-
Notifications
You must be signed in to change notification settings - Fork 4k
/
Copy pathbka_iterator.cc
458 lines (401 loc) · 15.4 KB
/
bka_iterator.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
/* Copyright (c) 2019, 2024, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include "sql/iterators/bka_iterator.h"
#include <assert.h>
#include <math.h>
#include <string.h>
#include <sys/types.h>
#include <algorithm>
#include <iterator>
#include <new>
#include <span>
#include <string>
#include <utility>
#include <vector>
#include "my_alloc.h"
#include "my_base.h"
#include "my_inttypes.h"
#include "my_sys.h"
#include "mysqld_error.h"
#include "sql/handler.h"
#include "sql/item.h"
#include "sql/iterators/hash_join_buffer.h"
#include "sql/iterators/row_iterator.h"
#include "sql/psi_memory_key.h"
#include "sql/sql_executor.h"
#include "sql/sql_opt_exec_shared.h"
#include "sql/table.h"
class JOIN;
using hash_join_buffer::BufferRow;
using hash_join_buffer::LoadBufferRowIntoTableBuffers;
using pack_rows::TableCollection;
using std::string;
using std::vector;
static bool NeedMatchFlags(JoinType join_type) {
return join_type == JoinType::OUTER || join_type == JoinType::SEMI ||
join_type == JoinType::ANTI;
}
static size_t BytesNeededForMatchFlags(size_t rows) {
// One bit per row.
return (rows + 7) / 8;
}
BKAIterator::BKAIterator(
THD *thd, unique_ptr_destroy_only<RowIterator> outer_input,
const Prealloced_array<TABLE *, 4> &outer_input_tables,
unique_ptr_destroy_only<RowIterator> inner_input,
size_t max_memory_available, size_t mrr_bytes_needed_for_single_inner_row,
float expected_inner_rows_per_outer_row, bool store_rowids,
table_map tables_to_get_rowid_for, MultiRangeRowIterator *mrr_iterator,
std::span<AccessPath *> single_row_index_lookups, JoinType join_type)
: RowIterator(thd),
m_outer_input(std::move(outer_input)),
m_inner_input(std::move(inner_input)),
m_mem_root(key_memory_hash_op, 16384 /* 16 kB */),
m_rows(&m_mem_root),
m_outer_input_tables(outer_input_tables, store_rowids,
tables_to_get_rowid_for),
m_max_memory_available(max_memory_available),
m_mrr_bytes_needed_for_single_inner_row(
mrr_bytes_needed_for_single_inner_row),
m_mrr_iterator(mrr_iterator),
m_single_row_index_lookups(single_row_index_lookups),
m_join_type(join_type) {
assert(m_outer_input != nullptr);
assert(m_inner_input != nullptr);
m_mrr_bytes_needed_per_row =
lrint(mrr_bytes_needed_for_single_inner_row *
std::max(expected_inner_rows_per_outer_row, 1.0f));
}
bool BKAIterator::Init() {
if (!m_outer_input_tables.has_blob_column()) {
size_t upper_row_size =
pack_rows::ComputeRowSizeUpperBoundSansBlobs(m_outer_input_tables);
if (m_outer_row_buffer.reserve(upper_row_size)) {
my_error(ER_OUTOFMEMORY, MYF(0), upper_row_size);
return true;
}
}
m_outer_input_tables.PrepareForRequestRowId();
BeginNewBatch();
m_end_of_outer_rows = false;
m_has_row_from_previous_batch = false;
return m_outer_input->Init();
}
void BKAIterator::BeginNewBatch() {
m_mem_root.ClearForReuse();
new (&m_rows) Mem_root_array<BufferRow>(&m_mem_root);
m_bytes_used = 0;
m_state = State::NEED_OUTER_ROWS;
// Invalidate the cache in all single-row index lookups below us. The previous
// execution of the join, or the processing of the previous batch in the same
// join, may have overwritten the cached value in EQRefIterator with a value
// from a different row, and the next read from the EQRefIterator must read
// the correct value from the index.
for (AccessPath *lookup : m_single_row_index_lookups) {
lookup->eq_ref().ref->key_err = true;
}
}
int BKAIterator::ReadOuterRows() {
for (;;) {
if (m_has_row_from_previous_batch) {
// The outer row will be in m_outer_row_buffer already. Load it back
// into the global table buffers; MultiRangeRowIterator has loaded other
// rows into them, and in case we are reading from a join, Read() may
// not update all of the tables.
m_has_row_from_previous_batch = false;
LoadBufferRowIntoTableBuffers(
m_outer_input_tables,
hash_join_buffer::Key(m_outer_row_buffer.ptr(),
m_outer_row_buffer.length()));
} else {
int result = m_outer_input->Read();
if (result == 1) {
// Error.
return 1;
}
if (result == -1) {
// EOF.
m_end_of_outer_rows = true;
break;
}
m_outer_input_tables.RequestRowId();
// Save the contents of all columns marked for reading.
if (StoreFromTableBuffers(m_outer_input_tables, &m_outer_row_buffer)) {
return 1;
}
}
// See if we have room for this row, and the associated number of MRR
// rows, without going over our total RAM budget. (We ignore the budget
// if the buffer is empty; at least a single row must be allowed at all
// times.)
const size_t row_size = m_outer_row_buffer.length();
size_t total_bytes_needed_after_this_row =
m_bytes_used + row_size +
(m_mrr_bytes_needed_per_row + sizeof(m_rows[0])) * (m_rows.size() + 1);
if (NeedMatchFlags(m_join_type)) {
total_bytes_needed_after_this_row +=
BytesNeededForMatchFlags(m_rows.size() + 1);
}
if (!m_rows.empty() &&
total_bytes_needed_after_this_row > m_max_memory_available) {
// Out of memory, so end the batch and send it.
