Skip to content

Commit 02eeaf7

Browse files
committed
Code bundle updated
1 parent 3525c03 commit 02eeaf7

11 files changed

+272894
-0
lines changed

Diff for: Lesson02/Activity02.ipynb

+600
Large diffs are not rendered by default.

Diff for: Lesson02/Exercise13.ipynb

+82
Large diffs are not rendered by default.

Diff for: Lesson02/Exercise14.ipynb

+98
Large diffs are not rendered by default.

Diff for: Lesson02/Exercise15.ipynb

+99
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,99 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"# Creating contour plot"
8+
]
9+
},
10+
{
11+
"cell_type": "code",
12+
"execution_count": 1,
13+
"metadata": {},
14+
"outputs": [],
15+
"source": [
16+
"import seaborn as sns"
17+
]
18+
},
19+
{
20+
"cell_type": "code",
21+
"execution_count": 2,
22+
"metadata": {},
23+
"outputs": [],
24+
"source": [
25+
"mpg_df = sns.load_dataset(\"mpg\")"
26+
]
27+
},
28+
{
29+
"cell_type": "code",
30+
"execution_count": 3,
31+
"metadata": {},
32+
"outputs": [],
33+
"source": [
34+
"# contour plot\n",
35+
"sns.set_style(\"white\")\n"
36+
]
37+
},
38+
{
39+
"cell_type": "code",
40+
"execution_count": 4,
41+
"metadata": {},
42+
"outputs": [
43+
{
44+
"data": {
45+
"text/plain": [
46+
"<matplotlib.axes._subplots.AxesSubplot at 0x123b8be3470>"
47+
]
48+
},
49+
"execution_count": 4,
50+
"metadata": {},
51+
"output_type": "execute_result"
52+
},
53+
{
54+
"data": {
55+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEECAYAAAArlo9mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3df2xW1f0H8PfTduVHf2xWosFgTVsgDAlbTGlhKSWLSolREQYDZmALoJOFsEJwbcECC4VaRZOl25wsWzaK4BAJ8Y8pm2RLxw8bwwBDJzMyfuOXSKuGFmxLe79/NM9Dae+Pc+895z73Puf9Skzk+XHP7aO8z6ef59xzY4ZhGCAiopSXluwTICKiYDDwiYg0wcAnItIEA5+ISBMMfCIiTWQk+wSsTCkpxb2j70v2aRARRcrn/3cFLS0tps+FNvDvHX0ffvunN5N9GkREkVK5bJHlc2zpEBFpgoFPRKQJBj4RkSYY+EREmmDgExFpgoFPRKQJBj4RkSYY+EREmmDgExFpgoFPRKQJBj4RkSYY+EREmmDgExFpQtlumU899RRycnIAAGPGjMGCBQuwZcsWpKeno6ysDCtXrlQ1NBERmVAS+F1dXQCApqamxGOzZ89GY2Mj7r//fjz77LNobW3Fgw8+qGJ4IiIyoaSlc/r0ady8eRNLly7FkiVL8OGHH6K7uxv5+fmIxWIoKyvD0aNHVQxNREQWlFT4w4cPx7JlyzB//nycO3cOzzzzDHJzcxPPZ2Vl4eLFiyqGJiIiC0oCv6CgAA888ABisRgKCgqQk5ODL7/8MvF8Z2fnHRMAERGpp6Sls3fvXrz44osAgKtXr+LmzZsYOXIkLly4AMMwcOjQIRQXF6sYmoiILCip8OfNm4eamhosWrQIsVgMW7duRVpaGtauXYve3l6UlZXhO9/5joqhiYjIgpLAz8zMxCuvvDLk8T179qgYjoiIBPDCKyIiTTDwiYg0wcAnItIEA5+ISBMMfCIiTTDwiYg0wcAnItIEA5+ISBMMfCIiTTDwiYg0wcAnItIEA5+ISBMMfCIiTSi7iTkFq62z29P77s7KlHwmRBRWDPwI8xryZsdg8BOlPgZ+BMkIeqtjMviJUhcDP0JUBL3VGAx+otTDL20jIoiwT+Z4RKQeAz/k2jq7kxa+DH2i1MLAD7EwBG4YzoGI5GDgh1SYgjZM50JE3jHwQyiMARvGcyIidxj4IcNgJSJVGPghEvawD/v5EZE9Bn5IRCVMo3KeRDQUAz8EGKJEFAQGfpJFMeyjeM5ExMBPqigHZ5TPnUhX3EsnSZRsgNbRZfnc3dnDpI9HRNHCwE8CWWFvF/B2r5UV/m2d3dxkjShCGPgB8xv2bkJe5Bh+w5+hTxQdDPwA+Ql7GUFvd1w/wc/QJ4oGBn5AvIa9qqC3Gsdr8DP0icJP2SqdtrY2zJgxA2fOnMH58+exaNEi/OhHP8LGjRvR19enathQ8hL2bR1dgYW9rHG5coco3JQEfk9PDzZs2IDhw4cDAOrr61FZWYldu3bBMAwcPHhQxbCh5DXsk42hT5R6lAR+Q0MDFi5ciHvuuQcA0NraipKSEgBAeXk5jhw5omLY0HEbfsmq6q14PR+GPlE4Se/h79u3D3l5eZg+fTq2b98OADAMA7FYDACQlZWF69evyx42dLyEvVvtHoI1z0Ofva2jy3Vvnz19ovCRHvhvv/02YrEYjh49io8//hhVVVVob29PPN/Z2Ync3FzZw0aam7D3EvJW73cT/gx9ouiTHvhvvPFG4t8XL16MTZs24eWXX0ZLSwtKS0vR3NyMqVOnyh42VNxU96Jh7zfonY4pEv5eVvIw9InCI5C9dKqqqtDY2IgFCxagp6cHFRUVQQybFLLDvr2zW0nY+xnHbfspmTdiJ6LblK7Db2pqSvz7zp07VQ4VCirCPmjxMZ0qflb7RNHDC6+SwCns3QZ9e6d4xZ2XJRbQboLfbegDYPATJQEDXxLR6l5W2LsJeav3iYS/SPB7rfYBBj9RkLgffoBkhH17Z5fnsLc6lsjxRM6Na/aJwo2BL4FIaPkNe5lB7/X4Il/seg19Bj+Regx8n2QElV2Iqg56L+OJhD6rfaLwYQ8/AHbh5xT2fo9vxanfHh/bqs8v2tv3crEWwN4+kQoM/JByCnu/e+6I3gRFJPhlhz7A4CdSgS0dH/z27q2qe7uwV7HBmsgx7c5JVYsHYJuHSCYGfpJ4DXuVnILZrr+v6gtdgF/qEsnClo5HMlbmuBpP8Fgi5+XUJnFaV9/e2RV4iwfglbpEfjHwk8Btde8U9q63Yh7wersAtQt+v6FvdVwnDH0i79jSUcRtde8l7GW0OuLHsDuO1Tk4tXgcx2aLhyhQDHwP/ISNm31ynMJeNqfQtwt+88fV9fUBfqFL5BYDPwTcXlilMuj8VPtWGPpE4cAevgIyvqy1OoZTwLn5DcK2z26zDt7qi1d+mUsUbqzwA2QWxmaVsZew93KjFKGWi8XzrPSJooeBHxFOYe+HU/AHHfq8SItIDQa+S6pDxSzsrMaUfftDu+MFGfp2x3V8H0OfyBIDXzLrABRr54hSeftDhj5RamLgh5yvJaAdXab/CL2XoU+Uchj4ISIabrZbKgsEu2j4M/SJUgsDP0lE2jlmgeUU9q7Pw2lyYOgTpQwGforwEvai72foE6UGBn4AZIWZ5aZrknbllBn61sdh6BMlCwM/pEQDSlbYixzPTeh7DWaGPpE6DPyIULkMc8hYHu/BO5iX1o7oGNxpk8g9Bn6Eya7u/RxbZj+//3m1N5hh6JOOGPgpbuB+9yJ73w9kFfpBfIlrN47IsUUw9Ek3DPwUZrvNsWDwBxH6Mr7IZV+fyBkDP0WJBpmKm7m4Df3+Y/n/3oB9fSJ7DPyIktm/d9xjP4A1+v3Hsh+HLR4ifxj4EZVnc7MQL8EVhdC3G0v0+I7vZehTCmPgU4Kf0Hd7zLCHPoOfUpGSWxz29vbihRdewNmzZ5Geno76+noYhoHq6mrEYjGMGzcOGzduRFpa9Oabu7MyXYdBXlZmoOvo/XC6XWB7R5fpbxfxn8/sNoZWx4yHstXtEvuP5+2WiU7HF8FbJ1KqUZK4//jHPwAAb775JlatWoX6+nrU19ejsrISu3btgmEYOHjwoIqhSYIg2ztAeL/MBdjiodSiJPAfeeQRbN68GQBw5coVjBo1Cq2trSgpKQEAlJeX48iRIyqGTjqv1WTYqAp9uxaP103X2NcnEqOsp5KRkYGqqips3rwZFRUVMAwDsVgMAJCVlYXr16+rGjoSBrcqBk8Ug1sJTu0Lu/d65Tf0ZVb7stbre8XQp1SgtIne0NCAAwcOoLa2Fl1dt/+ydXZ2Ijc3V+XQoeMmsIWPGcBvEyKhH6Zq3wlDn3SmJPD379+P119/HQAwYsQIxGIxTJo0CS0tLQCA5uZmFBcXqxg6EE4VdKq0deJEVq3YBb9TtS97X32n4Pd7ZS6Dn6JKaJXOzJkz0dvbe/tNGRkYPXo0nn/+eTz44IOmr6+pqcHTTz+NW7duYd26dSgqKkJtbS1effVVFBYWoqKiQt5PEVF5WcPuCK+7s4fdEUSDVwQle7WPyKoVq1U8gNyVPLJW8XAFD+lEKPCnTp2KWbNmobi4GMePH8dbb72FH/zgB6irq8Pu3buHvH7kyJH41a9+NeTxnTt3+j/jkAjL8sy87GGmlbWX8xMRP6bT0s34uZk+bxH8dse2Cuf2zi6GPpEgoZbO2bNn8b3vfQ+ZmZkoLS3F559/jmnTpkVyHX1QRENE5Ze3Kvlt8wDu+/vs6xP5I5TYmZmZ2L17N06fPo3du3cjMzMTp06duqPNQ2KC/PI2iOpTdX9/yGMW/Xe7VTwMfaJ+QoG/bds2nDt3Dq+88gouXryIl156CW1tbdiyZYvq8ws1WYEa1Sp/IJG99r0Ev6xqn6FPJBj4d911F4qLizFlyhRMmTIFd911F2bMmIGioiLV5xdpQa7WSWaVP5jf4Lc65pDHPIS+yAoerxj6FHZCgb9+/Xr89a9/xbBhw7B//35s3bpV9XlFhpclmmYVetiq/HgoO/Xh7XgNfrtqf8hjNi0ey3EZ+qQpoVU6n3zyCd566y0AwI9//GP88Ic/VHpSOghyxY4blpW3yeOiF345reyx25BNdCWP2WobPyt4/K7eMTtHomQTqvDz8/Nx8eJFAEBbWxtGjx6t9KSiRtaFWDKqfLPgVBU8bn8DsKv4ZVX7Q9+fnEofYLVP4SNU4Z88eRKPPfYY7rvvPly9ehWZmZkoKysDABw6dEjpCaYyL1W+youx/Px2MPC9TpW/XQXsttoXrfQB84u0RCp9wN8WywCrfQoHoQq/pqYG5eXluP/++1FcXIzJkyfj0KFDDPsBgqryhY4RYJVvRrTqt6r47ap9s2MMeSxkK3gAVvsUDkIV/ksvvYTNmzdrt+FZEMwqdFVbLjhdfSvjO4CBnK64jbO6YtWs2vdT6fe/37yvr/qq3Ph5Aqz2KXmEKvxx48ahpKQEEyZMSPxDQ3mt8r2suHHq5wexk6YokYrfrtof8phJXz8qlT7Aap+SR6jCf/jhh7FgwQIUFhYmHquvr1d2UqlscLVuxanKF2FWsavaY0eESMVvVq1bvW9wVW5WQXup9AH7SdhvX9/qXIlUEwr8pqYmLF++HDk5OarPJ/K8Bqqq1o7b0Jfd1jFjt6MmIL/FY7fjZjLvmRs/V4DBT8EQaumMGjUKjz32GKZPn574h6ypbO0EsVQziHaQU5vHbvnmkMeStGzT7rhusc1DQRCq8IcPH45ly5Zh4sSJidsUrlmzRumJpTqvrR2z96r4EjeISh+wr/aD+jLXadlm/3Os9in6hCr873//+3j88cdRWFiIgoICFBQUqD6vyPP6l1Zk2wWR8US/xE12pQ/Yr/8PqtLvf7+cal/GEk5W/KSCUIU/Z84c1eeRkpz6+VZVvpd+vtl4g4/j5WYpOlX6/e/3X+3Hjw/4r/hZ7ZNMvIOJYjL7+SIXZYlU+l56+sle5qmq0ld131yRMYTez2qfJGLgByBsoQ94uxpXdeiLrNUXfZ+svfUZ/JRKGPghEabQT2a1Lzv0ZVX7YQp+Iq8Y+AER6cX6DX1ZSzbN3mv2vmS1edyEPuC+2vcb/KJX7HoNflb75BUDP0CqQ9/s/Wah76avH9bglxH6dsfxE/zx8Rj8FDYM/ICFIfQtj2VT7Ycx+GXure8n+GW0e+LjeAl/Bj+JYuAnQbJC30+1Hz+Gk/j7gwp/p1somj4uOfj7j5n8dg+Dn5ww8JNEReh7+TLX8ng+2jyDj+FmEvAyUfi5YbrX4A9zu4ehT1aELrwiNUQ2WnNzcVb/40Mv0ALuXHoYD+zBF2kBQ3vddhdrxbkJGFWVv9NFSnYXdlldUDXw5zI7tt3FVQP/G9ht0GY2rptxLN/jcO6kJ1b4Sea30vfa4rEa2021P/A4YQgVp4nHacM2u8pbZdXPVg8FhRV+CJhV3ENeY7PZmshWDFbHcFvtA9a9cZGfQzWRDcic9uVvN/ksBh/faow7fpOy2KSt/7jWWzeYjWs2htttG7g5G7HCDxGRK3Jl9PXdVPt+Kv5kBovIpBOv+P1W/SqWdopU/az4yS1W+CETRF/f6hhWFbpTxQ84V/1mx1XNTUU78PzNJjOn6tuu8hep+v30+f1W/ACrfl0w8EPIb+gDJuFsEfrA0L1krMa3Ojbg3O6JHzcuyPB3G2yywt/NF72i7R6R4Dc7vhOGvx4Y+CHlJ/QB674+MHQnSDfVfvzY/cexDn5APPytxlEhyPAXqfpVbdHsZ3tmhn/qYuCHmIrQ73/cXbUPuA9+QKzqHzyO1VgqqAp/N1W/3+C3Gm/w8a