|
| 1 | +from ...router import router |
| 2 | +from ...page import page |
| 3 | +from ...code_examples import docs_markdown |
| 4 | + |
| 5 | + |
| 6 | +@router.route("/guide/matplotlib-charts") |
| 7 | +def matplotlib_charts(): |
| 8 | + with page() as p: |
| 9 | + p.title("# Matplotlib Charts") |
| 10 | + |
| 11 | + docs_markdown( |
| 12 | + """ |
| 13 | +
|
| 14 | + Hyperdiv does not have a specific component for |
| 15 | + [Matplotlib](https://matplotlib.org) charts but a |
| 16 | + Matplotlib chart can be added to a Hyperdiv app by |
| 17 | + rendering the chart to image bytes and passing the bytes |
| 18 | + to the @component(image) component. |
| 19 | +
|
| 20 | + """ |
| 21 | + ) |
| 22 | + |
| 23 | + p.heading("## Basic Use") |
| 24 | + |
| 25 | + docs_markdown( |
| 26 | + """ |
| 27 | +
|
| 28 | + ```py-nodemo |
| 29 | + import io |
| 30 | + import matplotlib |
| 31 | + import matplotlib.pyplot as plt |
| 32 | + import hyperdiv as hd |
| 33 | +
|
| 34 | + matplotlib.use("Agg") |
| 35 | +
|
| 36 | + def get_chart_image(fig): |
| 37 | + ''' |
| 38 | + Renders the chart to png image bytes. |
| 39 | + ''' |
| 40 | + buf = io.BytesIO() |
| 41 | + fig.savefig(buf, format="png") |
| 42 | + buf.seek(0) |
| 43 | + image_bytes = buf.getvalue() |
| 44 | + buf.close() |
| 45 | + plt.close(fig) |
| 46 | + return image_bytes |
| 47 | +
|
| 48 | + def main(): |
| 49 | + # Create a chart: |
| 50 | + fig, ax = plt.subplots() |
| 51 | + ax.plot([1, 2, 3, 4], [10, 11, 12, 13]) |
| 52 | +
|
| 53 | + # Render the image bytes in the UI: |
| 54 | + hd.image(get_chart_image(fig), width=20) |
| 55 | + ``` |
| 56 | +
|
| 57 | + Note that `matplotlib.use("Agg")` is important. It tells |
| 58 | + Matplotlib to run headless, without depending on a |
| 59 | + GUI. Without this setting, attempting to add a Matplotlib |
| 60 | + chart to Hyperdiv will fail. |
| 61 | +
|
| 62 | + More on this [here](https://matplotlib.org/stable/users/explain/figure/backends.html#selecting-a-backend). |
| 63 | +
|
| 64 | + """ |
| 65 | + ) |
| 66 | + |
| 67 | + p.heading("## Asynchronous Chart Creation with `task`") |
| 68 | + |
| 69 | + docs_markdown( |
| 70 | + """ |
| 71 | +
|
| 72 | + In the example above, The chart is re-created on every run |
| 73 | + of the app function. We can use a @component(task) to |
| 74 | + create the chart only once and cache its result: |
| 75 | +
|
| 76 | + ```py-nodemo |
| 77 | + def get_chart(): |
| 78 | + fig, ax = plt.subplots() |
| 79 | + ax.plot([1, 2, 3, 4], [10, 11, 12, 13]) |
| 80 | +
|
| 81 | + return get_chart_image(fig) |
| 82 | +
|
| 83 | + def main(): |
| 84 | + task = hd.task() |
| 85 | + task.run(get_chart) |
| 86 | + if task.result: |
| 87 | + hd.image(task.result, width=20) |
| 88 | + ``` |
| 89 | +
|
| 90 | + In this example, the function `get_chart` is called only |
| 91 | + once and the image bytes are cached in `task.result`. |
| 92 | +
|
| 93 | + """ |
| 94 | + ) |
| 95 | + |
| 96 | + p.heading("## Dynamically Updating Charts") |
| 97 | + |
| 98 | + docs_markdown( |
| 99 | + """ |
| 100 | +
|
| 101 | + We can also re-create a chart on demand, with new data. |
| 102 | +
|
| 103 | + ```py-nodemo |
| 104 | + def get_chart(data): |
| 105 | + fig, ax = plt.subplots() |
| 106 | + ax.plot(*data) |
| 107 | +
|
| 108 | + return get_chart_image(fig) |
| 109 | +
|
| 110 | + def main(): |
| 111 | + state = hd.state( |
| 112 | + chart_data=([1, 2, 3, 4], [10, 11, 12, 13]) |
| 113 | + ) |
| 114 | +
|
| 115 | + task = hd.task() |
| 116 | + task.run(get_chart, state.chart_data) |
| 117 | + if task.result: |
| 118 | + hd.image(task.result, width=20) |
| 119 | +
|
| 120 | + if hd.button("Update Chart").clicked: |
| 121 | + state.chart_data = ([1, 2, 3, 4], [5, 20, 8, 10]) |
| 122 | + task.clear() |
| 123 | + ``` |
| 124 | +
|
| 125 | + In this example, we store the chart's line data in |
| 126 | + @component(state). When the `Update Chart` button is |
| 127 | + clicked, we update the chart data and clear the task. The |
| 128 | + task will then re-run with the new chart data, and an |
| 129 | + updated chart will be rendered. |
| 130 | +
|
| 131 | + """ |
| 132 | + ) |
| 133 | + |
| 134 | + p.heading("## Responding to Theme Mode") |
| 135 | + |
| 136 | + docs_markdown( |
| 137 | + """ |
| 138 | +
|
| 139 | + By default, Matplotlib chart images are rendered on white |
| 140 | + background. There's currently no easy way to match the |
| 141 | + chart's color scheme to Hyperdiv's theme exactly, but |
| 142 | + Matplotlib provides a basic way to render a chart in dark |
| 143 | + or light mode. We can then sync the chart's theme mode to |
| 144 | + Hyperdiv's theme mode. |
| 145 | +
|
| 146 | + ```py-nodemo |
| 147 | + def get_chart(data, is_dark): |
| 148 | + if is_dark: |
| 149 | + with plt.style.context("dark_background"): |
| 150 | + fig, ax = plt.subplots() |
| 151 | + ax.plot(*data) |
| 152 | + else: |
| 153 | + fig, ax = plt.subplots() |
| 154 | + ax.plot(*data) |
| 155 | +
|
| 156 | + return get_chart_image(fig) |
| 157 | +
|
| 158 | + def main(): |
| 159 | + theme = hd.theme() |
| 160 | + task = hd.task() |
| 161 | + task.run( |
| 162 | + get_chart, |
| 163 | + ([1, 2, 3, 4], [5, 20, 8, 10]), |
| 164 | + # Pass the current theme mode to the task: |
| 165 | + theme.is_dark |
| 166 | + ) |
| 167 | +
|
| 168 | + if task.result: |
| 169 | + hd.image(task.result, width=20) |
| 170 | +
|
| 171 | + # When the Hyperdiv theme changes, re-render the chart |
| 172 | + # in the new theme mode: |
| 173 | + if theme.changed: |
| 174 | + task.clear() |
| 175 | + ``` |
| 176 | +
|
| 177 | + """ |
| 178 | + ) |
0 commit comments