-
Notifications
You must be signed in to change notification settings - Fork 4k
/
Copy pathuniques.cc
1008 lines (862 loc) · 34.9 KB
/
uniques.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Copyright (c) 2001, 2024, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
/*
Function to handle quick removal of duplicates
This code is used when doing multi-table deletes to find the rows in
reference tables that needs to be deleted.
The basic idea is as follows:
Store first all strings in a binary tree, ignoring duplicates.
When the tree uses more memory than 'max_heap_table_size',
write the tree (in sorted order) out to disk and start with a new tree.
When all data has been generated, merge the trees (removing any found
duplicates).
The unique entries will be returned in sort order, to ensure that we do the
deletes in disk order.
*/
#include "sql/uniques.h" // Unique
#include <string.h>
#include <algorithm>
#include <atomic>
#include <cmath>
#include <vector>
#include "my_base.h"
#include "my_compiler.h"
#include "my_dbug.h"
#include "my_io.h"
#include "my_tree.h" // element_count
#include "mysql/components/services/bits/psi_bits.h"
#include "mysql/psi/mysql_file.h"
#include "mysql/service_mysql_alloc.h"
#include "priority_queue.h"
#include "sql/field.h" // Field
#include "sql/handler.h" // handler
#include "sql/malloc_allocator.h"
#include "sql/merge_many_buff.h"
#include "sql/mysqld.h" // mysql_tmpdir
#include "sql/opt_costmodel.h"
#include "sql/psi_memory_key.h"
#include "sql/sql_base.h" // TEMP_PREFIX
#include "sql/sql_class.h"
#include "sql/sql_const.h"
#include "sql/sql_executor.h" // check_unique_fields
#include "sql/sql_sort.h"
#include "sql/sql_tmp_table.h" // create_duplicate_weedout_tmp_table
#include "sql/table.h"
namespace {
struct Merge_chunk_compare_context {
qsort2_cmp key_compare;
const void *key_compare_arg;
};
class Uniq_param {
public:
uint rec_length; // Length of sorted records.
uint max_keys_per_buffer; // Max keys / buffer.
ha_rows max_rows; // Select limit, or HA_POS_ERROR if unlimited.
uchar *unique_buff;
bool not_killable;
// The fields below are used only by Unique class.
Merge_chunk_compare_context cmp_context;
typedef int (*chunk_compare_fun)(Merge_chunk_compare_context *ctx,
uchar *arg1, uchar *arg2);
chunk_compare_fun compare;
Uniq_param() { memset(this, 0, sizeof(*this)); }
// Not copyable
Uniq_param(const Uniq_param &) = delete;
Uniq_param &operator=(const Uniq_param &) = delete;
};
} // namespace
/**
Read data to buffer.
@returns
(uint)-1 if something goes wrong
*/
static uint uniq_read_to_buffer(IO_CACHE *fromfile, Merge_chunk *merge_chunk,
Uniq_param *param) {
DBUG_TRACE;
const uint rec_length = param->rec_length;
const ha_rows count =
std::min(merge_chunk->max_keys(), merge_chunk->rowcount());
if (count) {
const size_t bytes_to_read = rec_length * static_cast<size_t>(count);
DBUG_PRINT("info", ("uniq_read_to_buffer %p at file_pos %llu bytes %llu",
merge_chunk,
static_cast<ulonglong>(merge_chunk->file_position()),
static_cast<ulonglong>(bytes_to_read)));
if (mysql_file_pread(fromfile->file, merge_chunk->buffer_start(),
bytes_to_read, merge_chunk->file_position(), MYF_RW))
return (uint)-1; /* purecov: inspected */
merge_chunk->init_current_key();
merge_chunk->advance_file_position(bytes_to_read);
merge_chunk->decrement_rowcount(count);
merge_chunk->set_mem_count(count);
return bytes_to_read;
}
return 0;
} /* uniq_read_to_buffer */
/**
Merge buffers to one buffer.
@param thd thread context
@param param Sort parameter
@param from_file File with source data (Merge_chunks point to this file)
@param to_file File to write the sorted result data.
@param sort_buffer Buffer for data to store up to MERGEBUFF2 sort keys.
@param [out] last_chunk Store here Merge_chunk describing data written to
to_file.
@param chunk_array Array of chunks to merge.
