Skip to content

Commit 1b74adf

Browse files
authored
Changed "developed on" to "developed_on"; updated make_readme.py; udpated README and index (#294)
1 parent 9c09825 commit 1b74adf

File tree

41 files changed

+154
-154
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

41 files changed

+154
-154
lines changed

notebook_examples/README.md

Lines changed: 47 additions & 47 deletions
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ The ADS SDK can be downloaded from [PyPi](https://pypi.org/project/oracle-ads/),
1212

1313

1414
## Topics
15-
<img src="https://img.shields.io/badge/deploy model-7-brightgreen"> <img src="https://img.shields.io/badge/register model-7-brightgreen"> <img src="https://img.shields.io/badge/train model-7-brightgreen"> <img src="https://img.shields.io/badge/data flow-4-brightgreen"> <img src="https://img.shields.io/badge/pyspark-4-brightgreen"> <img src="https://img.shields.io/badge/automlx-4-brightgreen"> <img src="https://img.shields.io/badge/oracle open data-3-brightgreen"> <img src="https://img.shields.io/badge/bds-3-brightgreen"> <img src="https://img.shields.io/badge/scikit learn-2-brightgreen"> <img src="https://img.shields.io/badge/big data service-2-brightgreen"> <img src="https://img.shields.io/badge/text classification-2-brightgreen"> <img src="https://img.shields.io/badge/nlp-2-brightgreen"> <img src="https://img.shields.io/badge/regression-2-brightgreen"> <img src="https://img.shields.io/badge/language services-2-brightgreen"> <img src="https://img.shields.io/badge/string manipulation-2-brightgreen"> <img src="https://img.shields.io/badge/regex-2-brightgreen"> <img src="https://img.shields.io/badge/regular expression-2-brightgreen"> <img src="https://img.shields.io/badge/natural language processing-2-brightgreen"> <img src="https://img.shields.io/badge/NLP-2-brightgreen"> <img src="https://img.shields.io/badge/part of speech tagging-2-brightgreen"> <img src="https://img.shields.io/badge/named entity recognition-2-brightgreen"> <img src="https://img.shields.io/badge/sentiment analysis-2-brightgreen"> <img src="https://img.shields.io/badge/custom plugins-2-brightgreen"> <img src="https://img.shields.io/badge/data catalog metastore-2-brightgreen"> <img src="https://img.shields.io/badge/xgboost-2-brightgreen"> <img src="https://img.shields.io/badge/classification-2-brightgreen"> <img src="https://img.shields.io/badge/autonomous database-2-brightgreen"> <img src="https://img.shields.io/badge/intel-1-brightgreen"> <img src="https://img.shields.io/badge/intel extension-1-brightgreen"> <img src="https://img.shields.io/badge/scikit learn-1-brightgreen">
15+
<img src="https://img.shields.io/badge/deploy model-7-brightgreen"> <img src="https://img.shields.io/badge/register model-7-brightgreen"> <img src="https://img.shields.io/badge/train model-7-brightgreen"> <img src="https://img.shields.io/badge/pyspark-4-brightgreen"> <img src="https://img.shields.io/badge/data flow-4-brightgreen"> <img src="https://img.shields.io/badge/automlx-4-brightgreen"> <img src="https://img.shields.io/badge/bds-3-brightgreen"> <img src="https://img.shields.io/badge/oracle open data-3-brightgreen"> <img src="https://img.shields.io/badge/scikit learn-2-brightgreen"> <img src="https://img.shields.io/badge/big data service-2-brightgreen"> <img src="https://img.shields.io/badge/language services-2-brightgreen"> <img src="https://img.shields.io/badge/string manipulation-2-brightgreen"> <img src="https://img.shields.io/badge/regex-2-brightgreen"> <img src="https://img.shields.io/badge/regular expression-2-brightgreen"> <img src="https://img.shields.io/badge/natural language processing-2-brightgreen"> <img src="https://img.shields.io/badge/NLP-2-brightgreen"> <img src="https://img.shields.io/badge/part of speech tagging-2-brightgreen"> <img src="https://img.shields.io/badge/named entity recognition-2-brightgreen"> <img src="https://img.shields.io/badge/sentiment analysis-2-brightgreen"> <img src="https://img.shields.io/badge/custom plugins-2-brightgreen"> <img src="https://img.shields.io/badge/autonomous database-2-brightgreen"> <img src="https://img.shields.io/badge/classification-2-brightgreen"> <img src="https://img.shields.io/badge/text classification-2-brightgreen"> <img src="https://img.shields.io/badge/regression-2-brightgreen"> <img src="https://img.shields.io/badge/xgboost-2-brightgreen"> <img src="https://img.shields.io/badge/nlp-2-brightgreen"> <img src="https://img.shields.io/badge/data catalog metastore-2-brightgreen"> <img src="https://img.shields.io/badge/model-1-brightgreen"> <img src="https://img.shields.io/badge/model experiments-1-brightgreen"> <img src="https://img.shields.io/badge/model version set-1-brightgreen">
1616