3GcMLwTy0M/JBTGfqAebUPqAl+IPXC32vVH3Sf32kMEYP/W3ACiB7pgd/T04N169bh8uXL6O7uxooVKzB27FhUV1cjFoth3Lhx2LhxI9LSuEBIlGjoA+Z7u9u2YEyqfbvjiQS/1VhA9MJ/8DkM5rXq99LukbWsc+AYZuOI4gQQPdID/5133sG3vvUtvPzyy/jiiy8wZ84cTJgwAZWVlSgtLcWGDRtw8OBBPProo7KHTmkioQ/IrfbjxwOsgx8IPvyTtdpn4DmYsQv/INs9TuMNGV9C+ANs/0SB9MCfNWsWKioqEn9OT09Ha2srSkpKAADl5eU4fPgwA98DlaHf/5z74I+fF2AdxE4tH8Bbvz8Za8ndhr9V8APu2z1+gt9qzMGGTOwSqn+Gf3hI76tkZWUhOzsbHR0dWLVqFSorK2EYBmKxWOL569evyx5WG6J/eez+olpdUHX7eZuLqmwu/nK64Co+ru3YLjZaC8PFXX62c3C7eZvfrZoHjun2Dl0y9u3nxV7Jp6SR/tlnn2HJkiWYPXs2nnjiiTv69Z2dncjNzVUxrDZkhD5gH/zxq3Stwj8e/EGEv5OwBH9Qu3aK7t3jJvyDmgAY/sklvaVz7do1LF26FBs2bMC0adMAABMnTkRLSwtKS0vR3NyMqVOnyh5WO27aO4B5KybOrs3T/7x1q0dkDNF+v9/lnVHYy8dpdY/XC7kA5107Afvf3ty2f0TGt30v9/YJXMwwDEPmAevq6vDuu++isLAw8dj69etRV1eHnp4eFBYWoq6uDunp6bbHeXz2HPz2T2/KPLWU5CbcRCoykUrPqXIUGcuxFSLQKnE8hyRXkSJ3CbN8zmlfJYF9l5zYhb+Xc3I7vun7GP6+VS5bhH379pk+Jz3wZWHgi3MbbKK/ioch/Bn8/oIfEA9fNxOA6vBn8HtnF/i88CoFiLZ3Eq+3WcUzkNDqmgEh4dTyAdyv8nFa3ulmD59kBb/IzVkA+Zu2JV4juPLGa/tH5Q1cGPxyMfBThNtQE+ntx4msqe9/nXj42wU/4H0Pn7AGv1PoA/Z35QKc19aLLoWUPQGo3OaBwS8XAz/FeKn244IMfxlVv9fN25K5a6dI6AP2bR6RgHVzFazMCUDVTVwY/HIw8FOQ29BPvM9F1Q8EE/524ZwK7R4rIsEPuAhYk59PZgvIa/gz+IPFwE9RfoLMbdUPuA9/Py2fVNqr34lo8AMerqoV/C1AZALwu9WDl+Bn6LvHwE9xfitYVeEvo+pPtb367bgJ/sR7HL4EH8zLBCD7Ri5ugp/VvnsMfE3IaF0kO/xVtHsA8Qu6BnL7OcoKJafdOR3f72ISEJkAVN3Ipa2ji20eBRj4mpHVsx78l1HWF74qNnCTGf6Dx0sms3OVMQl4WQXkdT9/q6uLBx6TbR55GPiakt2z9rrax0vV7/VLXqFxPYR/mNids+hkIDIB+Llv7+DgZ5snOAx8Smr4y6r6zcby0/IBTLY2juAEMJDX3wi87OUPWLdl2ju7XFf7dsczfS2rfVMMfLqD7C8sZYa/114/IN7ysRobsLgSVqNJQOZe/n6qffb2vWPgky2ZE4CX8A+y6h88tt34iddahWOEJwKRL4adbt1oFvyyqn2u3feOgU+uyJoARMM/iKofEAt/q3MwfZ/dlbIRmgycloPabensptpX3eKxOifdMPDJFxkTgOgVvqqqfkD85zALINFJIHGMCP5WILLBm1m1L9rbtwt9s2PbHcuO7qHPwCep/HwBHHTVbzeOm4nM628BQ44TgS+J7TZ4M6vIZYS+1bEHHgtgi0cEA