// This row will be dealt with in the next batch.
m_has_row_from_previous_batch = true;
break;
}
char *row = m_mem_root.ArrayAlloc<char>(row_size);
if (row == nullptr) {
return 1;
}
memcpy(row, m_outer_row_buffer.ptr(), row_size);
m_rows.push_back(BufferRow(row, row_size));
m_bytes_used += row_size;
}
// If we had no rows at all, we're done.
if (m_rows.empty()) {
assert(!m_has_row_from_previous_batch);
m_state = State::END_OF_ROWS;
return -1;
}
// Figure out how much RAM we need to allocate for the MRR row buffer,
// given to the handler for holding inner rows.
size_t mrr_buffer_size = m_mrr_bytes_needed_per_row * m_rows.size();
if (m_bytes_used + mrr_buffer_size >= m_max_memory_available) {
// Even if it will take us over budget, DS-MRR needs space for at least
// one row to work.
assert(m_rows.size() ==
1); // Otherwise, we would have stopped reading rows earlier.
if (m_bytes_used + m_mrr_bytes_needed_for_single_inner_row >=
m_max_memory_available) {
mrr_buffer_size = m_mrr_bytes_needed_for_single_inner_row;
} else {
mrr_buffer_size = m_max_memory_available - m_bytes_used;
}
} else {
// We're under budget. Heuristically, increase it to get some
// extra headroom if the estimate is pessimistic.
mrr_buffer_size = std::min(mrr_buffer_size * 2 + 16384,
m_max_memory_available - m_bytes_used);
}
assert(mrr_buffer_size >= m_mrr_bytes_needed_for_single_inner_row);
// Ask the MRR iterator to do the actual read.
m_mrr_iterator->set_rows(m_rows.begin(), m_rows.end());
m_mrr_iterator->set_mrr_buffer(m_mem_root.ArrayAlloc<uchar>(mrr_buffer_size),
mrr_buffer_size);
if (NeedMatchFlags(m_join_type)) {
const size_t bytes_needed = BytesNeededForMatchFlags(m_rows.size());
m_mrr_iterator->set_match_flag_buffer(
m_mem_root.ArrayAlloc<uchar>(bytes_needed));
}
if (m_inner_input->Init()) {
return 1;
}
// Probe the rows we've got using MRR.
m_state = State::RETURNING_JOINED_ROWS;
m_mrr_iterator->SetNullRowFlag(false);
return 0;
}
void BKAIterator::BatchFinished() {
// End of joined rows; start reading the next batch if there are
// more outer rows.
if (m_end_of_outer_rows) {
m_state = State::END_OF_ROWS;
} else {
BeginNewBatch();
assert(m_state == State::NEED_OUTER_ROWS);
}
}
int BKAIterator::MakeNullComplementedRow() {
// Find the next row that hasn't been matched to anything yet.
while (m_current_pos != m_rows.end()) {
if (m_mrr_iterator->RowHasBeenRead(m_current_pos)) {
++m_current_pos;
} else {
// Return a NULL-complemented row. (Our table already has the NULL flag
// set.)
LoadIntoTableBuffers(m_outer_input_tables,
pointer_cast<const uchar *>(m_current_pos->data()));
++m_current_pos;
return 0;
}
}
// No more NULL-complemented rows to return.
m_mrr_iterator->SetNullRowFlag(false);
return -1;
}
int BKAIterator::Read() {
for (;;) { // Termination condition within loop.
switch (m_state) {
case State::END_OF_ROWS:
return -1;
case State::NEED_OUTER_ROWS: {
int err = ReadOuterRows();
if (err != 0) {
return err;
}
break;
}
case State::RETURNING_JOINED_ROWS: {
int err = m_inner_input->Read();
if (err != -1) {
if (err == 0) {
m_mrr_iterator->MarkLastRowAsRead();
if (m_join_type == JoinType::ANTI) {
break;
}
}
// A row or an error; pass it through (unless we are an antijoin).
return err;
}
// No more joined rows in this batch. Go to the next batch -- but
// if we're an outer join or antijoin, first create NULL-complemented
// rows for the ones in this batch that we didn't match to anything.