1717
## Contents
1818
- [Audi Autonomous Driving Dataset Repository](#audi-autonomous_driving-oracle_open_data.ipynb)
@@ -56,41 +56,41 @@ The ADS SDK can be downloaded from [PyPi](https://pypi.org/project/oracle-ads/),
5656

5757

5858
## Notebooks
59-
### <a name="automlx-anomaly_detection.ipynb"></a> - Building and Explaining an Anomaly Detector using AutoMLx - Experimental
59+
### <a name="automlx-classifier.ipynb"></a> - Building and Explaining a Classifier using AutoMLx
6060

61-
<sub>Updated: 03/17/2023</sub>
62-
#### [`automlx-anomaly_detection.ipynb`](automlx-anomaly_detection.ipynb)
61+
<sub>Updated: 03/26/2023</sub>
62+
#### [`automlx-classifier.ipynb`](automlx-classifier.ipynb)
6363

6464

65-
Build an anomaly detection model using the experimental, fully unsupervised anomaly detection pipeline in Oracle AutoMLx for the public Credit Card Fraud dataset.
65+
Build a classifier using the Oracle AutoMLx tool and binary data set of Census income data.
6666

6767
This notebook was developed on the conda pack with slug: `automlx_p38_cpu_v2`
6868

6969

70-
`automlx` `anomaly detection`
70+
`automlx` `classification` `classifier`
7171

7272
<sub>Universal Permissive License v 1.0</sup>
7373

7474
---
75-
### <a name="automlx-classifier.ipynb"></a> - Building and Explaining a Classifier using AutoMLx
75+
### <a name="automlx-text_classification.ipynb"></a> - Building and Explaining a Text Classifier using AutoMLx
7676

77-
<sub>Updated: 03/17/2023</sub>
78-
#### [`automlx-classifier.ipynb`](automlx-classifier.ipynb)
77+
<sub>Updated: 03/26/2023</sub>
78+
#### [`automlx-text_classification.ipynb`](automlx-text_classification.ipynb)
7979

8080

81-
Build a classifier using the Oracle AutoMLx tool and binary data set of Census income data.
81+
build a classifier using the Oracle AutoMLx tool for the public 20newsgroup dataset
8282

8383
This notebook was developed on the conda pack with slug: `automlx_p38_cpu_v2`
8484

8585

86-
`automlx` `classification` `classifier`
86+
`automlx` `text classification` `text classifier`
8787

88-
<sub>Universal Permissive License v 1.0</sup>
88+
<sub>Universal Permissive License v 1.0.</sup>
8989

9090
---
9191
### <a name="automlx-regression.ipynb"></a> - Building and Explaining a Regressor using AutoMLx
9292

93-
<sub>Updated: 03/17/2023</sub>
93+
<sub>Updated: 03/26/2023</sub>
9494
#### [`automlx-regression.ipynb`](automlx-regression.ipynb)
9595