5+UkRH+sqr+/tfYh7/deH4mALvzsxPWJaJhDH2r49nRsdpn4FMgvIa/rKq//zX+9+5PvM5lK8vvJCB6m8ewchOuDH11GPgUOK9X+8qq+vtf4y78ncb18l2Gm9VAifeEtOofyCmUB3K7esfPMS1fr1HoM/ApacJQ9fe/zjn8B4/rNLbf3wBEJoBkVv1ON2sxIytYRSYUhr45Bj6FQlBVPyAe/v2vTf4E4OZagKDC38uePVa8VPkMfW8Y+BQqqqt+wGWYhmACCFv4O4W9mxuch02qhz4Dn0JLddUPuG+lBDEBqAh/wP8EILOql0FFlZ/qGPgUen6DH5C7f/+dr5c/AXi9CMzrNhAy2QVwVCrnVK7yGfgUGcm8bSOgdgIIuvqXzU8bR3UFzir/NgY+RY7f7Zy9hD/gfwJIZvXfP778SUAk6FO1Wo4iBj5Fmsx79gJqJwDV1T/g/grgwdzeB9eJU9iz8g4WA59SgqybuIRxAlB9Adid5+S/Ghet6J3C3uuFV2SNgU8pR+YdvJI1Aaha/pl4j+T2jpu2jUhVz7BXg4FPKU3WTdsTx5M0Aahc/ilyXsnoq4u2b0TDXvS3EbaNbmPgkxZk37oxcVyPE4Df9k//e9xNAoC7CUoGt2ErO+zpTgx80lLUJ4D+97ibBACxAHY7KfitoN22b9yEvZdzS+VVRQx8IoR/AgDUTQKDBdEC8dKjd1vVs5UzFAOfyETYJgBA7iRw+/0Bbbbm40tYL+0br2GfytU9oDDwT548iW3btqGpqQnnz59HdXU1YrEYxo0bh40bNyItLU3V0ETShXECACTcWCXEq2G89ukZ9taUBP7vf/97vPPOOxgxYgQAoL6+HpWVlSgtLcWGDRtw8OBBPProoyqGJgpEUBMAIGcSAILfbsEtv1/EsoXjTEng5+fno7GxEb/4xS8AAK2trSgpKQEAlJeX4/Dhwwx8SimqJgBAziQAOAdqkBOCzFU2foNeh8o+TkngV1RU4NKlS4k/G4aBWCwGAMjKysL169dVDEsUGionAEDNssuoLXWUUdHrFPZAQF/aDuzXd3Z2Ijc3N4hhiULDLFhkTwJAeNbfqyC7ZaNb2AMBBf7EiRPR0tKC0tJSNDc3Y+rUqUEMSxRqQU0CgH1YhnUyUNWT1zHo4wIJ/KqqKtTW1uLVV19FYWEhKioqghiWKHKCnAQSYyq4GEv2+FLG0Tjo45QF/pgxY7Bnzx4AQEFBAXbu3KlqKKKUZhdUqieDxDlEeAUMg/42XnhFFGFB7YYZNQx5cwx8ohQUht8KgsaQd8bAJ9JMqvxWwIB3j4FPRACcAzRZEwKDXR4GPhEJ8RK8VpMEQzw5GPhEpAyDPVy4ZSURkSYY+EREmmDgExFpgoFPRKQJBj4RkSYY+EREmmDgExFpgoFPRKQJBj4RkSYY+EREmmDgExFpgoFPRKQJBj4RkSYY+EREmmDgExFpgoFPRKQJBj4RkSYY+EREmmDgExFpgoFPRKQJBj4RkSYY+EREmmDgExFpgoFPRKSJjGSfgJXP/+8KKpctSvZpEBFFyuXLly2fixmGYQR4LkRElCRs6RARaYKBT0SkCQY+EZEmGPhERJpg4BMRaYKBT0SkidCuwx/s5MmT2LZtG5qamnD+/HlUV1cjFoth3Lhx2LhxI9LS0vDrX/8a//znP5GRkYF169Zh8uTJlq+Nmp6eHqxbtw6XL19Gd3c3VqxYgbFjx2r1OfT29uKFF17A2bNnkZ6ejvr6ehiGodVnAABtbW2YO3cu/vjHPyIjI0O7nx8AnnrqKeTk5AAAxowZgwULFmDLli1IT09HWVkZVq5cib6+PmzatAn//e9/kZmZibq6OjzwwAM4ceLEkNdqw4iA7du3G48//rgxf/58wzAM46c//anxwQcfGIZhGLW1tcbf/vY349SpU8bixYuNvr4+4/Lly8bcuXMtXxtFe/fuNerq6gzDMIz29nZjxowZ2n0Of//7343q6mrDMAzjgw8+MJ577jntPoPu7m7jZz/7mTFz5kzj008/1e7nNwzD+Prrr43Zs2ff8diTTz5pnD9/3ujr6zOWL19unDp1yjhw4IBRVVVlGIZhHD9+3HjuuecsX6uLSEzv+fn5aGxsTPy5tbUVJSUlAIDy8nIcOXIEx44dQ1lZGWKxGO677z709vaivb3d9LVRNGvWLPz85z9P/Dk9PV27z+GRRx7B5s2bAQBXrlzBqFGjtPsMGhoasHDhQtxzzz0A9Py7cPr0ady8eRNLly7FkiVL8OGHH6K7uxv5+fmIxWIoKyvD0aNHcezYMUyfPh0A8N3vfhenTp1CR0eH6Wt1EYnAr6ioQEbG7e6TYRiIxWIAgKysLFy/fh0dHR3Izs5OvCb+uNlroygrKwvZ2dno6OjAqlWrUFlZqeXnkJGRgaqqKmzevBkVFRVafQb79u1DXl5eIsQAPf8uDB8+HMuWLcMf/vAH/PKXv0RNTQ1GjBiReN7qc0hPT7f8bHQRicAfbGDfsbOzE7m5ucjOzkZnZ+cdj+fk5Ji+Nqo+++wzLFmyBLNnz8YTTzyh7efQ0NCAAwcOoLa2Fl1dXYnHU/0zePvtt3HkyBEsXrwYH3/8MaqqqtDe3p54PtV//riCggI8+eSTiMViKCgoQE5ODr788svE81afQ19fn+lnE9XPwYtIBv7EiRPR0tICAGhubkZxcTEeeughHDp0CH19fbhy5Qr6+vqQl5dn+toounbtGpYuXYrnn38e8+bNA6Df57B//368/vrrAIARI0YgFoth0qRJ2nwGb7zxBnbu3ImmpiZ8+9vfRkNDA8rLy7X5+eP27t2LF198EQBw9epV3Lx5EyNHjsSFCxdgGAYOHTqU+Byam5sBACdOnMD48eORnZ2Nb3zjG0Neq4vIbJ526dIlrFmzBnv27MHZs2dRW1uLnp4eFBYWoq6uDunp6WhsbERzczP6+vpQU1OD4uJiy9dGTV1dHd59910UFhYmHlu/fj3q6uq0+Rxu3LiBmpoaXLt2Dbdu3cIzzzyDoqIi7f5fAIDFixdj06ZNSEtL0+7n7+7uRk1NDa5cuYJYLIa1a9ciLS0NW7duRW9vL8rKyrB69erEKp1PPvkEhmFg69atKCoqwokTJ4a8VheRCXwiIvInki0dIiJyj4FPRKQJBj4RkSYY+EREmmDgExFpgoFPJGj79u346KOPLJ9fvHgxzpw5M+TxnTt3qjwtImEMfCJBzz77LCZPnuz6fa+99pqCsyFyj4FP2pozZw7a2trQ09ODhx56CP/5z38Sj//5z3/GggULsHDhQuzYsQMAUF1djebmZnz99ddYtWoVFi5ciNWrV6OsrCxxzN/85jdYsmQJ5s+fj4sXL+K1117DV199hU2bNiXjRyS6AwOftPXwww/jX//6F44dO4YxY8bg8OHD+PTTT5Gfn4/33nsPu3btwq5du/D++25x4j8AAAF/SURBVO/jf//7X+J9f/nLXzBmzBi8+eabWLlyJdra2hLPzZgxAzt27EB5eTnee+89rFixAt/85jcZ+BQKkbkBCpFsM2fOxO9+9zuMHj0aq1evRlNTEwzDQEVFBRoaGvCTn/wEAPDVV1/hwoULifedOXMG5eXlAICioiLk5eUlnps0aRIAYNSoUbh27VpwPwyRAFb4pK3x48fj0qVL+OijjzBjxgzcuHEDBw8eRGFhIcaOHYsdO3agqakJc+fOxfjx4+943/HjxwEAFy5cwBdffGE7DncvobBg4JPWpkyZgry8PKSlpSX+fcKECZg2bRoWLVqEuXPn4ty5c7j33nsT75k3bx4uX76Mp59+Go2NjRg2bJjtGEVFRVi7dq3qH4XIETdPI3Lp3//+N27cuIGysjKcO3cOy5cvx/vvv5/s0yJyxMAncunzzz/HmjVr0NPTg1u3bmHVqlWJnj5RmDHwiYg0wR4+EZEmGPhERJpg4BMRaYKBT0SkCQY+EZEm/h8aWo3e/DQrtwAAAABJRU5ErkJggg==\n",
56+
"text/plain": [
57+
"<Figure size 432x288 with 1 Axes>"
58+
]
59+
},
60+
"metadata": {},
61+
"output_type": "display_data"
62+
}
63+
],
64+
"source": [
65+
"# generate KDE plot: first two parameters are arrays of X and Y coordinates of data points\n",
66+
"# parameter shade is set to True so that the contours are filled with a color gradient based on number of data points\n",
67+
"sns.kdeplot(mpg_df.weight, mpg_df.mpg, shade=True)\n"
68+
]
69+
},
70+
{
71+
"cell_type": "code",
72+
"execution_count": null,
73+
"metadata": {},
74+
"outputs": [],
75+
"source": []
76+
}
77+
],
78+
"metadata": {
79+
"kernelspec": {
80+
"display_name": "Python 3",
81+
"language": "python",
82+
"name": "python3"
83+
},
84+
"language_info": {
85+
"codemirror_mode": {
86+
"name": "ipython",
87+
"version": 3
88+
},
89+
"file_extension": ".py",
90+
"mimetype": "text/x-python",
91+
"name": "python",
92+
"nbconvert_exporter": "python",
93+
"pygments_lexer": "ipython3",
94+
"version": "3.7.3"
95+
}
96+
},
97+
"nbformat": 4,
98+
"nbformat_minor": 2
99+
}

Diff for: Lesson02/Exercise16.ipynb

+138
Large diffs are not rendered by default.

Diff for: Lesson02/Exercise17.ipynb

+107
Large diffs are not rendered by default.

Diff for: Lesson02/Exercise18.ipynb

+154
Large diffs are not rendered by default.

Diff for: Lesson02/Exercise19.ipynb

+121
Large diffs are not rendered by default.

0 commit comments

Comments
 (0)