-
Notifications
You must be signed in to change notification settings - Fork 707
/
Copy path_write.py
271 lines (224 loc) · 8.4 KB
/
_write.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
"""Amazon DynamoDB Write Module (PRIVATE)."""
from __future__ import annotations
import itertools
import json
import logging
from pathlib import Path
from typing import TYPE_CHECKING, Any, Mapping
import boto3
from boto3.dynamodb.types import TypeSerializer
import awswrangler.pandas as pd
from awswrangler import _utils
from awswrangler._config import apply_configs
from awswrangler._distributed import engine
from awswrangler._executor import _get_executor
from awswrangler.distributed.ray import ray_get
from ._utils import _serialize_item, _TableBatchWriter, _validate_items
if TYPE_CHECKING:
from mypy_boto3_dynamodb.client import DynamoDBClient
from mypy_boto3_dynamodb.type_defs import KeySchemaElementTypeDef
_logger: logging.Logger = logging.getLogger(__name__)
@apply_configs
def put_json(
path: str | Path,
table_name: str,
boto3_session: boto3.Session | None = None,
use_threads: bool | int = True,
) -> None:
"""Write all items from JSON file to a DynamoDB.
The JSON file can either contain a single item which will be inserted in the DynamoDB or an array of items
which all be inserted.
Parameters
----------
path
Path as str or Path object to the JSON file which contains the items.
table_name
Name of the Amazon DynamoDB table.
boto3_session
The default boto3 session will be used if **boto3_session** is ``None``.
use_threads
Used for Parallel Write requests. True (default) to enable concurrency, False to disable multiple threads.
If enabled os.cpu_count() is used as the max number of threads.
If integer is provided, specified number is used.
Examples
--------
Writing contents of JSON file
>>> import awswrangler as wr
>>> wr.dynamodb.put_json(
... path='items.json',
... table_name='table'
... )
"""
# Loading data from file
with open(path) as f:
items = json.load(f)
if isinstance(items, dict):
items = [items]
put_items(items=items, table_name=table_name, boto3_session=boto3_session, use_threads=use_threads)
@apply_configs
def put_csv(
path: str | Path,
table_name: str,
boto3_session: boto3.Session | None = None,
use_threads: bool | int = True,
**pandas_kwargs: Any,
) -> None:
"""Write all items from a CSV file to a DynamoDB.
Parameters
----------
path
Path as str or Path object to the CSV file which contains the items.
table_name
Name of the Amazon DynamoDB table.
boto3_session
The default boto3 session will be used if **boto3_session** is ``None``.
use_threads
Used for Parallel Write requests. True (default) to enable concurrency, False to disable multiple threads.
If enabled os.cpu_count() is used as the max number of threads.
If integer is provided, specified number is used.
pandas_kwargs
KEYWORD arguments forwarded to pandas.read_csv(). You can NOT pass `pandas_kwargs` explicit, just add valid
Pandas arguments in the function call and awswrangler will accept it.
e.g. wr.dynamodb.put_csv('items.csv', 'my_table', sep='|', na_values=['null', 'none'], skip_blank_lines=True)
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html
Examples
--------
Writing contents of CSV file
>>> import awswrangler as wr
>>> wr.dynamodb.put_csv(
... path='items.csv',
... table_name='table'
... )
Writing contents of CSV file using pandas_kwargs
>>> import awswrangler as wr
>>> wr.dynamodb.put_csv(
... path='items.csv',
... table_name='table',
... sep='|',
... na_values=['null', 'none']
... )
"""
# Loading data from file
df = pd.read_csv(path, **pandas_kwargs)
put_df(df=df, table_name=table_name, boto3_session=boto3_session, use_threads=use_threads)
@engine.dispatch_on_engine
def _put_df(
dynamodb_client: "DynamoDBClient" | None,
df: pd.DataFrame,
table_name: str,
key_schema: list["KeySchemaElementTypeDef"],
) -> None:
items: list[Mapping[str, Any]] = [v.dropna().to_dict() for _, v in df.iterrows()]
put_items_func = engine.dispatch_func(_put_items, "python")
put_items_func(items=items, table_name=table_name, key_schema=key_schema, dynamodb_client=dynamodb_client)
@apply_configs
@_utils.validate_distributed_kwargs(
unsupported_kwargs=["boto3_session"],
)
def put_df(
df: pd.DataFrame,
table_name: str,
boto3_session: boto3.Session | None = None,
use_threads: bool | int = True,
) -> None:
"""Write all items from a DataFrame to a DynamoDB.