if (m_join_type == JoinType::OUTER || m_join_type == JoinType::ANTI) {
m_state = State::RETURNING_NULL_COMPLEMENTED_ROWS;
m_current_pos = m_rows.begin();
m_mrr_iterator->SetNullRowFlag(true);
} else {
BatchFinished();
break;
}
}
[[fallthrough]];
case State::RETURNING_NULL_COMPLEMENTED_ROWS: {
int err = MakeNullComplementedRow();
if (err != -1) {
return err;
}
BatchFinished();
break;
}
}
}
}
MultiRangeRowIterator::MultiRangeRowIterator(
THD *thd, TABLE *table, Index_lookup *ref, int mrr_flags,
JoinType join_type, const Prealloced_array<TABLE *, 4> &outer_input_tables,
bool store_rowids, table_map tables_to_get_rowid_for)
: TableRowIterator(thd, table),
m_file(table->file),
m_ref(ref),
m_mrr_flags(mrr_flags),
m_outer_input_tables(outer_input_tables, store_rowids,
tables_to_get_rowid_for),
m_join_type(join_type) {}
bool MultiRangeRowIterator::Init() {
/*
Prepare to iterate over keys from the join buffer and to get
matching candidates obtained with MRR handler functions.
*/
if (!m_file->inited) {
const int error = m_file->ha_index_init(m_ref->key, true);
if (error) {
m_file->print_error(error, MYF(0));
return error;
}
}
RANGE_SEQ_IF seq_funcs = {MultiRangeRowIterator::MrrInitCallbackThunk,
MultiRangeRowIterator::MrrNextCallbackThunk,
nullptr};
if (m_join_type == JoinType::SEMI || m_join_type == JoinType::ANTI) {
seq_funcs.skip_record = MultiRangeRowIterator::MrrSkipRecordCallbackThunk;
}
if (m_match_flag_buffer != nullptr) {
assert(NeedMatchFlags(m_join_type));
// Reset all the match flags.
memset(m_match_flag_buffer, 0,
BytesNeededForMatchFlags(std::distance(m_begin, m_end)));
} else {
assert(!NeedMatchFlags(m_join_type));
}
/**
We don't send a set of rows directly to MRR; instead, we give it a set
of function pointers to iterate over the rows, and a pointer to ourselves.
The handler will call our callbacks as follows:
1. MrrInitCallback at the start, to initialize iteration.
2. MrrNextCallback is called to yield ranges to scan, until it returns 1.
*/
return m_file->multi_range_read_init(&seq_funcs, this,
std::distance(m_begin, m_end),
m_mrr_flags, &m_mrr_buffer);
}
range_seq_t MultiRangeRowIterator::MrrInitCallback(uint, uint) {
m_current_pos = m_begin;
return this;
}
uint MultiRangeRowIterator::MrrNextCallback(KEY_MULTI_RANGE *range) {
// Load the next row from the buffer, if there is one.
//
// NULL values will never match in a inner join. The optimizer will often
// set up a NULL filter for inner joins, but not in all cases, so we must
// skip such rows by checking impossible_null_ref(). Thus, we iterate
// until we have a row that is not NULL-filtered. The typical case is
// that this happens immediately.
//
// TODO(sgunders): Consider whether it would be possible to put this check
// before putting the rows into the buffer. That would require evaluating
// any items twice, though.
for (;;) {
if (m_current_pos == m_end) {
return 1;
}
LoadBufferRowIntoTableBuffers(m_outer_input_tables, *m_current_pos);
construct_lookup(thd(), table(), m_ref);
if (!m_ref->impossible_null_ref()) {
break;
}
++m_current_pos;
}
// Set up a range consisting of a single key, so the only difference
// between start and end is the flags. They signify that the range starts
// at the row in question, and ends right after it (exclusive).
range->range_flag = EQ_RANGE;
range->ptr = const_cast<char *>(pointer_cast<const char *>(m_current_pos));
range->start_key.key = m_ref->key_buff;
range->start_key.keypart_map = (1 << m_ref->key_parts) - 1; // All keyparts.
range->start_key.length = m_ref->key_length;
range->start_key.flag = HA_READ_KEY_EXACT;
range->end_key = range->start_key;
range->end_key.flag = HA_READ_AFTER_KEY;
++m_current_pos;
return 0;
}
bool MultiRangeRowIterator::MrrSkipRecord(char *range_info) {
BufferRow *rec_ptr = pointer_cast<BufferRow *>(range_info);
return RowHasBeenRead(rec_ptr);
}
int MultiRangeRowIterator::Read() {
// Read a row from the MRR buffer. rec_ptr tells us which outer row
// this corresponds to; it corresponds to range->ptr in MrrNextCallback(),
// and points to the serialized outer row in BKAIterator's m_row array.
BufferRow *rec_ptr = nullptr;
do {
int error =
m_file->ha_multi_range_read_next(pointer_cast<char **>(&rec_ptr));
if (error != 0) {
return HandleError(error);
}
// NDB never calls mrr_funcs.skip_record(), so we need to recheck here.
// See bug #30594210.
} while (m_join_type == JoinType::SEMI && RowHasBeenRead(rec_ptr));
LoadIntoTableBuffers(m_outer_input_tables,
pointer_cast<const uchar *>(rec_ptr->data()));
m_last_row_returned = rec_ptr;
return 0;
}