@param flag 0 - write full record, 1 - write addon/ref
@retval 0 OK
@retval other error
*/
static int merge_buffers(THD *thd, Uniq_param *param, IO_CACHE *from_file,
IO_CACHE *to_file, Sort_buffer sort_buffer,
Merge_chunk *last_chunk, Merge_chunk_array chunk_array,
int flag [[maybe_unused]]) {
int error = 0;
uint rec_length;
ha_rows maxcount;
ha_rows max_rows, org_max_rows;
my_off_t to_start_filepos;
uchar *strpos;
Merge_chunk *merge_chunk;
Uniq_param::chunk_compare_fun cmp;
Merge_chunk_compare_context *first_cmp_arg;
DBUG_TRACE;
thd->inc_status_sort_merge_passes();
rec_length = param->rec_length;
const uint offset = 0;
maxcount = (param->max_keys_per_buffer / chunk_array.size());
to_start_filepos = my_b_tell(to_file);
strpos = sort_buffer.array();
org_max_rows = max_rows = param->max_rows;
/* The following will fire if there is not enough space in sort_buffer */
assert(maxcount != 0);
assert(param->unique_buff != nullptr);
cmp = param->compare;
first_cmp_arg = ¶m->cmp_context;
auto greater = [&cmp, &first_cmp_arg](const Merge_chunk *a,
const Merge_chunk *b) {
return cmp(first_cmp_arg, a->current_key(), b->current_key()) > 0;
};
Priority_queue<Merge_chunk *,
std::vector<Merge_chunk *, Malloc_allocator<Merge_chunk *>>,
decltype(greater)>
queue(greater,
Malloc_allocator<Merge_chunk *>(key_memory_Filesort_info_merge));
if (queue.reserve(chunk_array.size())) return 1;
for (merge_chunk = chunk_array.begin(); merge_chunk != chunk_array.end();
merge_chunk++) {
merge_chunk->set_buffer(
strpos, strpos + (sort_buffer.size() / (chunk_array.size())));
merge_chunk->set_max_keys(maxcount);
const uint bytes_read = uniq_read_to_buffer(from_file, merge_chunk, param);
if (static_cast<int>(bytes_read) == -1) return -1; /* purecov: inspected */
strpos += bytes_read;
merge_chunk->set_buffer_end(strpos);
// If less data in buffers than expected
merge_chunk->set_max_keys(merge_chunk->mem_count());
(void)queue.push(merge_chunk);
}
{
/*
Called by Unique::get()
Copy the first argument to param->unique_buff for unique removal.
Store it also in 'to_file'.
*/
merge_chunk = queue.top();
memcpy(param->unique_buff, merge_chunk->current_key(), rec_length);
if (my_b_write(to_file, merge_chunk->current_key(), rec_length)) {
return 1; /* purecov: inspected */
}
merge_chunk->advance_current_key(rec_length);
merge_chunk->decrement_mem_count();
if (--max_rows == 0) {
error = 0; /* purecov: inspected */
goto end; /* purecov: inspected */
}
// The top chunk may actually contain only a single element
if (merge_chunk->mem_count() == 0) {
if (!(error = (int)uniq_read_to_buffer(from_file, merge_chunk, param))) {
queue.pop();
reuse_freed_buff(merge_chunk, &queue);
} else if (error == -1)
return error;
}
queue.update_top(); // Top element has been used
}
while (queue.size() > 1) {
if (thd->killed && !param->not_killable) {
return 1; /* purecov: inspected */
}
for (;;) {
merge_chunk = queue.top();
{
uchar *current_key = merge_chunk->current_key();
if (!(*cmp)(first_cmp_arg, param->unique_buff, current_key))
goto skip_duplicate;
memcpy(param->unique_buff, merge_chunk->current_key(), rec_length);
}
{
const uint bytes_to_write = param->rec_length;
DBUG_PRINT("info", ("write record at %llu len %u", my_b_tell(to_file),
bytes_to_write));
if (my_b_write(to_file, merge_chunk->current_key() + offset,
bytes_to_write)) {
return 1; /* purecov: inspected */
}
if (--max_rows == 0) {
error = 0; /* purecov: inspected */
goto end; /* purecov: inspected */
}
}
skip_duplicate:
merge_chunk->advance_current_key(rec_length);
merge_chunk->decrement_mem_count();
if (0 == merge_chunk->mem_count()) {
if (!(error =
(int)uniq_read_to_buffer(from_file, merge_chunk, param))) {
queue.pop();
