-
Notifications
You must be signed in to change notification settings - Fork 706
/
Copy pathmysql.py
580 lines (515 loc) · 20.8 KB
/
mysql.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
"""Amazon MySQL Module."""
from __future__ import annotations
import logging
import uuid
from typing import TYPE_CHECKING, Any, Iterator, Literal, cast, overload
import boto3
import pyarrow as pa
import awswrangler.pandas as pd
from awswrangler import _data_types, _utils, exceptions
from awswrangler import _databases as _db_utils
from awswrangler._config import apply_configs
from awswrangler._sql_utils import identifier
if TYPE_CHECKING:
try:
import pymysql
from pymysql.cursors import Cursor
except ImportError:
pass
else:
pymysql = _utils.import_optional_dependency("pymysql")
_logger: logging.Logger = logging.getLogger(__name__)
def _validate_connection(con: "pymysql.connections.Connection[Any]") -> None:
if not isinstance(con, pymysql.connections.Connection):
raise exceptions.InvalidConnection(
"Invalid 'conn' argument, please pass a "
"pymysql.connections.Connection object. Use pymysql.connect() to use "
"credentials directly or wr.mysql.connect() to fetch it from the Glue Catalog."
)
def _drop_table(cursor: "Cursor", schema: str | None, table: str) -> None:
schema_str = f"{identifier(schema)}." if schema else ""
sql = f"DROP TABLE IF EXISTS {schema_str}{identifier(table)}"
_logger.debug("Drop table query:\n%s", sql)
cursor.execute(sql)
def _does_table_exist(cursor: "Cursor", schema: str | None, table: str) -> bool:
if schema:
cursor.execute(
"SELECT * FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_SCHEMA = %s AND TABLE_NAME = %s", args=[schema, table]
)
else:
cursor.execute("SELECT * FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_NAME = %s", args=[table])
return len(cursor.fetchall()) > 0
def _create_table(
df: pd.DataFrame,
cursor: "Cursor",
table: str,
schema: str,
mode: str,
index: bool,
dtype: dict[str, str] | None,
varchar_lengths: dict[str, int] | None,
) -> None:
if mode == "overwrite":
_drop_table(cursor=cursor, schema=schema, table=table)
elif _does_table_exist(cursor=cursor, schema=schema, table=table):
return
mysql_types: dict[str, str] = _data_types.database_types_from_pandas(
df=df,
index=index,
dtype=dtype,
varchar_lengths_default="TEXT",
varchar_lengths=varchar_lengths,
converter_func=_data_types.pyarrow2mysql,
)
cols_str: str = "".join([f"{identifier(k)} {v},\n" for k, v in mysql_types.items()])[:-2]
sql = f"CREATE TABLE IF NOT EXISTS {identifier(schema)}.{identifier(table)} (\n{cols_str})"
_logger.debug("Create table query:\n%s", sql)
cursor.execute(sql)
@_utils.check_optional_dependency(pymysql, "pymysql")
def connect(
connection: str | None = None,
secret_id: str | None = None,
catalog_id: str | None = None,
dbname: str | None = None,
boto3_session: boto3.Session | None = None,
read_timeout: int | None = None,
write_timeout: int | None = None,
connect_timeout: int = 10,
cursorclass: type["Cursor"] | None = None,
) -> "pymysql.connections.Connection": # type: ignore[type-arg]
"""Return a pymysql connection from a Glue Catalog Connection or Secrets Manager.
https://pymysql.readthedocs.io
Note
----
You MUST pass a `connection` OR `secret_id`.
Here is an example of the secret structure in Secrets Manager:
{
"host":"mysql-instance-wrangler.dr8vkeyrb9m1.us-east-1.rds.amazonaws.com",
"username":"test",
"password":"test",
"engine":"mysql",
"port":"3306",
"dbname": "mydb" # Optional
}
Note
----
It is only possible to configure SSL using Glue Catalog Connection. More at:
https://docs.aws.amazon.com/glue/latest/dg/connection-defining.html
Note
----
Consider using SSCursor `cursorclass` for queries that return a lot of data. More at:
https://pymysql.readthedocs.io/en/latest/modules/cursors.html#pymysql.cursors.SSCursor
Parameters
----------
connection
Glue Catalog Connection name.
secret_id
Specifies the secret containing the connection details that you want to retrieve.
