forked from astropy/astroquery
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample7_alma.py
225 lines (186 loc) · 10.3 KB
/
example7_alma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
"""
Query ALMA archive for M83 pointings and plotting them on a 2MASS image
"""
import numpy as np
from astroquery.alma import Alma
from astroquery.skyview import SkyView
import string
from astropy import units as u
from astropy.io import fits
from astropy import wcs
from astropy import log
import pylab as pl
import aplpy
import pyregion
# Retrieve M83 2MASS K-band image:
m83_images = SkyView.get_images(position='M83', survey=['2MASS-K'],
pixels=1500)
# Retrieve ALMA archive information *including* private data and non-science
# fields:
m83 = Alma.query_object('M83', public=False, science=False)
# Parse components of the ALMA data. Specifically, find the frequency support
# - the frequency range covered - and convert that into a central frequency for
# beam radius estimation.
def parse_frequency_support(frequency_support_str):
supports = frequency_support_str.split("U")
freq_ranges = [(float(sup.strip('[] ').split("..")[0]),
float(sup.strip('[] ')
.split("..")[1]
.split(', ')[0]
.strip(string.ascii_letters)))
*u.Unit(sup.strip('[] ')
.split("..")[1]
.split(', ')[0]
.strip(string.punctuation+string.digits))
for sup in supports]
return u.Quantity(freq_ranges)
def approximate_primary_beam_sizes(frequency_support_str):
freq_ranges = parse_frequency_support(frequency_support_str)
beam_sizes = [(1.22*fr.mean().to(u.m,
u.spectral())/(12*u.m)).to(u.arcsec,
u.dimensionless_angles())
for fr in freq_ranges]
return u.Quantity(beam_sizes)
primary_beam_radii = [approximate_primary_beam_sizes(row['Frequency support']) for row in m83]
# Compute primary beam parameters for the public and private components of the data for plotting below.
print("The bands used include: ", np.unique(m83['Band']))
private_circle_parameters = [(row['RA'], row['Dec'], np.mean(rad).to(u.deg).value)
for row, rad in zip(m83, primary_beam_radii)
if row['Release date']!=b'' and row['Band']==3]
public_circle_parameters = [(row['RA'], row['Dec'], np.mean(rad).to(u.deg).value)
for row, rad in zip(m83, primary_beam_radii)
if row['Release date']==b'' and row['Band']==3]
unique_private_circle_parameters = np.array(list(set(private_circle_parameters)))
unique_public_circle_parameters = np.array(list(set(public_circle_parameters)))
print("BAND 3")
print("PUBLIC: Number of rows: {0}. Unique pointings: {1}".format(len(m83), len(unique_public_circle_parameters)))
print("PRIVATE: Number of rows: {0}. Unique pointings: {1}".format(len(m83), len(unique_private_circle_parameters)))
private_circle_parameters_band6 = [(row['RA'], row['Dec'], np.mean(rad).to(u.deg).value)
for row, rad in zip(m83, primary_beam_radii)
if row['Release date']!=b'' and row['Band']==6]
public_circle_parameters_band6 = [(row['RA'], row['Dec'], np.mean(rad).to(u.deg).value)
for row, rad in zip(m83, primary_beam_radii)
if row['Release date']==b'' and row['Band']==6]
# Show all of the private observation pointings that have been acquired
fig = aplpy.FITSFigure(m83_images[0])
fig.show_grayscale(stretch='arcsinh', vmid=0.1)
fig.show_circles(unique_private_circle_parameters[:, 0],
unique_private_circle_parameters[:, 1],
unique_private_circle_parameters[:, 2],
color='r', alpha=0.2)
fig = aplpy.FITSFigure(m83_images[0])
fig.show_grayscale(stretch='arcsinh', vmid=0.1)
fig.show_circles(unique_public_circle_parameters[:, 0],
unique_public_circle_parameters[:, 1],
unique_public_circle_parameters[:, 2],
color='b', alpha=0.2)
# Use pyregion to write the observed regions to disk. Pyregion has a very
# awkward API; there is (in principle) work in progress to improve that
# situation but for now one must do all this extra work.
import pyregion
from pyregion.parser_helper import Shape
prv_regions = pyregion.ShapeList([Shape('circle', [x, y, r]) for x, y, r in private_circle_parameters])
pub_regions = pyregion.ShapeList([Shape('circle', [x, y, r]) for x, y, r in public_circle_parameters])
for r, (x, y, c) in zip(prv_regions+pub_regions,
np.vstack([private_circle_parameters,
public_circle_parameters])):
r.coord_format = 'fk5'
r.coord_list = [x, y, c]
r.attr = ([], {'color': 'green', 'dash': '0 ', 'dashlist': '8 3 ', 'delete': '1 ', 'edit': '1 ',
'fixed': '0 ', 'font': '"helvetica 10 normal roman"', 'highlite': '1 ',
'include': '1 ', 'move': '1 ', 'select': '1 ', 'source': '1', 'text': '',
'width': '1 '})
prv_regions.write('M83_observed_regions_private_March2015.reg')
pub_regions.write('M83_observed_regions_public_March2015.reg')
prv_mask = fits.PrimaryHDU(prv_regions.get_mask(m83_images[0][0]).astype('int'),
header=m83_images[0][0].header)
pub_mask = fits.PrimaryHDU(pub_regions.get_mask(m83_images[0][0]).astype('int'),
header=m83_images[0][0].header)
pub_mask.writeto('public_m83_almaobs_mask.fits', clobber=True)
fig = aplpy.FITSFigure(m83_images[0])
fig.show_grayscale(stretch='arcsinh', vmid=0.1)
fig.show_contour(prv_mask, levels=[0.5, 1], colors=['r', 'r'])
fig.show_contour(pub_mask, levels=[0.5, 1], colors=['b', 'b'])
# ## More advanced ##
#
# Now we create a 'hit mask' showing the relative depth of each observed field in each band
hit_mask_band3_public = np.zeros_like(m83_images[0][0].data)
hit_mask_band3_private = np.zeros_like(m83_images[0][0].data)
hit_mask_band6_public = np.zeros_like(m83_images[0][0].data)
hit_mask_band6_private = np.zeros_like(m83_images[0][0].data)
mywcs = wcs.WCS(m83_images[0][0].header)
def pyregion_subset(region, data, mywcs):
"""
Return a subset of an image (`data`) given a region.