reuse_freed_buff(merge_chunk, &queue);
break; /* One buffer has been removed */
} else if (error == -1)
return error; /* purecov: inspected */
}
/*
The Merge_chunk at the queue's top had one of its keys consumed, thus
it may now rank differently in the comparison order of the queue, so:
*/
queue.update_top();
}
}
merge_chunk = queue.top();
merge_chunk->set_buffer(sort_buffer.array(),
sort_buffer.array() + sort_buffer.size());
merge_chunk->set_max_keys(param->max_keys_per_buffer);
/*
As we know all entries in the buffer are unique, we only have to
check if the first one is the same as the last one we wrote
*/
{
uchar *current_key = merge_chunk->current_key();
if (!(*cmp)(first_cmp_arg, param->unique_buff, current_key)) {
merge_chunk->advance_current_key(rec_length); // Remove duplicate
merge_chunk->decrement_mem_count();
}
}
do {
if (merge_chunk->mem_count() > max_rows) {
merge_chunk->set_mem_count(max_rows); /* Don't write too many records */
merge_chunk->set_rowcount(0); /* Don't read more */
}
max_rows -= merge_chunk->mem_count();
for (uint ix = 0; ix < merge_chunk->mem_count(); ++ix) {
const uint bytes_to_write = param->rec_length;
if (my_b_write(to_file, merge_chunk->current_key() + offset,
bytes_to_write)) {
return 1; /* purecov: inspected */
}
merge_chunk->advance_current_key(rec_length);
}
} while ((error = (int)uniq_read_to_buffer(from_file, merge_chunk, param)) !=
-1 &&
error != 0);
end:
last_chunk->set_rowcount(std::min(org_max_rows - max_rows, param->max_rows));
last_chunk->set_file_position(to_start_filepos);
return error;
} /* merge_buffers */
int unique_write_to_file(void *v_key, element_count, void *v_unique) {
uchar *key = static_cast<uchar *>(v_key);
Unique *unique = static_cast<Unique *>(v_unique);
/*
Use unique->size (size of element stored in the tree) and not
unique->tree.size_of_element. The latter is different from unique->size
when tree implementation chooses to store pointer to key in TREE_ELEMENT
(instead of storing the element itself there)
*/
return my_b_write(&unique->file, key, unique->size) ? 1 : 0;
}
int unique_write_to_ptrs(void *v_key, element_count, void *v_unique) {
uchar *key = static_cast<uchar *>(v_key);
Unique *unique = static_cast<Unique *>(v_unique);
memcpy(unique->record_pointers, key, unique->size);
unique->record_pointers += unique->size;
return 0;
}
Unique::Unique(qsort2_cmp comp_func, void *comp_func_fixed_arg, uint size_arg,
ulonglong max_in_memory_size_arg)
: file_ptrs(PSI_INSTRUMENT_ME),
max_elements(0),
max_in_memory_size(max_in_memory_size_arg),
record_pointers(nullptr),
size(size_arg),
elements(0) {
my_b_clear(&file);
init_tree(&tree,
/* memory_limit */ 0, size, comp_func,
/* with_delete */ false,
/* free_element */ nullptr, comp_func_fixed_arg);
/*
If you change the following, change it in get_max_elements function, too.
*/
max_elements =
(ulong)(max_in_memory_size / ALIGN_SIZE(sizeof(TREE_ELEMENT) + size));
(void)open_cached_file(&file, mysql_tmpdir, TEMP_PREFIX, DISK_BUFFER_SIZE,
MYF(MY_WME));
}
/**
Calculate log2(n!)
Stirling's approximate formula is used:
n! ~= sqrt(2*M_PI*n) * (n/M_E)^n
Derivation of formula used for calculations is as follows:
log2(n!) = log2(sqrt(2*M_PI*n)*(n/M_E)^n)
= log2(2*M_PI*n)/2 + n*log2(n/M_E)
= log2(2*M_PI)/2 + log2(n)/2 + n * (log2(n) - M_LOG2E);
@param n the number to calculate log2(n!) for
@return log2(n!) for the function argument
*/
static inline double log2_n_fact(ulong n) {
/*
Stirling's approximation produces a small negative value when n is
1 so we handle this as a special case in order to avoid negative
numbers in estimates. For n equal to 0, the formula below will
produce NaN. Since 0! by definition is 1, we return 0 for this
case too.
