage is second in PVT corner
this_delay = self.cacti_rc_delay(inrisetime, tf, 0.5, 0.5, True, extra_param_dict)
inrisetime = this_delay / (1.0 - 0.5)
return delay_data(this_delay, inrisetime)
def analytical_delay(self, corner, slew, load=0.0):
"""Inform users undefined delay module while building new modules"""
# FIXME: Slew is not used in the model right now.
# Can be added heuristically as linear factor
relative_cap = convert_farad_to_relative_c(load)
stage_effort = self.get_stage_effort(relative_cap)
# If it fails, then keep running with a valid object.
if not stage_effort:
return delay_data(0.0, 0.0)
abs_delay = stage_effort.get_absolute_delay()
corner_delay = self.apply_corners_analytically(abs_delay, corner)
SLEW_APPROXIMATION = 0.1
corner_slew = SLEW_APPROXIMATION * corner_delay
return delay_data(corner_delay, corner_slew)
def module_wire_c(self):
"""All devices assumed to have ideal capacitance (0).
Non-ideal cases should have this function re-defined.
"""
return 0
def module_wire_r(self):
"""All devices assumed to have ideal resistance (0).
Non-ideal cases should have this function re-defined.
"""
return 0
def get_stage_effort(self, cout, inp_is_rise=True):
"""Inform users undefined delay module while building new modules"""
debug.warning("Design Class {0} logical effort function needs to be defined"
.format(self.__class__.__name__))
debug.warning("Class {0} name {1}"
.format(self.__class__.__name__,
self.cell_name))
return None
def get_on_resistance(self):
"""Inform users undefined delay module while building new modules"""
debug.warning("Design Class {0} on resistance function needs to be defined"
.format(self.__class__.__name__))
debug.warning("Class {0} name {1}"
.format(self.__class__.__name__,
self.cell_name))
return 0
def get_input_capacitance(self):
"""Inform users undefined delay module while building new modules"""
debug.warning("Design Class {0} input capacitance function needs to be defined"
.format(self.__class__.__name__))
debug.warning("Class {0} name {1}"
.format(self.__class__.__name__,
self.cell_name))
return 0
def get_intrinsic_capacitance(self):
"""Inform users undefined delay module while building new modules"""
debug.warning("Design Class {0} intrinsic capacitance function needs to be defined"
.format(self.__class__.__name__))
debug.warning("Class {0} name {1}"
.format(self.__class__.__name__,
self.cell_name))
return 0
def get_cin(self):
"""Returns input load in Femto-Farads. All values generated using
relative capacitance function then converted based on tech file parameter."""
# Override this function within a module if a more accurate input capacitance is needed.
# Input/outputs with differing capacitances is not implemented.
relative_cap = self.input_load()
return convert_relative_c_to_farad(relative_cap)
def input_load(self):
"""Inform users undefined relative capacitance functions used for analytical delays."""
debug.warning("Design Class {0} input load function needs to be defined"
.format(self.__class__.__name__))
debug.warning("Class {0} name {1}"
.format(self.__class__.__name__,
self.cell_name))
return 0
def cacti_rc_delay(self,
inputramptime, # input rise time
tf, # time constant of gate
vs1, # threshold voltage
vs2, # threshold voltage
rise, # whether input rises or fall
extra_param_dict=None):
"""By default, CACTI delay uses horowitz for gate delay.
Can be overriden in cases like bitline if equation is different.
