Skip to content

Latest commit

 

History

History

0923.3Sum-With-Multiplicity

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

题目

Given an integer array A, and an integer target, return the number of tuples i, j, k such that i < j < k and A[i] + A[j] + A[k] == target.

As the answer can be very large, return it modulo 10^9 + 7.

Example 1:

Input: A = [1,1,2,2,3,3,4,4,5,5], target = 8
Output: 20
Explanation: 
Enumerating by the values (A[i], A[j], A[k]):
(1, 2, 5) occurs 8 times;
(1, 3, 4) occurs 8 times;
(2, 2, 4) occurs 2 times;
(2, 3, 3) occurs 2 times.

Example 2:

Input: A = [1,1,2,2,2,2], target = 5
Output: 12
Explanation: 
A[i] = 1, A[j] = A[k] = 2 occurs 12 times:
We choose one 1 from [1,1] in 2 ways,
and two 2s from [2,2,2,2] in 6 ways.

Note:

  • 3 <= A.length <= 3000
  • 0 <= A[i] <= 100
  • 0 <= target <= 300

题目大意

这道题是第 15 题的升级版。给出一个数组,要求找到 3 个数相加的和等于 target 的解组合的个数,并且要求 i < j < k。解的组合个数不需要去重,相同数值不同下标算不同解(这里也是和第 15 题的区别)

解题思路

这一题大体解法和第 15 题一样的,只不过算所有解组合的时候需要一点排列组合的知识,如果取 3 个一样的数,需要计算 C n 3,去 2 个相同的数字的时候,计算 C n 2,取一个数字就正常计算。最后所有解的个数都加起来就可以了。