*/
if (n <= 1) return 0.0;
const auto log2_n = std::log2(n);
return std::log2(2 * M_PI) / 2 + log2_n / 2 + n * (log2_n - M_LOG2E);
}
/*
Calculate cost of merge_buffers function call for given sequence of
input stream lengths and store the number of rows in result stream in *last.
SYNOPSIS
get_merge_buffers_cost()
total_buf_elems Number of elements to merge in all
n_buffers Number of different buffers the elements are sprea dover
elem_size Size of element stored in buffer
cost_model Cost model to use for constants
RETURN
Cost of merge_buffers operation in disk seeks.
NOTES
It is assumed that no rows are eliminated during merge.
The cost is calculated as
cost(read_and_write) + cost(merge_comparisons).
All bytes in the sequences is read and written back during merge so cost
of disk io is 2*elem_size*total_buf_elems/IO_SIZE (2 is for read + write)
For comparisons cost calculations we assume that all merged sequences have
the same length, so each of total_buf_size elements will be added to a sort
heap with (n_buffers-1) elements. This gives the comparison cost:
key_compare_cost(total_buf_elems * log2(n_buffers));
*/
static double get_merge_buffers_cost(size_t total_buf_elems, size_t n_buffers,
uint elem_size,
const Cost_model_table *cost_model) {
const double io_ops =
static_cast<double>(total_buf_elems * elem_size) / IO_SIZE;
const double io_cost = cost_model->io_block_read_cost(io_ops);
const double cpu_cost =
cost_model->key_compare_cost(total_buf_elems * std::log2(n_buffers));
return 2 * io_cost + cpu_cost;
}
/*
Calculate cost of merging buffers into one in Unique::get, i.e. calculate
how long (in terms of disk seeks) the two calls
merge_many_buffs(...);
merge_buffers(...);
will take.
SYNOPSIS
get_merge_many_buffs_cost()
num_full_buffers # of full buffers
elems_per_buffer # of elements in each full buffers
additional_num_elems # of elements in last buffer
elem_size size of each buffer element
NOTES
num_full_buffers+1 buffers are merged, where first "num_full_buffers"
buffers contain "elems_per_buffer" elements each and last buffer contains
"additional_num_elems" elements.
The current implementation does a dumb simulation of merge_many_buffs
function actions.
RETURN
Cost of merge in disk seeks.
*/
static double get_merge_many_buffs_cost(uint num_full_buffers,
uint elems_per_buffer,
uint additional_num_elems,
int elem_size,
const Cost_model_table *cost_model) {
if (num_full_buffers == 0 && additional_num_elems == 0) {
return 0.0;
}
double total_cost = 0.0;
// For uniformity, make sure additional_num_elems > 0, always.
if (additional_num_elems == 0) {
additional_num_elems = elems_per_buffer;
--num_full_buffers;
}
/*
Do it exactly as merge_many_buff function does, calling
get_merge_buffers_cost to get cost of merge_buffers.
*/
while ((num_full_buffers + 1) > MERGEBUFF2) {
uint new_num_full_buffers = 0;
unsigned i;
for (i = 0; i < (num_full_buffers + 1) - MERGEBUFF * 3U / 2U;
i += MERGEBUFF) {
++new_num_full_buffers;
}
total_cost += new_num_full_buffers *
get_merge_buffers_cost(elems_per_buffer * MERGEBUFF,
MERGEBUFF, elem_size, cost_model);
const uint leftover_full_buffers = num_full_buffers - i;
total_cost += get_merge_buffers_cost(
elems_per_buffer * leftover_full_buffers + additional_num_elems,
leftover_full_buffers + 1, elem_size, cost_model);
additional_num_elems += elems_per_buffer * leftover_full_buffers;
elems_per_buffer *= MERGEBUFF;
num_full_buffers = new_num_full_buffers;
}
// Merge the final buffers (<= MERGEBUFF2) in one big merge.
total_cost += get_merge_buffers_cost(
elems_per_buffer * num_full_buffers + additional_num_elems,
num_full_buffers + 1, elem_size, cost_model);
return total_cost;
}
/*
Calculate cost of using Unique for processing nkeys elements of size
key_size using max_in_memory_size memory.
