forked from xtensor-stack/xtensor-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
316 lines (262 loc) · 9.58 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
/***************************************************************************
* Copyright (c) Wolf Vollprecht, Johan Mabille and Sylvain Corlay *
* Copyright (c) QuantStack *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
#include <numeric>
#include "xtensor/xmath.hpp"
#include "xtensor/xarray.hpp"
#define FORCE_IMPORT_ARRAY
#include "xtensor-python/pyarray.hpp"
#include "xtensor-python/pytensor.hpp"
#include "xtensor-python/pyvectorize.hpp"
#include "xtensor/xadapt.hpp"
#include "xtensor/xstrided_view.hpp"
namespace py = pybind11;
using complex_t = std::complex<double>;
// Examples
double example1(xt::pyarray<double>& m)
{
return m(0);
}
xt::pyarray<double> example2(xt::pyarray<double>& m)
{
return m + 2;
}
// Readme Examples
double readme_example1(xt::pyarray<double>& m)
{
auto sines = xt::sin(m);
return std::accumulate(sines.cbegin(), sines.cend(), 0.0);
}
double readme_example2(double i, double j)
{
return std::sin(i) - std::cos(j);
}
auto complex_overload(const xt::pyarray<std::complex<double>>& a)
{
return a;
}
auto no_complex_overload(const xt::pyarray<double>& a)
{
return a;
}
auto complex_overload_reg(const std::complex<double>& a)
{
return a;
}
auto no_complex_overload_reg(const double& a)
{
return a;
}
// Vectorize Examples
int add(int i, int j)
{
return i + j;
}
template <class T> std::string typestring() { return "Unknown"; }
template <> std::string typestring<uint8_t>() { return "uint8"; }
template <> std::string typestring<int8_t>() { return "int8"; }
template <> std::string typestring<uint16_t>() { return "uint16"; }
template <> std::string typestring<int16_t>() { return "int16"; }
template <> std::string typestring<uint32_t>() { return "uint32"; }
template <> std::string typestring<int32_t>() { return "int32"; }
template <> std::string typestring<uint64_t>() { return "uint64"; }
template <> std::string typestring<int64_t>() { return "int64"; }
template <class T>
inline std::string int_overload(xt::pyarray<T>& m)
{
return typestring<T>();
}
void dump_numpy_constant()
{
std::cout << "NPY_BOOL = " << NPY_BOOL << std::endl;
std::cout << "NPY_BYTE = " << NPY_BYTE << std::endl;
std::cout << "NPY_UBYTE = " << NPY_UBYTE << std::endl;
std::cout << "NPY_INT8 = " << NPY_INT8 << std::endl;
std::cout << "NPY_UINT8 = " << NPY_UINT8 << std::endl;
std::cout << "NPY_SHORT = " << NPY_SHORT << std::endl;
std::cout << "NPY_USHORT = " << NPY_USHORT << std::endl;
std::cout << "NPY_INT16 = " << NPY_INT16 << std::endl;
std::cout << "NPY_UINT16 = " << NPY_UINT16 << std::endl;
std::cout << "NPY_INT = " << NPY_INT << std::endl;
std::cout << "NPY_UINT = " << NPY_UINT << std::endl;
std::cout << "NPY_INT32 = " << NPY_INT32 << std::endl;
std::cout << "NPY_UINT32 = " << NPY_UINT32 << std::endl;
std::cout << "NPY_LONG = " << NPY_LONG << std::endl;
std::cout << "NPY_ULONG = " << NPY_ULONG << std::endl;
std::cout << "NPY_LONGLONG = " << NPY_LONGLONG << std::endl;
std::cout << "NPY_ULONGLONG = " << NPY_ULONGLONG << std::endl;
std::cout << "NPY_INT64 = " << NPY_INT64 << std::endl;
std::cout << "NPY_UINT64 = " << NPY_UINT64 << std::endl;
}
struct A
{
double a;
int b;
char c;
std::array<double, 3> x;
};
struct B
{
double a;
int b;
};
class C
{
public:
using array_type = xt::xarray<double, xt::layout_type::row_major>;
C() : m_array{0, 0, 0, 0} {}
array_type & array() { return m_array; }
private:
array_type m_array;
};
struct test_native_casters
{
using array_type = xt::xarray<double>;
array_type a = xt::ones<double>({50, 50});
const auto & get_array()
{
return a;
}
auto get_strided_view()
{
return xt::strided_view(a, {xt::range(0, 1), xt::range(0, 3, 2)});
}
auto get_array_adapter()
{
using shape_type = std::vector<size_t>;
shape_type shape = {2, 2};
shape_type stride = {3, 2};
return xt::adapt(a.data(), 4, xt::no_ownership(), shape, stride);
}
auto get_tensor_adapter()
{
using shape_type = std::array<size_t, 2>;
shape_type shape = {2, 2};
shape_type stride = {3, 2};
return xt::adapt(a.data(), 4, xt::no_ownership(), shape, stride);
}
auto get_owning_array_adapter()
{
size_t size = 100;
int * data = new int[size];
std::fill(data, data + size, 1);
using shape_type = std::vector<size_t>;
