-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.blackbox.Rd
74 lines (55 loc) · 2.62 KB
/
predict.blackbox.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
\name{predict.blackbox}
\alias{predict.blackbox}
\title{ Predict method of blackbox objects }
\description{
\code{predict.blackbox} reads an \code{blackbox} object and uses the estimates to generate a matrix of predicted values.
}
\usage{
\method{predict}{blackbox}(object, dims=1, ...)
}
\arguments{
\item{object}{ A \code{blackbox} output object. }
\item{dims}{ Number of dimensions used in prediction. Must be equal to or less than number of dimensions used in estimation. }
\item{...}{ Ignored. }
}
\value{
A matrix of predicted values generated from the parameters estimated from a \code{blackbox} object.
}
\author{
Keith Poole \email{ktpoole@uga.edu}
Howard Rosenthal \email{hr31@nyu.edu}
Jeffrey Lewis \email{jblewis@ucla.edu}
James Lo \email{lojames@usc.edu}
Royce Carroll \email{rcarroll@rice.edu}
Christopher Hare \email{cdhare@ucdavis.edu}
}
\references{
David A. Armstrong II, Ryan Bakker, Royce Carroll, Christopher Hare, Keith T. Poole, and Howard Rosenthal. 2021. \emph{Analyzing Spatial Models of Choice and Judgment}. 2nd ed. Statistics in the Social and Behavioral Sciences Series. Boca Raton, FL: Chapman & Hall/CRC. doi: 10.1201/9781315197609
Keith T. Poole, Jeffrey B. Lewis, Howard Rosenthal, James Lo, and Royce Carroll. 2016. ``Recovering a Basic Space from Issue Scales in R.'' \emph{Journal of Statistical Software} 69(7): 1-21. doi:10.18637/jss.v069.i07
Keith T. Poole. 1998. ``Recovering a Basic Space From a Set of Issue Scales.'' \emph{American Journal of Political Science} 42(3): 954-993. doi: 10.2307/2991737
}
\seealso{
'\link{blackbox}', '\link{Issues1980}'
}
\examples{
### Loads issue scales from the 1980 ANES.
data(Issues1980)
Issues1980[Issues1980[,"abortion1"]==7,"abortion1"] <- 8 #missing recode
Issues1980[Issues1980[,"abortion2"]==7,"abortion2"] <- 8 #missing recode
### Estimate blackbox object from example and call predict function
\donttest{
Issues1980_bb <- blackbox(Issues1980, missing=c(0,8,9), verbose=FALSE,
dims=3, minscale=8)
}
### 'Issues1980_bb' can be retrieved quickly with:
data(Issues1980_bb)
prediction <- predict.blackbox(Issues1980_bb, dims=3)
### Examine predicted vs. observed values for first 10 respondents
### Note that 4th and 6th respondents are NA because of missing data
Issues1980[1:10,]
prediction[1:10,]
### Check correlation across all predicted vs. observed, excluding missing values
prediction[which(Issues1980 \%in\% c(0,8,9))] <- NA
cor(as.numeric(prediction), as.numeric(Issues1980), use="pairwise.complete")
}
\keyword{ multivariate }