SYNOPSIS
Unique::get_use_cost()
nkeys #of elements in Unique
key_size size of each elements in bytes
max_in_memory_size amount of memory Unique will be allowed to use
RETURN
Cost in disk seeks.
NOTES
cost(using_unqiue) =
cost(create_trees) + (see #1)
cost(merge) + (see #2)
cost(read_result) (see #3)
1. Cost of trees creation
For each Unique::put operation there will be 2*log2(n+1) elements
comparisons, where n runs from 1 tree_size (we assume that all added
elements are different). Together this gives:
n_compares = 2*(log2(2) + log2(3) + ... + log2(N+1)) = 2*log2((N+1)!)
then cost(tree_creation) = key_compare_cost(n_compares);
Total cost of creating trees:
(n_trees - 1)*max_size_tree_cost + non_max_size_tree_cost.
Approximate value of log2(N!) is calculated by log2_n_fact function.
2. Cost of merging.
If only one tree is created by Unique no merging will be necessary.
Otherwise, we model execution of merge_many_buff function and count
#of merges. (The reason behind this is that number of buffers is small,
while size of buffers is big and we don't want to loose precision with
O(x)-style formula)
3. If only one tree is created by Unique no disk io will happen.
Otherwise, ceil(key_len*n_keys) disk seeks are necessary. We assume
these will be random seeks.
*/
double Unique::get_use_cost(uint nkeys, uint key_size,
ulonglong max_in_memory_size,
const Cost_model_table *cost_model) {
ulong max_elements_in_tree;
ulong last_tree_elems;
int n_full_trees; /* number of trees in unique - 1 */
max_elements_in_tree =
((ulong)max_in_memory_size / ALIGN_SIZE(sizeof(TREE_ELEMENT) + key_size));
n_full_trees = nkeys / max_elements_in_tree;
last_tree_elems = nkeys % max_elements_in_tree;
/* Calculate cost of creating trees */
double n_compares = 2 * log2_n_fact(last_tree_elems + 1);
if (n_full_trees)
n_compares += n_full_trees * log2_n_fact(max_elements_in_tree + 1);
double result = cost_model->key_compare_cost(n_compares);
DBUG_PRINT("info",
("unique trees sizes: %u=%u*%lu + %lu", nkeys, n_full_trees,
n_full_trees ? max_elements_in_tree : 0, last_tree_elems));
if (!n_full_trees) return result;
/*
There is more then one tree and merging is necessary.
First, add cost of writing all trees to disk, assuming that all disk
writes are sequential.
*/
result += cost_model->disk_seek_base_cost() * n_full_trees *
ceil(((double)key_size) * max_elements_in_tree / IO_SIZE);
result += cost_model->disk_seek_base_cost() *
ceil(((double)key_size) * last_tree_elems / IO_SIZE);
/* Cost of merge */
const double merge_cost =
get_merge_many_buffs_cost(n_full_trees, max_elements_in_tree,
last_tree_elems, key_size, cost_model);
if (merge_cost < 0.0) return merge_cost;
result += merge_cost;
/*
Add cost of reading the resulting sequence, assuming there were no
duplicate elements.
*/
const double n_blocks = ceil((double)key_size * nkeys / IO_SIZE);
result += cost_model->io_block_read_cost(n_blocks);
return result;
}
Unique::~Unique() {
close_cached_file(&file);
delete_tree(&tree);
}
/* Write tree to disk; clear tree */
bool Unique::flush() {
Merge_chunk file_ptr;
elements += tree.elements_in_tree;
file_ptr.set_rowcount(tree.elements_in_tree);
file_ptr.set_file_position(my_b_tell(&file));
if (tree_walk(&tree, unique_write_to_file, this, left_root_right) ||
file_ptrs.push_back(file_ptr))
return true; /* purecov: inspected */
delete_tree(&tree);
return false;
}
/*
Clear the tree and the file.
You must call reset() if you want to reuse Unique after walk().
