title |
---|
Personal AI Travel Assistant |
Create a personalized AI Travel Assistant using Mem0. This guide provides step-by-step instructions and the complete code to get you started.
The Personalized AI Travel Assistant uses Mem0 to store and retrieve information across interactions, enabling a tailored travel planning experience. It integrates with OpenAI's GPT-4 model to provide detailed and context-aware responses to user queries.
Install the required dependencies using pip:
pip install openai mem0ai
Here's the complete code to create and interact with a Personalized AI Travel Assistant using Mem0:
import os
from openai import OpenAI
from mem0 import Memory
# Set the OpenAI API key
os.environ['OPENAI_API_KEY'] = "sk-xxx"
config = {
"llm": {
"provider": "openai",
"config": {
"model": "gpt-4o",
"temperature": 0.1,
"max_tokens": 2000,
}
},
"embedder": {
"provider": "openai",
"config": {
"model": "text-embedding-3-large"
}
},
"vector_store": {
"provider": "qdrant",
"config": {
"collection_name": "test",
"embedding_model_dims": 3072,
}
},
"version": "v1.1",
}
class PersonalTravelAssistant:
def __init__(self):
self.client = OpenAI()
self.memory = Memory.from_config(config)
self.messages = [{"role": "system", "content": "You are a personal AI Assistant."}]
def ask_question(self, question, user_id):
# Fetch previous related memories
previous_memories = self.search_memories(question, user_id=user_id)
prompt = question
if previous_memories:
prompt = f"User input: {question}\n Previous memories: {previous_memories}"
self.messages.append({"role": "user", "content": prompt})
# Generate response using GPT-4o
response = self.client.chat.completions.create(
model="gpt-4o",
messages=self.messages
)
answer = response.choices[0].message.content
self.messages.append({"role": "assistant", "content": answer})
# Store the question in memory
self.memory.add(question, user_id=user_id)
return answer
def get_memories(self, user_id):
memories = self.memory.get_all(user_id=user_id)
return [m['memory'] for m in memories['memories']]
def search_memories(self, query, user_id):
memories = self.memory.search(query, user_id=user_id)
return [m['memory'] for m in memories['memories']]
# Usage example
user_id = "traveler_123"
ai_assistant = PersonalTravelAssistant()
def main():
while True:
question = input("Question: ")
if question.lower() in ['q', 'exit']:
print("Exiting...")
break
answer = ai_assistant.ask_question(question, user_id=user_id)
print(f"Answer: {answer}")
memories = ai_assistant.get_memories(user_id=user_id)
print("Memories:")
for memory in memories:
print(f"- {memory}")
print("-----")
if __name__ == "__main__":
main()
import os
from openai import OpenAI
from mem0 import Memory
# Set the OpenAI API key
os.environ['OPENAI_API_KEY'] = 'sk-xxx'
class PersonalTravelAssistant:
def __init__(self):
self.client = OpenAI()
self.memory = Memory()
self.messages = [{"role": "system", "content": "You are a personal AI Assistant."}]
def ask_question(self, question, user_id):
# Fetch previous related memories
previous_memories = self.search_memories(question, user_id=user_id)
prompt = question
if previous_memories:
prompt = f"User input: {question}\n Previous memories: {previous_memories}"
self.messages.append({"role": "user", "content": prompt})
# Generate response using GPT-4o
response = self.client.chat.completions.create(
model="gpt-4o",
messages=self.messages
)
answer = response.choices[0].message.content
self.messages.append({"role": "assistant", "content": answer})
# Store the question in memory
self.memory.add(question, user_id=user_id)
return answer
def get_memories(self, user_id):
memories = self.memory.get_all(user_id=user_id)
return [m['memory'] for m in memories['memories']]
def search_memories(self, query, user_id):
memories = self.memory.search(query, user_id=user_id)
return [m['memory'] for m in memories['memories']]
# Usage example
user_id = "traveler_123"
ai_assistant = PersonalTravelAssistant()
def main():
while True:
question = input("Question: ")
if question.lower() in ['q', 'exit']:
print("Exiting...")
break
answer = ai_assistant.ask_question(question, user_id=user_id)
print(f"Answer: {answer}")
memories = ai_assistant.get_memories(user_id=user_id)
print("Memories:")
for memory in memories:
print(f"- {memory}")
print("-----")
if __name__ == "__main__":
main()
- Initialization: The
PersonalTravelAssistant
class is initialized with the OpenAI client and Mem0 memory setup. - Asking Questions: The
ask_question
method sends a question to the AI, incorporates previous memories, and stores new information. - Memory Management: The
get_memories
and search_memories methods handle retrieval and searching of stored memories.
- Set your OpenAI API key in the environment variable.
- Instantiate the
PersonalTravelAssistant
. - Use the
main()
function to interact with the assistant in a loop.
This Personalized AI Travel Assistant leverages Mem0's memory capabilities to provide context-aware responses. As you interact with it, the assistant learns and improves, offering increasingly personalized travel advice and information.