shape_type shape = {size};
return xt::adapt(std::move(data), size, xt::acquire_ownership(), shape);
}
};
xt::pyarray<A> dtype_to_python()
{
A a1{123, 321, 'a', {1, 2, 3}};
A a2{111, 222, 'x', {5, 5, 5}};
return xt::pyarray<A>({a1, a2});
}
xt::pyarray<B> dtype_from_python(xt::pyarray<B>& b)
{
if (b(0).a != 1 || b(0).b != 'p' || b(1).a != 123 || b(1).b != 'c')
{
throw std::runtime_error("FAIL");
}
b(0).a = 123.;
b(0).b = 'w';
return b;
}
void char_array(xt::pyarray<char[20]>& carr)
{
if (strcmp(carr(2), "python"))
{
throw std::runtime_error("TEST FAILED!");
}
std::fill(&carr(2)[0], &carr(2)[0] + 20, 0);
carr(2)[0] = 'c';
carr(2)[1] = '+';
carr(2)[2] = '+';
carr(2)[3] = '\0';
}
void row_major_tensor(xt::pytensor<double, 3, xt::layout_type::row_major>& arg)
{
if (!std::is_same<decltype(arg.begin()), double*>::value)
{
throw std::runtime_error("TEST FAILED");
}
}
void col_major_array(xt::pyarray<double, xt::layout_type::column_major>& arg)
{
if (!std::is_same<decltype(arg.template begin<xt::layout_type::column_major>()), double*>::value)
{
throw std::runtime_error("TEST FAILED");
}
}
template <class T>
using ndarray = xt::pyarray<T, xt::layout_type::row_major>;
void test_rm(ndarray<int>const& x)
{
ndarray<int> y = x;
ndarray<int> z = xt::zeros<int>({10});
}
PYBIND11_MODULE(xtensor_python_test, m)
{
xt::import_numpy();
m.doc() = "Test module for xtensor python bindings";
m.def("example1", example1);
m.def("example2", example2);
m.def("complex_overload", no_complex_overload);
m.def("complex_overload", complex_overload);
m.def("complex_overload_reg", no_complex_overload_reg);
m.def("complex_overload_reg", complex_overload_reg);
m.def("readme_example1", readme_example1);
m.def("readme_example2", xt::pyvectorize(readme_example2));
m.def("vectorize_example1", xt::pyvectorize(add));
m.def("rect_to_polar", xt::pyvectorize([](complex_t x) { return std::abs(x); }));
m.def("compare_shapes", [](const xt::pyarray<double>& a, const xt::pyarray<double>& b) {
return a.shape() == b.shape();
});
m.def("test_rm", test_rm);
m.def("int_overload", int_overload<uint8_t>);
m.def("int_overload", int_overload<int8_t>);
m.def("int_overload", int_overload<uint16_t>);
m.def("int_overload", int_overload<int16_t>);
m.def("int_overload", int_overload<uint32_t>);
m.def("int_overload", int_overload<int32_t>);
m.def("int_overload", int_overload<uint64_t>);
m.def("int_overload", int_overload<int64_t>);
m.def("dump_numpy_constant", dump_numpy_constant);
// Register additional dtypes
PYBIND11_NUMPY_DTYPE(A, a, b, c, x);
PYBIND11_NUMPY_DTYPE(B, a, b);
m.def("dtype_to_python", dtype_to_python);
m.def("dtype_from_python", dtype_from_python);
m.def("char_array", char_array);
m.def("col_major_array", col_major_array);
m.def("row_major_tensor", row_major_tensor);
py::class_<C>(m, "C")
.def(py::init<>())
.def_property_readonly(
"copy",
[](C & self) { return self.array(); }
)
.def_property_readonly(
"ref",
[](C & self) -> C::array_type & { return self.array(); }
)
;
m.def("simple_array", [](xt::pyarray<int>) { return 1; } );
m.def("simple_tensor", [](xt::pytensor<int, 1>) { return 2; } );
m.def("diff_shape_overload", [](xt::pytensor<int, 1> a) { return 1; });
m.def("diff_shape_overload", [](xt::pytensor<int, 2> a) { return 2; });
py::class_<test_native_casters>(m, "test_native_casters")
.def(py::init<>())
.def("get_array", &test_native_casters::get_array, py::return_value_policy::reference_internal) // memory managed by the class instance
.def("get_strided_view", &test_native_casters::get_strided_view, py::keep_alive<0, 1>()) // keep_alive<0, 1>() => do not free "self" before the returned view
.def("get_array_adapter", &test_native_casters::get_array_adapter, py::keep_alive<0, 1>()) // keep_alive<0, 1>() => do not free "self" before the returned adapter
.def("get_tensor_adapter", &test_native_casters::get_tensor_adapter, py::keep_alive<0, 1>()) // keep_alive<0, 1>() => do not free "self" before the returned adapter
.def("get_owning_array_adapter", &test_native_casters::get_owning_array_adapter) // auto memory management as the adapter owns its memory
.def("view_keep_alive_member_function", [](test_native_casters & self, xt::pyarray<double> & a) // keep_alive<0, 2>() => do not free second parameter before the returned view
{return xt::reshape_view(a, {a.size(), });},
py::keep_alive<0, 2>());
}