*/
void Unique::reset() {
reset_tree(&tree);
/*
If elements != 0, some trees were stored in the file (see how
flush() works). Note, that we can not count on my_b_tell(&file) == 0
here, because it can return 0 right after walk(), and walk() does not
reset any Unique member.
*/
if (elements) {
file_ptrs.clear();
reinit_io_cache(&file, WRITE_CACHE, 0L, false, true);
}
/*
If table is used - finish index access and delete all records.
use_table is set to false, so on the next run the memory tree will be used
again at the beginning.
*/
elements = 0;
}
/*
The comparison function, used by the Priority_queue in merge_buffers()
When the called from Uniques::get() must use comparison function of
Uniques::tree, but compare members of struct Merge_chunk.
*/
static int merge_chunk_compare(Merge_chunk_compare_context *ctx,
uchar *key_ptr1, uchar *key_ptr2) {
return ctx->key_compare(ctx->key_compare_arg, key_ptr1, key_ptr2);
}
namespace {
struct Merge_chunk_less {
Merge_chunk_less(const Merge_chunk_compare_context context)
: m_context(context) {}
bool operator()(Merge_chunk *a, Merge_chunk *b) {
return m_context.key_compare(m_context.key_compare_arg, a->current_key(),
b->current_key()) > 0;
}
Merge_chunk_compare_context m_context;
};
} // namespace
/*
DESCRIPTION
Function is very similar to merge_buffers, but instead of writing sorted
unique keys to the output file, it invokes walk_action for each key.
This saves I/O if you need to pass through all unique keys only once.
SYNOPSIS
merge_walk()
All params are 'IN' (but see comment for begin, end):
merge_buffer buffer to perform cached piece-by-piece loading
of trees; initially the buffer is empty
merge_buffer_size size of merge_buffer. Must be aligned with
key_length
key_length size of tree element; key_length * (end - begin)
must be less or equal than merge_buffer_size.
begin pointer to Merge_chunk struct for the first tree.
end pointer to Merge_chunk struct for the last tree;
end > begin and [begin, end) form a consecutive
range. Merge_chunks structs in that range are used and
overwritten in merge_walk().
walk_action element visitor. Action is called for each unique
key.
walk_action_arg argument to walk action. Passed to it on each call.
compare elements comparison function
compare_arg comparison function argument
file file with all trees dumped. Trees in the file
must contain sorted unique values. Cache must be
initialized in read mode.
RETURN VALUE
0 ok
<> 0 error
*/
static bool merge_walk(uchar *merge_buffer, size_t merge_buffer_size,
size_t key_length, Merge_chunk *begin, Merge_chunk *end,
tree_walk_action walk_action, void *walk_action_arg,
qsort2_cmp compare, const void *compare_arg,
IO_CACHE *file) {
if (end <= begin ||
merge_buffer_size < (ulong)(key_length * (end - begin + 1)))
return true;
const Merge_chunk_compare_context compare_context = {compare, compare_arg};
Priority_queue<Merge_chunk *,
std::vector<Merge_chunk *, Malloc_allocator<Merge_chunk *>>,
Merge_chunk_less>
queue((Merge_chunk_less(compare_context)),
(Malloc_allocator<Merge_chunk *>(key_memory_Unique_merge_buffer)));
if (queue.reserve(end - begin)) return true;
/* we need space for one key when a piece of merge buffer is re-read */
merge_buffer_size -= key_length;
uchar *save_key_buff = merge_buffer + merge_buffer_size;
const uint max_key_count_per_piece =
(uint)(merge_buffer_size / (end - begin) / key_length);
/* if piece_size is aligned reuse_freed_buffer will always hit */
const size_t piece_size = max_key_count_per_piece * key_length;
uint bytes_read; /* to hold return value of uniq_read_to_buffer */
Merge_chunk *top;
int res = 1;
// uniq_read_to_buffer() needs only rec_length.
Uniq_param uniq_param;
uniq_param.rec_length = key_length;
/*
Invariant: queue must contain top element from each tree, until a tree
is not completely walked through.
Here we're forcing the invariant, inserting one element from each tree
to the queue.