You can specify either the Amazon Resource Name (ARN) or the friendly name of the secret.
catalog_id
The ID of the Data Catalog.
If none is provided, the AWS account ID is used by default.
dbname
Optional database name to overwrite the stored one.
boto3_session
The default boto3 session will be used if **boto3_session** is ``None``.
read_timeout
The timeout for reading from the connection in seconds (default: None - no timeout).
This parameter is forward to pymysql.
https://pymysql.readthedocs.io/en/latest/modules/connections.html
write_timeout
The timeout for writing to the connection in seconds (default: None - no timeout)
This parameter is forward to pymysql.
https://pymysql.readthedocs.io/en/latest/modules/connections.html
connect_timeout
Timeout before throwing an exception when connecting.
(default: 10, min: 1, max: 31536000)
This parameter is forward to pymysql.
https://pymysql.readthedocs.io/en/latest/modules/connections.html
cursorclass
Cursor class to use, e.g. SSCursor; defaults to :class:`pymysql.cursors.Cursor`
https://pymysql.readthedocs.io/en/latest/modules/cursors.html
Returns
-------
pymysql connection.
Examples
--------
>>> import awswrangler as wr
>>> with wr.mysql.connect("MY_GLUE_CONNECTION") as con:
... with con.cursor() as cursor:
... cursor.execute("SELECT 1")
... print(cursor.fetchall())
"""
attrs: _db_utils.ConnectionAttributes = _db_utils.get_connection_attributes(
connection=connection, secret_id=secret_id, catalog_id=catalog_id, dbname=dbname, boto3_session=boto3_session
)
if attrs.kind != "mysql":
raise exceptions.InvalidDatabaseType(f"Invalid connection type ({attrs.kind}. It must be a MySQL connection.)")
return pymysql.connect(
user=attrs.user,
database=attrs.database,
password=attrs.password,
port=attrs.port,
host=attrs.host,
ssl=attrs.ssl_context, # type: ignore[arg-type]
read_timeout=read_timeout,
write_timeout=write_timeout,
connect_timeout=connect_timeout,
cursorclass=cursorclass or pymysql.cursors.Cursor,
)
@overload
def read_sql_query(
sql: str,
con: "pymysql.connections.Connection[Any]",
index_col: str | list[str] | None = ...,
params: list[Any] | tuple[Any, ...] | dict[Any, Any] | None = ...,
chunksize: None = ...,
dtype: dict[str, pa.DataType] | None = ...,
safe: bool = ...,
timestamp_as_object: bool = ...,
dtype_backend: Literal["numpy_nullable", "pyarrow"] = ...,
) -> pd.DataFrame: ...
@overload
def read_sql_query(
sql: str,
con: "pymysql.connections.Connection[Any]",
*,
index_col: str | list[str] | None = ...,
params: list[Any] | tuple[Any, ...] | dict[Any, Any] | None = ...,
chunksize: int,
dtype: dict[str, pa.DataType] | None = ...,
safe: bool = ...,
timestamp_as_object: bool = ...,
dtype_backend: Literal["numpy_nullable", "pyarrow"] = ...,
) -> Iterator[pd.DataFrame]: ...
@overload
def read_sql_query(
sql: str,
con: "pymysql.connections.Connection[Any]",
*,
index_col: str | list[str] | None = ...,
params: list[Any] | tuple[Any, ...] | dict[Any, Any] | None = ...,
chunksize: int | None,
dtype: dict[str, pa.DataType] | None = ...,
safe: bool = ...,
timestamp_as_object: bool = ...,
dtype_backend: Literal["numpy_nullable", "pyarrow"] = ...,
) -> pd.DataFrame | Iterator[pd.DataFrame]: ...