"""
shapelist = pyregion.ShapeList([region])
if shapelist[0].coord_format not in ('physical', 'image'):
# Requires astropy >0.4...
# pixel_regions = shapelist.as_imagecoord(self.wcs.celestial.to_header())
# convert the regions to image (pixel) coordinates
celhdr = mywcs.sub([wcs.WCSSUB_CELESTIAL]).to_header()
pixel_regions = shapelist.as_imagecoord(celhdr)
else:
# For this to work, we'd need to change the reference pixel after cropping.
# Alternatively, we can just make the full-sized mask... todo....
raise NotImplementedError("Can't use non-celestial coordinates with regions.")
pixel_regions = shapelist
# This is a hack to use mpl to determine the outer bounds of the regions
# (but it's a legit hack - pyregion needs a major internal refactor
# before we can approach this any other way, I think -AG)
mpl_objs = pixel_regions.get_mpl_patches_texts()[0]
# Find the minimal enclosing box containing all of the regions
# (this will speed up the mask creation below)
extent = mpl_objs[0].get_extents()
xlo, ylo = extent.min
xhi, yhi = extent.max
all_extents = [obj.get_extents() for obj in mpl_objs]
for ext in all_extents:
xlo = int(xlo if xlo < ext.min[0] else ext.min[0])
ylo = int(ylo if ylo < ext.min[1] else ext.min[1])
xhi = int(xhi if xhi > ext.max[0] else ext.max[0])
yhi = int(yhi if yhi > ext.max[1] else ext.max[1])
log.debug("Region boundaries: ")
log.debug("xlo={xlo}, ylo={ylo}, xhi={xhi}, yhi={yhi}".format(xlo=xlo,
ylo=ylo,
xhi=xhi,
yhi=yhi))
subwcs = mywcs[ylo:yhi, xlo:xhi]
subhdr = subwcs.sub([wcs.WCSSUB_CELESTIAL]).to_header()
subdata = data[ylo:yhi, xlo:xhi]
mask = shapelist.get_mask(header=subhdr,
shape=subdata.shape)
log.debug("Shapes: data={0}, subdata={2}, mask={1}".format(data.shape, mask.shape, subdata.shape))
return (xlo, xhi, ylo, yhi), mask
for row, rad in zip(m83, primary_beam_radii):
shape = Shape('circle', (row['RA'], row['Dec'], np.mean(rad).to(u.deg).value))
shape.coord_format = 'fk5'
shape.coord_list = (row['RA'], row['Dec'], np.mean(rad).to(u.deg).value)
shape.attr = ([], {'color': 'green', 'dash': '0 ', 'dashlist': '8 3 ',
'delete': '1 ', 'edit': '1 ', 'fixed': '0 ',
'font': '"helvetica 10 normal roman"', 'highlite': '1 ',
'include': '1 ', 'move': '1 ', 'select': '1 ',
'source': '1', 'text': '', 'width': '1 '})
if row['Release date']==b'' and row['Band']==3:
(xlo, xhi, ylo, yhi), mask = pyregion_subset(shape, hit_mask_band3_private, mywcs)
hit_mask_band3_private[ylo:yhi, xlo:xhi] += row['Integration']*mask
elif row['Release date'] and row['Band']==3:
(xlo, xhi, ylo, yhi), mask = pyregion_subset(shape, hit_mask_band3_public, mywcs)
hit_mask_band3_public[ylo:yhi, xlo:xhi] += row['Integration']*mask
elif row['Release date'] and row['Band']==6:
(xlo, xhi, ylo, yhi), mask = pyregion_subset(shape, hit_mask_band6_public, mywcs)
hit_mask_band6_public[ylo:yhi, xlo:xhi] += row['Integration']*mask
elif row['Release date']==b'' and row['Band']==6:
(xlo, xhi, ylo, yhi), mask = pyregion_subset(shape, hit_mask_band6_private, mywcs)
hit_mask_band6_private[ylo:yhi, xlo:xhi] += row['Integration']*mask
fig = aplpy.FITSFigure(m83_images[0])
fig.show_grayscale(stretch='arcsinh', vmid=0.1)
for mask, color in zip([hit_mask_band3_public,
hit_mask_band3_private,
hit_mask_band6_public,
hit_mask_band6_private,
],
'rycb'):
if np.any(mask):
fig.show_contour(fits.PrimaryHDU(data=mask, header=m83_images[0][0].header),
levels=np.logspace(0, 5, base=2, num=6), colors=[color]*6)