*/
for (top = begin; top != end; ++top) {
top->set_buffer_start(merge_buffer + (top - begin) * piece_size);
top->set_buffer_end(top->buffer_start() + piece_size);
top->set_max_keys(max_key_count_per_piece);
bytes_read = uniq_read_to_buffer(file, top, &uniq_param);
if (bytes_read == (uint)(-1)) goto end;
assert(bytes_read);
queue.push(top);
}
top = queue.top();
while (queue.size() > 1) {
/*
Every iteration one element is removed from the queue, and one is
inserted by the rules of the invariant. If two adjacent elements on
the top of the queue are not equal, biggest one is unique, because all
elements in each tree are unique. Action is applied only to unique
elements.
*/
void *old_key = top->current_key();
/*
read next key from the cache or from the file and push it to the
queue; this gives new top.
*/
top->advance_current_key(key_length);
top->decrement_mem_count();
if (top->mem_count())
queue.update_top();
else /* next piece should be read */
{
/* save old_key not to overwrite it in uniq_read_to_buffer */
memcpy(save_key_buff, old_key, key_length);
old_key = save_key_buff;
bytes_read = uniq_read_to_buffer(file, top, &uniq_param);
if (bytes_read == (uint)(-1))
goto end;
else if (bytes_read > 0) /* top->key, top->mem_count are reset */
queue.update_top(); /* in uniq_read_to_buffer */
else {
/*
Tree for old 'top' element is empty: remove it from the queue and
give all its memory to the nearest tree.
*/
queue.pop();
reuse_freed_buff(top, &queue);
}
}
top = queue.top();
/* new top has been obtained; if old top is unique, apply the action */
if (compare(compare_arg, old_key, top->current_key())) {
if (walk_action(old_key, 1, walk_action_arg)) goto end;
}
}
/*
Applying walk_action to the tail of the last tree: this is safe because
either we had only one tree in the beginning, either we work with the
last tree in the queue.
*/
do {
do {
if (walk_action(top->current_key(), 1, walk_action_arg)) goto end;
top->advance_current_key(key_length);
} while (top->decrement_mem_count());
bytes_read = uniq_read_to_buffer(file, top, &uniq_param);
if (bytes_read == (uint)(-1)) goto end;
} while (bytes_read);
res = 0;
end:
return res;
}
/*
DESCRIPTION
Walks consecutively through all unique elements:
if all elements are in memory, then it simply invokes 'tree_walk', else
all flushed trees are loaded to memory piece-by-piece, pieces are
sorted, and action is called for each unique value.
Note: so as merging resets file_ptrs state, this method can change
internal Unique state to undefined: if you want to reuse Unique after
walk() you must call reset() first!
SYNOPSIS
Unique:walk()
All params are 'IN':
action function-visitor, typed in include/my_tree.h
function is called for each unique element
arg argument for visitor, which is passed to it on each call
RETURN VALUE
0 OK
<> 0 error
*/
bool Unique::walk(tree_walk_action action, void *walk_action_arg) {
int res;
uchar *merge_buffer;
if (elements == 0) /* the whole tree is in memory */
return tree_walk(&tree, action, walk_action_arg, left_root_right);
/* flush current tree to the file to have some memory for merge buffer */
if (flush()) return true;
if (flush_io_cache(&file) ||
reinit_io_cache(&file, READ_CACHE, 0L, false, false))
return true;
/*
Compute the size of the merge buffer used by merge_walk(). This buffer
must at least be able to store one element from each file pointer plus
one extra.
*/
const size_t min_merge_buffer_size = (file_ptrs.size() + 1) * size;
const size_t merge_buffer_size =
std::max(min_merge_buffer_size, static_cast<size_t>(max_in_memory_size));
if (!(merge_buffer = (uchar *)my_malloc(key_memory_Unique_merge_buffer,
merge_buffer_size, MYF(0))))
return true;
res = merge_walk(merge_buffer, merge_buffer_size, size, file_ptrs.begin(),
file_ptrs.end(), action, walk_action_arg, tree.compare,
tree.custom_arg, &file);
my_free(merge_buffer);
return res;
}
/*
Modify the TABLE element so that when one calls init_records()
the rows will be read in priority order.