@_utils.check_optional_dependency(pymysql, "pymysql")
def read_sql_query(
sql: str,
con: "pymysql.connections.Connection", # type: ignore[type-arg]
index_col: str | list[str] | None = None,
params: list[Any] | tuple[Any, ...] | dict[Any, Any] | None = None,
chunksize: int | None = None,
dtype: dict[str, pa.DataType] | None = None,
safe: bool = True,
timestamp_as_object: bool = False,
dtype_backend: Literal["numpy_nullable", "pyarrow"] = "numpy_nullable",
) -> pd.DataFrame | Iterator[pd.DataFrame]:
"""Return a DataFrame corresponding to the result set of the query string.
Parameters
----------
sql
SQL query.
con
Use pymysql.connect() to use credentials directly or wr.mysql.connect() to fetch it from the Glue Catalog.
index_col
Column(s) to set as index(MultiIndex).
params
List of parameters to pass to execute method.
The syntax used to pass parameters is database driver dependent.
Check your database driver documentation for which of the five syntax styles,
described in PEP 249’s paramstyle, is supported.
chunksize
If specified, return an iterator where chunksize is the number of rows to include in each chunk.
dtype
Specifying the datatype for columns.
The keys should be the column names and the values should be the PyArrow types.
safe
Check for overflows or other unsafe data type conversions.
timestamp_as_object
Cast non-nanosecond timestamps (np.datetime64) to objects.
dtype_backend
Which dtype_backend to use, e.g. whether a DataFrame should have NumPy arrays,
nullable dtypes are used for all dtypes that have a nullable implementation when
“numpy_nullable” is set, pyarrow is used for all dtypes if “pyarrow” is set.
The dtype_backends are still experimential. The "pyarrow" backend is only supported with Pandas 2.0 or above.
Returns
-------
Result as Pandas DataFrame(s).
Examples
--------
Reading from MySQL using a Glue Catalog Connections
>>> import awswrangler as wr
>>> with wr.mysql.connect("MY_GLUE_CONNECTION") as con:
... df = wr.mysql.read_sql_query(
... sql="SELECT * FROM test.my_table",
... con=con,
... )
"""
_validate_connection(con=con)
return _db_utils.read_sql_query(
sql=sql,
con=con,
index_col=index_col,
params=params,
chunksize=chunksize,
dtype=dtype,
safe=safe,
timestamp_as_object=timestamp_as_object,
dtype_backend=dtype_backend,
)
@overload
def read_sql_table(
table: str,
con: "pymysql.connections.Connection[Any]",
schema: str | None = ...,
index_col: str | list[str] | None = ...,
params: list[Any] | tuple[Any, ...] | dict[Any, Any] | None = ...,
chunksize: None = ...,
dtype: dict[str, pa.DataType] | None = ...,
safe: bool = ...,
timestamp_as_object: bool = ...,
dtype_backend: Literal["numpy_nullable", "pyarrow"] = ...,
) -> pd.DataFrame: ...
@overload
def read_sql_table(
table: str,
con: "pymysql.connections.Connection[Any]",
*,
schema: str | None = ...,
index_col: str | list[str] | None = ...,
params: list[Any] | tuple[Any, ...] | dict[Any, Any] | None = ...,
chunksize: int,
dtype: dict[str, pa.DataType] | None = ...,
safe: bool = ...,
timestamp_as_object: bool = ...,
dtype_backend: Literal["numpy_nullable", "pyarrow"] = ...,
) -> Iterator[pd.DataFrame]: ...
@overload
def read_sql_table(
table: str,
con: "pymysql.connections.Connection[Any]",
*,
schema: str | None = ...,
index_col: str | list[str] | None = ...,
params: list[Any] | tuple[Any, ...] | dict[Any, Any] | None = ...,
chunksize: int | None,
dtype: dict[str, pa.DataType] | None = ...,
safe: bool = ...,
timestamp_as_object: bool = ...,
dtype_backend: Literal["numpy_nullable", "pyarrow"] = ...,
) -> pd.DataFrame | Iterator[pd.DataFrame]: ...
