-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathstm32convert.py
191 lines (151 loc) · 5.11 KB
/
stm32convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
"""
Convert a Keras/Lasagne/Caffe model to C for STM32 microcontrollers using ST X-CUBE-AI
Wrapper around the 'generatecode' tool used in STM32CubeMX from the X-CUBE-AI addon
"""
import pathlib
import json
import subprocess
import argparse
import os.path
import re
import platform
model_options = {
'keras': 1,
'lasagne': 2,
'caffee': 3,
'convnetjs': 4,
}
def generate_config(model_path, out_path, name='network', model_type='keras', compression=None):
data = {
"name": name,
"toolbox": model_options[model_type],
"models": {
"1": [ model_path , ""],
"2": [ model_path , ""],
"3": [ model_path , ""],
"4": [ model_path ],
},
"compression": compression,
"pinnr_path": out_path,
"src_path": out_path,
"inc_path": out_path,
"plot_file": os.path.join(out_path, "network.png"),
}
return json.dumps(data)
def parse_with_unit(s):
number, unit = s.split()
number = float(number)
multipliers = {
'KBytes': 1e3,
'MBytes': 1e6,
}
mul = multipliers[unit]
return number * mul
def extract_stats(output):
regex = r" ([^:]*):(.*)"
out = {}
matches = re.finditer(regex, output.decode('utf-8'), re.MULTILINE)
for i, match in enumerate(matches, start=1):
key, value = match.groups()
key = key.strip()
value = value.strip()
if key == 'MACC / frame':
out['maccs_frame'] = int(value)
pass
elif key == 'RAM size':
ram, min = value.split('(Minimum:')
out['ram_usage_max'] = parse_with_unit(ram)
out['ram_usage_min'] = parse_with_unit(min.rstrip(')'))
pass
elif key == 'ROM size':
out['flash_usage'] = parse_with_unit(value)
pass
return out
def test_ram_use():
examples = [
("""
AI_ARRAY_OBJ_DECLARE(
input_1_output_array, AI_DATA_FORMAT_FLOAT,
NULL, NULL, 1860,
AI_STATIC)
AI_ARRAY_OBJ_DECLARE(
conv2d_1_output_array, AI_DATA_FORMAT_FLOAT,
NULL, NULL, 29760,
AI_STATIC)
""",
{ 'input_1_output_array': 1860, 'conv2d_1_output_array': 29760 }),
]
for input, expected in examples:
out = extract_ram_use(input)
assert out == expected, out
def extract_ram_use(str):
regex = r"AI_ARRAY_OBJ_DECLARE\(([^)]*)\)"
matches = re.finditer(regex, str, re.MULTILINE)
out = {}
for i, match in enumerate(matches):
(items, ) = match.groups()
items = [ i.strip() for i in items.split(',') ]
name, format, _, _, size, modifiers = items
out[name] = int(size)
return out
def generatecode(model_path, out_path, name, model_type, compression):
# Path to CLI tool
home = str(pathlib.Path.home())
version = os.environ.get('XCUBEAI_VERSION', '3.4.0')
platform_name = platform.system().lower()
if platform_name == 'darwin':
platform_name = 'mac'
p = 'STM32Cube/Repository/Packs/STMicroelectronics/X-CUBE-AI/{version}/Utilities/{os}/generatecode'.format(version=version, os=platform_name)
default_path = os.path.join(home, p)
cmd_path = os.environ.get('XCUBEAI_GENERATECODE', default_path)
# Create output dirs if needed
if not os.path.exists(out_path):
os.makedirs(out_path)
# Generate .ai config file
config = generate_config(model_path, out_path, name=name,
model_type=model_type, compression=compression)
config_path = os.path.join(out_path, 'config.ai')
with open(config_path, 'w') as f:
f.write(config)
# Run generatecode
args = [
cmd_path,
'--auto',
'-c', config_path,
]
stdout = subprocess.check_output(args, stderr=subprocess.STDOUT)
# Parse MACCs / params from stdout
stats = extract_stats(stdout)
assert len(stats.keys()), 'No model output. Stdout: {}'.format(stdout)
with open(os.path.join(out_path, 'network.c'), 'r') as f:
network_c = f.read()
ram = extract_ram_use(network_c)
stats['arrays'] = ram
return stats
def parse():
parser = argparse.ArgumentParser(description='Process some integers.')
a = parser.add_argument
supported_types = '|'.join(model_options.keys())
a('model', metavar='PATH', type=str,
help='The model to convert')
a('out', metavar='DIR', type=str,
help='Where to write generated output')
a('--type', default='keras',
help='Type of model. {}'.format(supported_types))
a('--name', default='network',
help='Name of the generated network')
a('--compression', default=None, type=int,
help='Compression setting to use. Valid: 4|8')
args = parser.parse_args()
return args
def main():
args = parse()
test_ram_use()
stats = generatecode(args.model, args.out,
name=args.name,
model_type=args.type,
compression=args.compression)
print('Wrote model to', args.out)
print('Model status: ', json.dumps(stats))
if __name__ == '__main__':
main()