-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtorch.py
46 lines (40 loc) · 1.56 KB
/
torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# Import necessary libraries and modules
import torch
import torchvision
from torchvision import datasets, transforms
# Define hyperparameters
num_classes = 10
learning_rate = 0.001
num_epochs = 10
# Load and transform the dataset
train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor())
test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor())
# Define the network architecture
class ConvNet(torch.nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.layer1 = torch.nn.Sequential(
torch.nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
torch.nn.ReLU(),
torch.nn.MaxPool2d(kernel_size=2, stride=2))
self.layer2 = torch.nn.Sequential(
torch.nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
torch.nn.ReLU(),
torch.nn.MaxPool2d(kernel_size=2, stride=2))
self.fc = torch.nn.Linear(7*7*32, num_classes)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = out.reshape(out.size(0), -1)
out = self.fc(out)
return out
# Initialize the network and specify the loss function and optimization algorithm
model = ConvNet()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Train the network
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_dataset):
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)