@_utils.check_optional_dependency(pymysql, "pymysql")
def read_sql_table(
table: str,
con: "pymysql.connections.Connection", # type: ignore[type-arg]
schema: str | None = None,
index_col: str | list[str] | None = None,
params: list[Any] | tuple[Any, ...] | dict[Any, Any] | None = None,
chunksize: int | None = None,
dtype: dict[str, pa.DataType] | None = None,
safe: bool = True,
timestamp_as_object: bool = False,
dtype_backend: Literal["numpy_nullable", "pyarrow"] = "numpy_nullable",
) -> pd.DataFrame | Iterator[pd.DataFrame]:
"""Return a DataFrame corresponding the table.
Parameters
----------
table
Table name.
con
Use pymysql.connect() to use credentials directly or wr.mysql.connect() to fetch it from the Glue Catalog.
schema
Name of SQL schema in database to query.
Uses default schema if None.
index_col
Column(s) to set as index(MultiIndex).
params
List of parameters to pass to execute method.
The syntax used to pass parameters is database driver dependent.
Check your database driver documentation for which of the five syntax styles,
described in PEP 249’s paramstyle, is supported.
chunksize
If specified, return an iterator where chunksize is the number of rows to include in each chunk.
dtype
Specifying the datatype for columns.
The keys should be the column names and the values should be the PyArrow types.
safe
Check for overflows or other unsafe data type conversions.
timestamp_as_object
Cast non-nanosecond timestamps (np.datetime64) to objects.
dtype_backend
Which dtype_backend to use, e.g. whether a DataFrame should have NumPy arrays,
nullable dtypes are used for all dtypes that have a nullable implementation when
“numpy_nullable” is set, pyarrow is used for all dtypes if “pyarrow” is set.
The dtype_backends are still experimential. The "pyarrow" backend is only supported with Pandas 2.0 or above.
Returns
-------
Result as Pandas DataFrame(s).
Examples
--------
Reading from MySQL using a Glue Catalog Connections
>>> import awswrangler as wr
>>> with wr.mysql.connect("MY_GLUE_CONNECTION") as con:
... df = wr.mysql.read_sql_table(
... table="my_table",
... schema="test",
... con=con
... )
"""
sql: str = (
f"SELECT * FROM {identifier(table)}"
if schema is None
else f"SELECT * FROM {identifier(schema)}.{identifier(table)}"
)
return read_sql_query(
sql=sql,
con=con,
index_col=index_col,
params=params,
chunksize=chunksize,
dtype=dtype,
safe=safe,
timestamp_as_object=timestamp_as_object,
dtype_backend=dtype_backend,
)
_ToSqlModeLiteral = Literal[
"append", "overwrite", "upsert_replace_into", "upsert_duplicate_key", "upsert_distinct", "ignore"
]
@_utils.check_optional_dependency(pymysql, "pymysql")
@apply_configs
def to_sql(
df: pd.DataFrame,
con: "pymysql.connections.Connection", # type: ignore[type-arg]
table: str,
schema: str,
mode: _ToSqlModeLiteral = "append",
index: bool = False,
dtype: dict[str, str] | None = None,
varchar_lengths: dict[str, int] | None = None,
use_column_names: bool = False,
chunksize: int = 200,
cursorclass: type["Cursor"] | None = None,
) -> None:
"""Write records stored in a DataFrame into MySQL.
Parameters
----------
df
`Pandas DataFrame <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html>`_
con
Use pymysql.connect() to use credentials directly or wr.mysql.connect() to fetch it from the Glue Catalog.
table
Table name
schema
Schema name
mode
Supports the following modes:
- ``append``: Inserts new records into table.
- ``overwrite``: Drops table and recreates.
- ``upsert_duplicate_key``: Performs an upsert using `ON DUPLICATE KEY` clause. Requires table schema to have
defined keys, otherwise duplicate records will be inserted.
- ``upsert_replace_into``: Performs upsert using `REPLACE INTO` clause. Less efficient and still requires the
table schema to have keys or else duplicate records will be inserted
- ``upsert_distinct``: Inserts new records, including duplicates, then recreates the table and inserts `DISTINCT`
records from old table. This is the least efficient approach but handles scenarios where there are no
keys on table.