"""
return self.horowitz(inputramptime, tf, vs1, vs2, rise)
def horowitz(self,
inputramptime, # input rise time
tf, # time constant of gate
vs1, # threshold voltage
vs2, # threshold voltage
rise): # whether input rises or fall
if inputramptime == 0 and vs1 == vs2:
return tf * (-math.log(vs1) if vs1 < 1 else math.log(vs1))
a = inputramptime / tf
if rise == True:
b = 0.5
td = tf * math.sqrt(math.log(vs1)*math.log(vs1) + 2*a*b*(1.0 - vs1)) + tf*(math.log(vs1) - math.log(vs2))
else:
b = 0.4
td = tf * math.sqrt(math.log(1.0 - vs1)*math.log(1.0 - vs1) + 2*a*b*(vs1)) + tf*(math.log(1.0 - vs1) - math.log(1.0 - vs2))
return td
def tr_r_on(self, width, is_nchannel, stack, _is_cell):
restrans = self.cacti_params["r_nch_on"] if is_nchannel else self.cacti_params["r_pch_on"]
return stack * restrans / width
def gate_c(self, width):
return (tech.spice["c_g_ideal"] + tech.spice["c_overlap"] + 3*tech.spice["c_fringe"])*width +\
tech.drc["minlength_channel"]*tech.spice["cpolywire"]
def drain_c_(self,
width,
stack,
folds):
c_junc_area = tech.spice["c_junc"]
c_junc_sidewall = tech.spice["c_junc_sw"]
c_fringe = 2*tech.spice["c_overlap"]
c_overlap = 2*tech.spice["c_fringe"]
drain_C_metal_connecting_folded_tr = 0
w_folded_tr = width/folds
num_folded_tr = folds
# Re-created some logic contact to get minwidth as importing the contact
# module causes a failure
if "minwidth_contact" in tech.drc:
contact_width = tech.drc["minwidth_contact"]
elif "minwidth_active_contact" in tech.drc:
contact_width = tech.drc["minwidth_active_contact"]
else:
debug.warning("Undefined minwidth_contact in tech.")
contact_width = 0
# only for drain
total_drain_w = (contact_width + 2 * tech.drc["active_contact_to_gate"]) +\
(stack - 1) * tech.drc["poly_to_poly"]
drain_h_for_sidewall = w_folded_tr
total_drain_height_for_cap_wrt_gate = w_folded_tr + 2 * w_folded_tr * (stack - 1)
if num_folded_tr > 1:
total_drain_w += (num_folded_tr - 2) * (contact_width + 2 * tech.drc["active_contact_to_gate"]) +\
(num_folded_tr - 1) * ((stack - 1) * tech.drc["poly_to_poly"])
if num_folded_tr%2 == 0:
drain_h_for_sidewall = 0
total_drain_height_for_cap_wrt_gate *= num_folded_tr
drain_C_metal_connecting_folded_tr = tech.spice["wire_c_per_um"] * total_drain_w
drain_C_area = c_junc_area * total_drain_w * w_folded_tr
drain_C_sidewall = c_junc_sidewall * (drain_h_for_sidewall + 2 * total_drain_w)
drain_C_wrt_gate = (c_fringe + c_overlap) * total_drain_height_for_cap_wrt_gate
return drain_C_area + drain_C_sidewall + drain_C_wrt_gate + drain_C_metal_connecting_folded_tr
def cal_delay_with_rc(self, corner, r, c, slew, swing=0.5):
"""
Calculate the delay of a mosfet by
modeling it as a resistance driving a capacitance
"""
swing_factor = abs(math.log(1 - swing)) # time constant based on swing
delay = swing_factor * r * c # c is in ff and delay is in fs
delay = self.apply_corners_analytically(delay, corner)
delay = delay * 0.001 # make the unit to ps
# Output slew should be linear to input slew which is described
# as 0.005* slew.
# The slew will be also influenced by the delay.
# If no input slew(or too small to make impact)
# The mimum slew should be the time to charge RC.
# Delay * 2 is from 0 to 100% swing. 0.6*2*delay is from 20%-80%.
slew = delay * 0.6 * 2 + 0.005 * slew
return delay_data(delay=delay, slew=slew)
def apply_corners_analytically(self, delay, corner):
"""Multiply delay by corner factors"""
proc, vdd, temp = corner
# FIXME: type of delay is needed to know which process to use.
proc_mult = max(self.get_process_delay_factor(proc))
volt_mult = self.get_voltage_delay_factor(vdd)
temp_mult = self.get_temp_delay_factor(temp)
return delay * proc_mult * volt_mult * temp_mult
def get_process_delay_factor(self, proc):
"""Returns delay increase estimate based off process
Currently does +/-10 for fast/slow corners."""
proc_factors = []
for mos_proc in proc:
if mos_proc == 'T':
proc_factors.append(1.0)
elif mos_proc == 'F':
proc_factors.append(0.9)
elif mos_proc == 'S':
proc_factors.append(1.1)
return proc_factors
def get_voltage_delay_factor(self, voltage):
"""Returns delay increase due to voltage.