9696

@@ -104,20 +104,20 @@ This notebook was developed on the conda pack with slug: `automlx_p38_cpu_v2`
104104
<sub>Universal Permissive License v 1.0</sup>
105105

106106
---
107-
### <a name="automlx-text_classification.ipynb"></a> - Building and Explaining a Text Classifier using AutoMLx
107+
### <a name="automlx-anomaly_detection.ipynb"></a> - Building and Explaining an Anomaly Detector using AutoMLx - Experimental
108108

109-
<sub>Updated: 03/17/2023</sub>
110-
#### [`automlx-text_classification.ipynb`](automlx-text_classification.ipynb)
109+
<sub>Updated: 03/26/2023</sub>
110+
#### [`automlx-anomaly_detection.ipynb`](automlx-anomaly_detection.ipynb)
111111

112112

113-
build a classifier using the Oracle AutoMLx tool for the public 20newsgroup dataset
113+
Build an anomaly detection model using the experimental, fully unsupervised anomaly detection pipeline in Oracle AutoMLx for the public Credit Card Fraud dataset.
114114

115115
This notebook was developed on the conda pack with slug: `automlx_p38_cpu_v2`
116116

117117

118-
`automlx` `text classification` `text classifier`
118+
`automlx` `anomaly detection`
119119

120-
<sub>Universal Permissive License v 1.0.</sup>
120+
<sub>Universal Permissive License v 1.0</sup>
121121

122122
---
123123
### <a name="audi-autonomous_driving-oracle_open_data.ipynb"></a> - Audi Autonomous Driving Dataset Repository
@@ -250,7 +250,7 @@ This notebook was developed on the conda pack with slug: `pyspark30_p37_cpu_v5`
250250
---
251251
### <a name="train-register-deploy-other-frameworks.ipynb"></a> - Train, Register, and Deploy a Generic Model
252252

253-
<sub>Updated: 12/22/2022</sub>
253+
<sub>Updated: 03/18/2023</sub>
254254
#### [`train-register-deploy-other-frameworks.ipynb`](train-register-deploy-other-frameworks.ipynb)
255255

256256

@@ -266,7 +266,7 @@ This notebook was developed on the conda pack with slug: `generalml_p38_cpu_v1`
266266
---
267267
### <a name="train-register-deploy-huggingface-pipeline.ipynb"></a> - Train, register, and deploy HuggingFace Pipeline
268268

269-
<sub>Updated: 03/06/2023</sub>
269+
<sub>Updated: 03/18/2023</sub>
270270
#### [`train-register-deploy-huggingface-pipeline.ipynb`](train-register-deploy-huggingface-pipeline.ipynb)
271271

272272

@@ -328,31 +328,31 @@ This notebook was developed on the conda pack with slug: `pyspark30_p37_cpu_v5`
328328
<sub>Universal Permissive License v 1.0</sup>
329329

330330
---
331-
### <a name="natural_language_processing.ipynb"></a> - Natural Language Processing
331+
### <a name="automlx-forecasting.ipynb"></a> - Building a Forecaster using AutoMLx
332332

333-
<sub>Updated: 12/22/2022</sub>
334-
#### [`natural_language_processing.ipynb`](natural_language_processing.ipynb)
333+
<sub>Updated: 03/26/2023</sub>
334+
#### [`automlx-forecasting.ipynb`](automlx-forecasting.ipynb)
335335

336336

337-
Use the ADS SDK to process and manipulate strings. This notebook includes regular expression matching and natural language (NLP) parsing, including part-of-speech tagging, named entity recognition, and sentiment analysis. It also shows how to create and use custom plugins specific to your specific needs.
337+
Use Oracle AutoMLx to build a forecast model with real-world data sets.
338338

339-
This notebook was developed on the conda pack with slug: `nlp_p37_cpu_v2`
339+
This notebook was developed on the conda pack with slug: `automlx_p38_cpu_v2`
340340

