Skip to content

Commit 59cae16

Browse files
MaximSmolskiygithub-actions
and
github-actions
authored
Reduce the complexity of digital_image_processing/edge detection/canny.py (TheAlgorithms#8167)
* Reduce the complexity of digital_image_processing/edge_detection/canny.py * Fix * updating DIRECTORY.md * updating DIRECTORY.md * updating DIRECTORY.md * Fix review issues * Rename dst to destination --------- Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
1 parent 6371088 commit 59cae16

File tree

1 file changed

+75
-54
lines changed
  • digital_image_processing/edge_detection

1 file changed

+75
-54
lines changed

digital_image_processing/edge_detection/canny.py

+75-54
Original file line numberDiff line numberDiff line change
@@ -18,105 +18,126 @@ def gen_gaussian_kernel(k_size, sigma):
1818
return g
1919

2020

21-
def canny(image, threshold_low=15, threshold_high=30, weak=128, strong=255):
22-
image_row, image_col = image.shape[0], image.shape[1]
23-
# gaussian_filter
24-
gaussian_out = img_convolve(image, gen_gaussian_kernel(9, sigma=1.4))
25-
# get the gradient and degree by sobel_filter
26-
sobel_grad, sobel_theta = sobel_filter(gaussian_out)
27-
gradient_direction = np.rad2deg(sobel_theta)
28-
gradient_direction += PI
29-
30-
dst = np.zeros((image_row, image_col))
31-
21+
def suppress_non_maximum(image_shape, gradient_direction, sobel_grad):
3222
"""
3323
Non-maximum suppression. If the edge strength of the current pixel is the largest
3424
compared to the other pixels in the mask with the same direction, the value will be
3525
preserved. Otherwise, the value will be suppressed.
3626
"""
37-
for row in range(1, image_row - 1):
38-
for col in range(1, image_col - 1):
27+
destination = np.zeros(image_shape)
28+
29+
for row in range(1, image_shape[0] - 1):
30+
for col in range(1, image_shape[1] - 1):
3931
direction = gradient_direction[row, col]
4032

4133
if (
42-
0 <= direction < 22.5
34+
0 <= direction < PI / 8
4335
or 15 * PI / 8 <= direction <= 2 * PI
4436
or 7 * PI / 8 <= direction <= 9 * PI / 8
4537
):
4638
w = sobel_grad[row, col - 1]
4739
e = sobel_grad[row, col + 1]
4840
if sobel_grad[row, col] >= w and sobel_grad[row, col] >= e:
49-
dst[row, col] = sobel_grad[row, col]
41+
destination[row, col] = sobel_grad[row, col]
5042

51-
elif (PI / 8 <= direction < 3 * PI / 8) or (
52-
9 * PI / 8 <= direction < 11 * PI / 8
43+
elif (
44+
PI / 8 <= direction < 3 * PI / 8
45+
or 9 * PI / 8 <= direction < 11 * PI / 8
5346
):
5447
sw = sobel_grad[row + 1, col - 1]
5548
ne = sobel_grad[row - 1, col + 1]
5649
if sobel_grad[row, col] >= sw and sobel_grad[row, col] >= ne:
57-
dst[row, col] = sobel_grad[row, col]
50+
destination[row, col] = sobel_grad[row, col]
5851

59-
elif (3 * PI / 8 <= direction < 5 * PI / 8) or (
60-
11 * PI / 8 <= direction < 13 * PI / 8
52+
elif (
53+
3 * PI / 8 <= direction < 5 * PI / 8
54+
or 11 * PI / 8 <= direction < 13 * PI / 8
6155
):
6256
n = sobel_grad[row - 1, col]
6357
s = sobel_grad[row + 1, col]
6458
if sobel_grad[row, col] >= n and sobel_grad[row, col] >= s:
65-
dst[row, col] = sobel_grad[row, col]
59+
destination[row, col] = sobel_grad[row, col]
6660

