-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathapp.py
61 lines (48 loc) · 1.75 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
import keras.models
from keras.models import model_from_json
import os
from flask import Flask, render_template,request
from werkzeug.utils import secure_filename
from load import *
from keras.applications.imagenet_utils import preprocess_input, decode_predictions
from keras.models import load_model
from keras.preprocessing import image
#initalize our flask app
app = Flask(__name__)
#global vars for easy reusability
global model, graph
#initialize these variables
model, graph = init()
def model_predict(image_path,model):
Img=image.load_img(image_path,target_size=(224,224))
Img = np.expand_dims(Img, axis=0)
# Be careful how your trained model deals with the input
# otherwise, it won't make correct prediction!
Img = preprocess_input(Img, mode='caffe')
with graph.as_default():
preds = model.predict(Img)
return preds
@app.route('/',methods=['GET'])
def index():
return render_template('index.html')
@app.route('/predict',methods=['GET','POST'])
def upload():
if request.method == 'POST':
# Get the file from post request
f = request.files['file']
# Save the file to ./uploads
basepath = os.path.dirname(__file__)
file_path = os.path.join(
basepath, 'uploads', secure_filename(f.filename))
f.save(file_path)
# Make prediction
preds = model_predict(file_path, model)
# Process your result for human
# pred_class = preds.argmax(axis=-1) # Simple argmax
pred_class = decode_predictions(preds, top=1) # ImageNet Decode
result = str(pred_class[0][0][1]) # Convert to string
return result
return None
if __name__ == '__main__':
app.run(port=5002, debug=True)