341341

342342
`language services` `string manipulation` `regex` `regular expression` `natural language processing` `NLP` `part-of-speech tagging` `named entity recognition` `sentiment analysis` `custom plugins`
343343

344344
<sub>Universal Permissive License v 1.0</sup>
345345

346346
---
347-
### <a name="automlx-forecasting.ipynb"></a> - Building a Forecaster using AutoMLx
347+
### <a name="natural_language_processing.ipynb"></a> - Natural Language Processing
348348

349-
<sub>Updated: 03/17/2023</sub>
350-
#### [`automlx-forecasting.ipynb`](automlx-forecasting.ipynb)
349+
<sub>Updated: 12/22/2022</sub>
350+
#### [`natural_language_processing.ipynb`](natural_language_processing.ipynb)
351351

352352

353-
Use Oracle AutoMLx to build a forecast model with real-world data sets.
353+
Use the ADS SDK to process and manipulate strings. This notebook includes regular expression matching and natural language (NLP) parsing, including part-of-speech tagging, named entity recognition, and sentiment analysis. It also shows how to create and use custom plugins specific to your specific needs.
354354

355-
This notebook was developed on the conda pack with slug: `automlx_p38_cpu_v2`
355+
This notebook was developed on the conda pack with slug: `nlp_p37_cpu_v2`
356356

357357

358358
`language services` `string manipulation` `regex` `regular expression` `natural language processing` `NLP` `part-of-speech tagging` `named entity recognition` `sentiment analysis` `custom plugins`
@@ -362,7 +362,7 @@ This notebook was developed on the conda pack with slug: `automlx_p38_cpu_v2`
362362
---
363363
### <a name="train-register-deploy-lightgbm.ipynb"></a> - Train, Register, and Deploy a LightGBM Model
364364

365-
<sub>Updated: 12/22/2022</sub>
365+
<sub>Updated: 03/18/2023</sub>
366366
#### [`train-register-deploy-lightgbm.ipynb`](train-register-deploy-lightgbm.ipynb)
367367

368368

@@ -474,7 +474,7 @@ This notebook was developed on the conda pack with slug: `generalml_p38_cpu_v1`
474474
---
475475
### <a name="pypgx-graph_analytics-machine_learning.ipynb"></a> - Graph Analytics and Graph Machine Learning with PyPGX
476476

477-
<sub>Updated: 03/13/2023</sub>
477+
<sub>Updated: 03/17/2023</sub>
478478
#### [`pypgx-graph_analytics-machine_learning.ipynb`](pypgx-graph_analytics-machine_learning.ipynb)
479479

480480

@@ -538,7 +538,7 @@ This notebook was developed on the conda pack with slug: `pyspark32_p38_cpu_v1`
538538
---
539539
### <a name="train-register-deploy-pytorch.ipynb"></a> - Train, Register, and Deploy a PyTorch Model
540540

541-
<sub>Updated: 02/10/2023</sub>
541+
<sub>Updated: 03/18/2023</sub>
542542
#### [`train-register-deploy-pytorch.ipynb`](train-register-deploy-pytorch.ipynb)
543543

544544

@@ -554,7 +554,7 @@ This notebook was developed on the conda pack with slug: `pytorch110_p38_cpu_v1`
554554
---
555555
### <a name="train-register-deploy-sklearn.ipynb"></a> - Train, register, and deploy Sklearn Model
556556

557-
<sub>Updated: 12/22/2022</sub>
557+
<sub>Updated: 03/18/2023</sub>
558558
#### [`train-register-deploy-sklearn.ipynb`](train-register-deploy-sklearn.ipynb)
559559

560560

@@ -602,7 +602,7 @@ This notebook was developed on the conda pack with slug: `dataexpl_p37_cpu_v3`
602602
---
603603
### <a name="train-register-deploy-tensorflow.ipynb"></a> - Train, Register, and Deploy a TensorFlow Model
604604