*/
bool Unique::get(TABLE *table) {
THD *thd = current_thd;
table->unique_result.found_records = elements + tree.elements_in_tree;
if (my_b_tell(&file) == 0) {
/* Whole tree is in memory; Don't use disk if you don't need to */
assert(table->unique_result.sorted_result == nullptr);
table->unique_result.sorted_result.reset(
(uchar *)my_malloc(key_memory_Filesort_info_record_pointers,
size * tree.elements_in_tree, MYF(0)));
if ((record_pointers = table->unique_result.sorted_result.get())) {
(void)tree_walk(&tree, unique_write_to_ptrs, this, left_root_right);
return false;
}
}
/* Not enough memory; Save the result to file && free memory used by tree */
if (flush()) return true;
IO_CACHE *outfile = table->unique_result.io_cache;
Merge_chunk *file_ptr = file_ptrs.begin();
size_t num_chunks = file_ptrs.size();
uchar *sort_memory;
my_off_t save_pos;
bool error = true;
/* Open cached file if it isn't open */
assert(table->unique_result.io_cache == nullptr);
outfile = table->unique_result.io_cache = (IO_CACHE *)my_malloc(
key_memory_TABLE_sort_io_cache, sizeof(IO_CACHE), MYF(MY_ZEROFILL));
if (!outfile || (!my_b_inited(outfile) &&
open_cached_file(outfile, mysql_tmpdir, TEMP_PREFIX,
READ_RECORD_BUFFER, MYF(MY_WME))))
return true;
reinit_io_cache(outfile, WRITE_CACHE, 0L, false, false);
Uniq_param uniq_param;
uniq_param.max_rows = elements;
uniq_param.rec_length = size;
uniq_param.max_keys_per_buffer =
static_cast<uint>(max_in_memory_size / uniq_param.rec_length);
uniq_param.not_killable = true;
const size_t num_bytes =
(uniq_param.max_keys_per_buffer + 1) * uniq_param.rec_length;
if (!(sort_memory = (uchar *)my_malloc(key_memory_Unique_sort_buffer,
num_bytes, MYF(0))))
return true;
uniq_param.unique_buff =
sort_memory + (uniq_param.max_keys_per_buffer * uniq_param.rec_length);
uniq_param.compare = merge_chunk_compare;
uniq_param.cmp_context.key_compare = tree.compare;
uniq_param.cmp_context.key_compare_arg = tree.custom_arg;
/* Merge the buffers to one file, removing duplicates */
if (merge_many_buff(thd, &uniq_param, Sort_buffer(sort_memory, num_bytes),
Merge_chunk_array(file_ptrs.begin(), file_ptrs.size()),
&num_chunks, &file))
goto err;
if (flush_io_cache(&file) ||
reinit_io_cache(&file, READ_CACHE, 0L, false, false))
goto err;
if (merge_buffers(thd, &uniq_param, &file, outfile,
Sort_buffer(sort_memory, num_bytes), file_ptr,
Merge_chunk_array(file_ptr, num_chunks), 0))
goto err;
error = false;
err:
my_free(sort_memory);
if (flush_io_cache(outfile)) error = true;
/* Setup io_cache for reading */
save_pos = outfile->pos_in_file;
if (reinit_io_cache(outfile, READ_CACHE, 0L, false, false)) error = true;
outfile->end_of_file = save_pos;
return error;
}
bool Unique_on_insert::unique_add(void *ptr) {
THD *thd = current_thd;
Field *key = *m_table->visible_field_ptr();
if (key->store((const char *)ptr, m_size, &my_charset_bin) != TYPE_OK)
return true; /* purecov: inspected */
if (!check_unique_fields(m_table)) return true;
const uint res = m_table->file->ha_write_row(m_table->record[0]);
if (res) {
bool dup = false;
if (res == HA_ERR_FOUND_DUPP_KEY) return true;
if (create_ondisk_from_heap(thd, m_table, res, /*insert_last_record=*/true,
/*ignore_last_dup=*/false, &dup) ||
dup)
return true;
}
return false;
}
void Unique_on_insert::reset(bool reinit) {
/* Finish index access and delete all records. */
m_table->file->ha_index_or_rnd_end();
m_table->file->ha_delete_all_rows();
if (reinit) m_table->file->ha_index_init(0, true);
}
bool Unique_on_insert::init() {
// If it's first run and table haven't been created yet - create it
if (!m_table && !(m_table = create_duplicate_weedout_tmp_table(
current_thd, m_size, nullptr)))
return true; /* purecov: inspected */