Parameters
----------
df
`Pandas DataFrame <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html>`_
table_name
Name of the Amazon DynamoDB table.
use_threads
Used for Parallel Write requests. True (default) to enable concurrency, False to disable multiple threads.
If enabled os.cpu_count() is used as the max number of threads.
If integer is provided, specified number is used.
boto3_session
The default boto3 session will be used if **boto3_session** is ``None``.
Examples
--------
Writing rows of DataFrame
>>> import awswrangler as wr
>>> import pandas as pd
>>> wr.dynamodb.put_df(
... df=pd.DataFrame({'key': [1, 2, 3]}),
... table_name='table'
... )
"""
_logger.debug("Inserting data frame into DynamoDB table: %s", table_name)
concurrency = _utils.ensure_worker_or_thread_count(use_threads=use_threads)
executor = _get_executor(use_threads=use_threads, ray_parallelism=concurrency)
dfs = _utils.split_pandas_frame(df, concurrency)
dynamodb_client = _utils.client(service_name="dynamodb", session=boto3_session)
key_schema = dynamodb_client.describe_table(TableName=table_name)["Table"]["KeySchema"]
ray_get(
executor.map(
_put_df,
dynamodb_client,
dfs,
itertools.repeat(table_name),
itertools.repeat(key_schema),
)
)
@engine.dispatch_on_engine
def _put_items(
dynamodb_client: "DynamoDBClient" | None,
items: list[dict[str, Any]] | list[Mapping[str, Any]],
table_name: str,
key_schema: list["KeySchemaElementTypeDef"],
) -> None:
_logger.debug("Inserting %d items", len(items))
_validate_items(items=items, key_schema=key_schema)
dynamodb_client = dynamodb_client if dynamodb_client else _utils.client(service_name="dynamodb")
serializer = TypeSerializer()
with _TableBatchWriter(table_name, dynamodb_client) as writer:
for item in items:
writer.put_item(_serialize_item(item, serializer))
@apply_configs
@_utils.validate_distributed_kwargs(
unsupported_kwargs=["boto3_session"],
)
def put_items(
items: list[dict[str, Any]] | list[Mapping[str, Any]],
table_name: str,
boto3_session: boto3.Session | None = None,
use_threads: bool | int = True,
) -> None:
"""Insert all items to the specified DynamoDB table.
Parameters
----------
items
List which contains the items that will be inserted.
table_name
Name of the Amazon DynamoDB table.
boto3_session
Boto3 Session. The default boto3 Session will be used if boto3_session receive None.
use_threads
Used for Parallel Write requests. True (default) to enable concurrency, False to disable multiple threads.
If enabled os.cpu_count() is used as the max number of threads.
If integer is provided, specified number is used.
Examples
--------
Writing items
>>> import awswrangler as wr
>>> wr.dynamodb.put_items(
... items=[{'key': 1}, {'key': 2, 'value': 'Hello'}],
... table_name='table'
... )
"""
_logger.debug("Inserting items into DynamoDB table: %s", table_name)
executor = _get_executor(use_threads=use_threads)
batches = _utils.chunkify( # type: ignore[misc]
items,
num_chunks=_utils.ensure_worker_or_thread_count(use_threads=use_threads),
)
dynamodb_client = _utils.client(service_name="dynamodb", session=boto3_session)
key_schema = dynamodb_client.describe_table(TableName=table_name)["Table"]["KeySchema"]
ray_get(
executor.map(
_put_items,
dynamodb_client,
batches,
itertools.repeat(table_name),
itertools.repeat(key_schema),
)
)