605-
<sub>Updated: 12/22/2022</sub>
605+
<sub>Updated: 03/18/2023</sub>
606606
#### [`train-register-deploy-tensorflow.ipynb`](train-register-deploy-tensorflow.ipynb)
607607

608608

@@ -632,34 +632,34 @@ This notebook was developed on the conda pack with slug: `nlp_p37_cpu_v2`
632632
<sub>Universal Permissive License v 1.0</sup>
633633

634634
---
635-
### <a name="train-register-deploy-xgboost.ipynb"></a> - Train, Register, and Deploy an XGBoost Model
635+
### <a name="xgboost-with-rapids.ipynb"></a> - XGBoost with RAPIDS
636636

637637
<sub>Updated: 12/22/2022</sub>
638-
#### [`train-register-deploy-xgboost.ipynb`](train-register-deploy-xgboost.ipynb)
638+
#### [`xgboost-with-rapids.ipynb`](xgboost-with-rapids.ipynb)
639639

640640

641-
Train, register, and deploy an XGBoost model.
641+
Compare training time between CPU and GPU trained models using XGBoost
642642

643-
This notebook was developed on the conda pack with slug: `generalml_p38_cpu_v1`
643+
This notebook was developed on the conda pack with slug: `rapids2110_p37_gpu_v1`
644644

645645

646-
`xgboost` `deploy model` `register model` `train model`
646+
`xgboost` `rapids` `gpu` `machine learning` `classification`
647647

648648
<sub>Universal Permissive License v 1.0</sup>
649649

650650
---
651-
### <a name="xgboost-with-rapids.ipynb"></a> - XGBoost with RAPIDS
651+
### <a name="train-register-deploy-xgboost.ipynb"></a> - Train, Register, and Deploy an XGBoost Model
652652

653-
<sub>Updated: 12/22/2022</sub>
654-
#### [`xgboost-with-rapids.ipynb`](xgboost-with-rapids.ipynb)
653+
<sub>Updated: 03/18/2023</sub>
654+
#### [`train-register-deploy-xgboost.ipynb`](train-register-deploy-xgboost.ipynb)
655655

656656

657-
Compare training time between CPU and GPU trained models using XGBoost
657+
Train, register, and deploy an XGBoost model.
658658

659-
This notebook was developed on the conda pack with slug: `rapids2110_p37_gpu_v1`
659+
This notebook was developed on the conda pack with slug: `generalml_p38_cpu_v1`
660660

661661

662-
`xgboost` `rapids` `gpu` `machine learning` `classification`
662+
`xgboost` `deploy model` `register model` `train model`
663663

664664
<sub>Universal Permissive License v 1.0</sup>
665665

notebook_examples/accelerate-scikit_learn-with-intel_extension.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
"@notebook{accelerate-scikit_learn-with-intel_extension.ipynb,\n",
99
" title: Intel Extension for Scikit-Learn,\n",
1010
" summary: Enhance performance of scikit-learn models using the Intel(R) oneAPI Data Analytics Library. Train a k-means model using both sklearn and the accelerated Intel library and compare performance.,\n",
11-
" developed on: sklearnex202130_p37_cpu_v1,\n",
11+
" developed_on: sklearnex202130_p37_cpu_v1,\n",
1212
" keywords: intel, intel extension, scikit-learn, scikit learn,\n",
1313
" license: Universal Permissive License v 1.0\n",
1414
"}"

notebook_examples/audi-autonomous_driving-oracle_open_data.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@
77
"@notebook{audi-autonomous_driving-oracle_open_data.ipynb,\n",
88
" title: Audi Autonomous Driving Dataset Repository,\n",
99
" summary: Download, process and display autonomous driving data, and map LiDAR data onto images.,\n",
10-
" developed on: computervision_p37_cpu_v1,\n",
10+
" developed_on: computervision_p37_cpu_v1,\n",
1111
" keywords: autonomous driving, oracle open data,\n",
1212
" license: Universal Permissive License v 1.0\n",
1313
"}"