67-
elif (5 * PI / 8 <= direction < 7 * PI / 8) or (
68-
13 * PI / 8 <= direction < 15 * PI / 8
61+
elif (
62+
5 * PI / 8 <= direction < 7 * PI / 8
63+
or 13 * PI / 8 <= direction < 15 * PI / 8
6964
):
7065
nw = sobel_grad[row - 1, col - 1]
7166
se = sobel_grad[row + 1, col + 1]
7267
if sobel_grad[row, col] >= nw and sobel_grad[row, col] >= se:
73-
dst[row, col] = sobel_grad[row, col]
74-
75-
"""
76-
High-Low threshold detection. If an edge pixel’s gradient value is higher
77-
than the high threshold value, it is marked as a strong edge pixel. If an
78-
edge pixel’s gradient value is smaller than the high threshold value and
79-
larger than the low threshold value, it is marked as a weak edge pixel. If
80-
an edge pixel's value is smaller than the low threshold value, it will be
81-
suppressed.
82-
"""
83-
if dst[row, col] >= threshold_high:
84-
dst[row, col] = strong
85-
elif dst[row, col] <= threshold_low:
86-
dst[row, col] = 0
68+
destination[row, col] = sobel_grad[row, col]
69+
70+
return destination
71+
72+
73+
def detect_high_low_threshold(
74+
image_shape, destination, threshold_low, threshold_high, weak, strong
75+
):
76+
"""
77+
High-Low threshold detection. If an edge pixel’s gradient value is higher
78+
than the high threshold value, it is marked as a strong edge pixel. If an
79+
edge pixel’s gradient value is smaller than the high threshold value and
80+
larger than the low threshold value, it is marked as a weak edge pixel. If
81+
an edge pixel's value is smaller than the low threshold value, it will be
82+
suppressed.
83+
"""
84+
for row in range(1, image_shape[0] - 1):
85+
for col in range(1, image_shape[1] - 1):
86+
if destination[row, col] >= threshold_high:
87+
destination[row, col] = strong
88+
elif destination[row, col] <= threshold_low:
89+
destination[row, col] = 0
8790
else:
88-
dst[row, col] = weak
91+
destination[row, col] = weak
8992

93+
94+
def track_edge(image_shape, destination, weak, strong):
9095
"""
9196
Edge tracking. Usually a weak edge pixel caused from true edges will be connected
9297
to a strong edge pixel while noise responses are unconnected. As long as there is
9398
one strong edge pixel that is involved in its 8-connected neighborhood, that weak
9499
edge point can be identified as one that should be preserved.
95100
"""
96-
for row in range(1, image_row):
97-
for col in range(1, image_col):
98-
if dst[row, col] == weak:
101+
for row in range(1, image_shape[0]):
102+
for col in range(1, image_shape[1]):
103+
if destination[row, col] == weak:
99104
if 255 in (
100-
dst[row, col + 1],
101-
dst[row, col - 1],
102-
dst[row - 1, col],
103-
dst[row + 1, col],
104-
dst[row - 1, col - 1],
105-
dst[row + 1, col - 1],
106-
dst[row - 1, col + 1],
107-
dst[row + 1, col + 1],
105+
destination[row, col + 1],
106+
destination[row, col - 1],
107+
destination[row - 1, col],
108+
destination[row + 1, col],
109+
destination[row - 1, col - 1],
110+
destination[row + 1, col - 1],
111+
destination[row - 1, col + 1],
112+
destination[row + 1, col + 1],
108113
):
109-
dst[row, col] = strong
114+
destination[row, col] = strong
110115
else:
111-
dst[row, col] = 0
116+
destination[row, col] = 0
117+
118+
119+
def canny(image, threshold_low=15, threshold_high=30, weak=128, strong=255):
120+
# gaussian_filter
121+
gaussian_out = img_convolve(image, gen_gaussian_kernel(9, sigma=1.4))
122+
# get the gradient and degree by sobel_filter
123+
sobel_grad, sobel_theta = sobel_filter(gaussian_out)
124+
gradient_direction = PI + np.rad2deg(sobel_theta)
125+
126+
destination = suppress_non_maximum(image.shape, gradient_direction, sobel_grad)
127+
128+
detect_high_low_threshold(
129+
image.shape, destination, threshold_low, threshold_high, weak, strong
130+
)
131+
132+
track_edge(image.shape, destination, weak, strong)
112133

113-
return dst
134+
return destination
114135

115136

116137
if __name__ == "__main__":
117138
# read original image in gray mode
118139
lena = cv2.imread(r"../image_data/lena.jpg", 0)
119140
# canny edge detection
120-
canny_dst = canny(lena)
121-
cv2.imshow("canny", canny_dst)
141+
canny_destination = canny(lena)
142+
cv2.imshow("canny", canny_destination)
122143
cv2.waitKey(0)

0 commit comments

Comments
 (0)