Implemented as linear factor based off nominal voltage.
"""
return tech.spice["nom_supply_voltage"] / voltage
def get_temp_delay_factor(self, temp):
"""Returns delay increase due to temperature (in C).
Determines effect on threshold voltage and then linear factor is estimated.
"""
# Some portions of equation condensed (phi_t = k*T/q for T in Kelvin) in mV
# (k/q)/100 = .008625, The division 100 simplifies the conversion from C to K and mV to V
thermal_voltage_nom = 0.008625 * tech.spice["nom_temperature"]
thermal_voltage = 0.008625 * temp
vthresh = (tech.spice["nom_threshold"] + 2 * (thermal_voltage - thermal_voltage_nom))
# Calculate effect on Vdd-Vth.
# The current vdd is not used here.
# A separate vdd factor is calculated.
return (tech.spice["nom_supply_voltage"] - tech.spice["nom_threshold"]) / (tech.spice["nom_supply_voltage"] - vthresh)
def return_delay(self, delay, slew):
return delay_data(delay, slew)
def generate_rc_net(self, lump_num, wire_length, wire_width):
return wire_spice_model(lump_num, wire_length, wire_width)
def calc_dynamic_power(self, corner, c, freq, swing=1.0):
"""
Calculate dynamic power using effective capacitance, frequency, and corner (PVT)
"""
proc, vdd, temp = corner
net_vswing = vdd * swing
power_dyn = c * vdd * net_vswing * freq
# A pply process and temperature factors.
# Roughly, process and Vdd affect the delay which affects the power.
# No other estimations are currently used. Increased delay->slower freq.->less power
proc_div = max(self.get_process_delay_factor(proc))
temp_div = self.get_temp_delay_factor(temp)
power_dyn = power_dyn / (proc_div * temp_div)
return power_dyn
def return_power(self, dynamic=0.0, leakage=0.0):
return power_data(dynamic, leakage)
def find_aliases(self, inst_name, port_nets, path_nets, alias, alias_mod, exclusion_set=None):
"""
Given a list of nets, will compare the internal alias of a mod to determine
if the nets have a connection to this mod's net (but not inst).
"""
if not exclusion_set:
exclusion_set = set()
try:
self.name_dict
except AttributeError:
self.name_dict = {}
self.build_names(self.name_dict, inst_name, port_nets)
aliases = []
for net in path_nets:
net = net.lower()
int_net = self.name_dict[net]['int_net']
int_mod = self.name_dict[net]['mod']
if int_mod.is_net_alias(int_net, alias, alias_mod, exclusion_set):
aliases.append(net)
return aliases
def get_instance_connections(self):
conns = []
for inst in self.insts:
conns.append(inst.get_connections())
return conns
def is_net_alias(self, known_net, net_alias, mod, exclusion_set):
"""
Checks if the alias_net in input mod is the same as the input net for this mod (self).
"""
if self in exclusion_set:
return False
# Check ports of this mod
for pin in self.pins:
if self.is_net_alias_name_check(known_net, pin, net_alias, mod):
return True
# Check connections of all other subinsts
mod_set = set()
for subinst, inst_conns in zip(self.insts, self.get_instance_connections()):
for inst_conn, mod_pin in zip(inst_conns, subinst.mod.pins):
if self.is_net_alias_name_check(known_net, inst_conn, net_alias, mod):
return True
elif inst_conn.lower() == known_net.lower() and subinst.mod not in mod_set:
if subinst.mod.is_net_alias(mod_pin, net_alias, mod, exclusion_set):
return True
mod_set.add(subinst.mod)
return False
def is_net_alias_name_check(self, parent_net, child_net, alias_net, mod):
"""
Utility function for checking single net alias.
"""
return self == mod and \
child_net.lower() == alias_net.lower() and \
parent_net.lower() == alias_net.lower()
class pin_spice():
"""
A class to represent a spice netlist pin.
mod is the parent module that created this pin.
mod_net is the net object of this pin's parent module. It must have the same name as the pin.
inst is the instance this pin is a part of, if any.
inst_net is the net object from mod's nets which connects to this pin.