- ``ignore``: Inserts new records into table using `INSERT IGNORE` clause.
index
True to store the DataFrame index as a column in the table,
otherwise False to ignore it.
dtype
Dictionary of columns names and MySQL types to be casted.
Useful when you have columns with undetermined or mixed data types.
(e.g. {'col name': 'TEXT', 'col2 name': 'FLOAT'})
varchar_lengths
Dict of VARCHAR length by columns. (e.g. {"col1": 10, "col5": 200}).
use_column_names
If set to True, will use the column names of the DataFrame for generating the INSERT SQL Query.
E.g. If the DataFrame has two columns `col1` and `col3` and `use_column_names` is True, data will only be
inserted into the database columns `col1` and `col3`.
chunksize
Number of rows which are inserted with each SQL query. Defaults to inserting 200 rows per query.
cursorclass
Cursor class to use, e.g. SSCrusor; defaults to :class:`pymysql.cursors.Cursor`
https://pymysql.readthedocs.io/en/latest/modules/cursors.html
Examples
--------
Writing to MySQL using a Glue Catalog Connections
>>> import awswrangler as wr
>>> with wr.mysql.connect("MY_GLUE_CONNECTION") as con:
... wr.mysql.to_sql(
... df=df,
... table="my_table",
... schema="test",
... con=con
... )
"""
if df.empty is True:
raise exceptions.EmptyDataFrame("DataFrame cannot be empty.")
mode = cast(_ToSqlModeLiteral, mode.strip().lower())
allowed_modes = [
"append",
"overwrite",
"upsert_replace_into",
"upsert_duplicate_key",
"upsert_distinct",
"ignore",
]
_db_utils.validate_mode(mode=mode, allowed_modes=allowed_modes)
_validate_connection(con=con)
try:
with con.cursor(cursor=cursorclass or pymysql.cursors.Cursor) as cursor:
_create_table(
df=df,
cursor=cursor,
table=table,
schema=schema,
mode=mode,
index=index,
dtype=dtype,
varchar_lengths=varchar_lengths,
)
if index:
df.reset_index(level=df.index.names, inplace=True)
column_placeholders: str = ", ".join(["%s"] * len(df.columns))
insertion_columns = ""
upsert_columns = ""
upsert_str = ""
ignore_str = " IGNORE" if mode == "ignore" else ""
if use_column_names:
insertion_columns = f"({', '.join([identifier(col) for col in df.columns])})"
if mode == "upsert_duplicate_key":
upsert_columns = ", ".join(df.columns.map(lambda col: f"{identifier(col)}=VALUES({identifier(col)})"))
upsert_str = f" ON DUPLICATE KEY UPDATE {upsert_columns}"
placeholder_parameter_pair_generator = _db_utils.generate_placeholder_parameter_pairs(
df=df, column_placeholders=column_placeholders, chunksize=chunksize
)
sql: str
for placeholders, parameters in placeholder_parameter_pair_generator:
if mode == "upsert_replace_into":
sql = f"REPLACE INTO {identifier(schema)}.{identifier(table)} {insertion_columns} VALUES {placeholders}"
else:
sql = f"""INSERT{ignore_str} INTO {identifier(schema)}.{identifier(table)} {insertion_columns}
VALUES {placeholders}{upsert_str}"""
_logger.debug("sql: %s", sql)
cursor.executemany(sql, (parameters,))
con.commit()
if mode == "upsert_distinct":
temp_table = f"{table}_{uuid.uuid4().hex}"
cursor.execute(
f"CREATE TABLE {identifier(schema)}.{identifier(temp_table)} LIKE {identifier(schema)}.{identifier(table)}"
)
cursor.execute(
f"INSERT INTO {identifier(schema)}.{identifier(temp_table)} SELECT DISTINCT * FROM {identifier(schema)}.{identifier(table)}"
)
cursor.execute(f"DROP TABLE IF EXISTS {identifier(schema)}.{identifier(table)}")
cursor.execute(
f"ALTER TABLE {identifier(schema)}.{identifier(temp_table)} RENAME TO {identifier(table)}"
)
con.commit()
except Exception as ex:
con.rollback()
_logger.error(ex)
raise