-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathHeapSort.cpp
67 lines (53 loc) · 1.59 KB
/
HeapSort.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
// Given an array implementation of Complete Binary Tree
// Heapify function takes O(logn)
// n is the size of array.
#include<bits/stdc++.h>
using namespace std;
// Generates heap from ith node and it's children.
void heapify(vector<int> &arr, int n, int i)
{
int largest = i; // Initialize largest as root
int l = 2 * i + 1; // left = 2*i + 1
int r = 2 * i + 2; // right = 2*i + 2
// If left child is larger than root
if (l < n && arr[l] > arr[largest])
largest = l;
// If right child is larger than largest so far
if (r < n && arr[r] > arr[largest])
largest = r;
// If largest is not root
if (largest != i) {
swap(arr[i], arr[largest]);
// Recursively heapify the affected sub-tree
heapify(arr, n, largest);
}
}
// main function to do heap sort
void heapSort(vector<int> &arr, int n)
{
// Build heap (rearrange array)
// We did this from n/2-1 -> 0 b'coz for a complete binary tree last n/2 elements are leave nodes.
for (int i = n / 2 - 1; i >= 0; i--)
heapify(arr, n, i);
// Now arr is a max heap
// Pass by ref
// One by one extract an element from heap
for (int i = n - 1; i > 0; i--) {
// Move current root to end
swap(arr[0], arr[i]);
// call max heapify on the reduced heap
heapify(arr, i, 0);
}
}
void print(vector<int> arr){
cout << "Sorted Array is : ";
for(int i=0;i<arr.size();i++)
cout << arr[i] <<" ";
cout << endl;
}
int main(){
int n = 5;
vector<int> arr{10,3,2,5,7};
heapSort(arr,n);
print(arr);
}