"""
valid_pin_types = ["INOUT", "INPUT", "OUTPUT", "POWER", "GROUND", "BIAS"]
def __init__(self, name, type, mod):
self.name = name
self.set_type(type)
self.mod = mod
self.mod_net = None
self.inst = None
self.inst_net = None
# TODO: evaluate if this makes sense... and works
self._hash = hash(self.name)
def set_type(self, type):
debug.check(type in pin_spice.valid_pin_types,
"Invalid pin type for {0}: {1}".format(self.name, type))
self.type = type
def set_mod_net(self, net):
debug.check(isinstance(net, net_spice), "net must be a net_spice object")
debug.check(net.name == self.name, "module spice net must have same name as spice pin")
self.mod_net = net
def set_inst(self, inst):
self.inst = inst
def set_inst_net(self, net):
if self.inst_net is not None:
debug.error("pin {} is already connected to net {}\
so it cannot also be connected to net {}\
".format(self.name, self.inst_net.name, net.name), 1)
debug.check(isinstance(net, net_spice), "net must be a net_spice object")
self.inst_net = net
def __str__(self):
""" override print function output """
return "(pin_name={} type={})".format(self.name, self.type)
def __repr__(self):
""" override repr function output """
return self.name
def __eq__(self, name):
return (name == self.name) if isinstance(name, str) else super().__eq__(name)
def __hash__(self):
"""
Implement the hash function for sets etc.
Only hash name since spice does not allow two pins to share a name.
Provides a speedup if pin_spice is used as a key for dicts.
"""
return self._hash
def __deepcopy__(original, memo):
"""
This function is defined so that instances of modules can make deep
copies of their parent module's pins dictionary. It is only expected
to be called by the instance class __init__ function. Mod and mod_net
should not be deep copies but references to the existing mod and net
objects they refer to in the original. If inst is already defined this
function will throw an error because that means it was called on a pin
from an instance, which is not defined behavior.
"""
debug.check(original.inst is None,
"cannot make a deepcopy of a spice pin from an inst")
pin = pin_spice(original.name, original.type, original.mod)
if original.mod_net is not None:
pin.set_mod_net(original.mod_net)
return pin
class net_spice():
"""
A class to represent a spice net.
mod is the parent module that created this net.
pins are all the pins connected to this net.
inst is the instance this net is a part of, if any.
"""
def __init__(self, name, mod):
self.name = name
self.pins = []
self.mod = mod
self.inst = None
# TODO: evaluate if this makes sense... and works
self._hash = hash(self.name)
def connect_pin(self, pin):
debug.check(isinstance(pin, pin_spice), "pin must be a pin_spice object")
if pin in self.pins:
debug.warning("pin {} was already connected to net {} ... why was it connected again?".format(pin.name, self.name))
else:
self.pins.append(pin)
def set_inst(self, inst):
self.inst = inst
def __str__(self):
""" override print function output """
return "(net_name={} type={})".format(self.name, self.type)
def __repr__(self):
""" override repr function output """
return self.name
def __eq__(self, name):
return (name == self.name) if isinstance(name, str) else super().__eq__(name)
def __hash__(self):
"""
Implement the hash function for sets etc.
Only hash name since spice does not allow two nets to share a name
(on the same level of hierarchy, or rather they will be the same net).
Provides a speedup if net_spice is used as a key for dicts.
"""
return self._hash
def __deepcopy__(original, memo):
"""
This function is defined so that instances of modules can make deep
copies of their parent module's nets dictionary. It is only expected
to be called by the instance class __init__ function. Mod
should not be a deep copy but a reference to the existing mod
object it refers to in the original. If inst is already defined this
function will throw an error because that means it was called on a net
from an instance, which is not defined behavior.
"""
debug.check(original.inst is None,
"cannot make a deepcopy of a spice net from an inst")
net = net_spice(original.name, original.mod)
if original.pins != []:
# TODO: honestly I'm not sure if this is right but we'll see...
net.pins = original.pins
return net