File tree 1 file changed +14
-5
lines changed
1 file changed +14
-5
lines changed Original file line number Diff line number Diff line change 31
31
32
32
#### 2. [ 算法实现] ( 关联分析(Apriori)/correlation_analysis.py )
33
33
使用经典的Apriori算法,依次扫描交易记录集,计算出 * k-候选集Ck* 然后去除** 支持度sup** 小的项集获得 * k-频繁集Lk* , 只计算到 * 3-频繁集* ,最后计算管理规则可信度即可。
34
- > 第k个候选集只会从k-1频繁集中的各项目组合连接,然后扫描记录集,以获取Ck中各项集的支持度。
34
+ > 第k个候选集只会从k-1频繁集中的各项目组合连接,然后扫描记录集,以获取Ck中各项集的支持度。
35
+
36
+ 算法输出
37
+ <center >
38
+ <img alt =" 算法输出 " src =" https://i.loli.net/2019/06/16/5d05ad0e8f2e762317.png " width =" 80% " />
39
+ </center >
35
40
36
- ![ 输出结果] ( https://i.loli.net/2019/06/16/5d05ad0e8f2e762317.png )
37
41
38
42
<hr >
39
43
@@ -74,9 +78,14 @@ with open("tree.dot", 'w') as f:
74
78
f = tree.export_graphviz(clf, out_file = f)
75
79
```
76
80
算法输出
77
- ![ 算法输出] ( https://i.loli.net/2019/06/16/5d05b41f3cca371767.png )
78
- 决策树
79
- ![ 决策树] ( https://i.loli.net/2019/06/16/5d05b41f6850332395.png )
81
+ <center >
82
+ <img alt =" 算法输出 " src =" https://i.loli.net/2019/06/16/5d05b41f3cca371767.png " width =" 80% " />
83
+ </center >
84
+ 决策树
85
+ <center >
86
+ <img alt =" 决策树 " src =" https://i.loli.net/2019/06/16/5d05b41f6850332395.png " width =" 80% " />
87
+ </center >
80
88
89
+ <hr >
81
90
82
91
## 数据聚类K-means算法
You can’t perform that action at this time.
0 commit comments