notebook_examples/automlx-anomaly_detection.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
"@notebook{automlx-anomaly_detection.ipynb,\n",
99
" title: Building and Explaining an Anomaly Detector using AutoMLx - Experimental\n",
1010
" summary: Build an anomaly detection model using the experimental, fully unsupervised anomaly detection pipeline in Oracle AutoMLx for the public Credit Card Fraud dataset.,\n",
11-
" developed on: automlx_p38_cpu_v2,\n",
11+
" developed_on: automlx_p38_cpu_v2,\n",
1212
" keywords: automlx, anomaly detection,\n",
1313
" license: Universal Permissive License v 1.0,\n",
1414
" original source: https://github.com/oracle-samples/automlx/blob/main/demos/OracleAutoMLx_AnomalyDetection.ipynb \n",

notebook_examples/automlx-classifier.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
"@notebook{automlx-classifier.ipynb,\n",
99
" title: Building and Explaining a Classifier using AutoMLx,\n",
1010
" summary: Build a classifier using the Oracle AutoMLx tool and binary data set of Census income data.,\n",
11-
" developed on: automlx_p38_cpu_v2,\n",
11+
" developed_on: automlx_p38_cpu_v2,\n",
1212
" keywords: automlx, classification, classifier,\n",
1313
" license: Universal Permissive License v 1.0,\n",
1414
" original source: https://github.com/oracle-samples/automlx/blob/main/demos/OracleAutoMLx_Classification.ipynb\n",

notebook_examples/automlx-forecasting.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
"@notebook{automlx-forecasting.ipynb,\n",
99
" title: Building a Forecaster using AutoMLx,\n",
1010
" summary: Use Oracle AutoMLx to build a forecast model with real-world data sets.,\n",
11-
" developed on: automlx_p38_cpu_v2,\n",
11+
" developed_on: automlx_p38_cpu_v2,\n",
1212
" keywords: language services, string manipulation, regex, regular expression, natural language processing, NLP, part-of-speech tagging, named entity recognition, sentiment analysis, custom plugins,\n",
1313
" license: Universal Permissive License v 1.0,\n",
1414
" original source: https://github.com/oracle-samples/automlx/blob/main/demos/OracleAutoMLx_Forecasting.ipynb\n",

notebook_examples/automlx-regression.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
"@notebook{automlx-regression.ipynb,\n",
99
" title: Building and Explaining a Regressor using AutoMLx,\n",
1010
" summary: Build a regressor using Oracle AutoMLx and a pricing data set. Training options will be explored and the resulting AutoMLx models will be evaluated.,\n",
11-
" developed on: automlx_p38_cpu_v2,\n",
11+
" developed_on: automlx_p38_cpu_v2,\n",
1212
" keywords: automlx, regression,\n",
1313
" license: Universal Permissive License v 1.0,\n",
1414
" original source: https://github.com/oracle-samples/automlx/blob/main/demos/OracleAutoMLx_Regression.ipynb\n",

notebook_examples/automlx-text_classification.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
"@notebook{automlx-text_classification.ipynb,\n",
99
" title: Building and Explaining a Text Classifier using AutoMLx,\n",
1010
" summary: build a classifier using the Oracle AutoMLx tool for the public 20newsgroup dataset,\n",
11-
" developed on: automlx_p38_cpu_v2,\n",
11+
" developed_on: automlx_p38_cpu_v2,\n",
1212
" keywords: automlx, text classification, text classifier,\n",
1313
" license: Universal Permissive License v 1.0.,\n",
1414
" original source: https://github.com/oracle-samples/automlx/blob/main/demos/OracleAutoMLx_Classification_Text.ipynb\n",

notebook_examples/big_data_service-(BDS)-kerberos.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
"@notebook{big_data_service-(BDS)-kerberos.ipynb,\n",
99
" title: Connect to Oracle Big Data Service,\n",
1010
" summary: Connect to Oracle Big Data services using Kerberos.,\n",
11-
" developed on: pyspark30_p37_cpu_v5,\n",
11+
" developed_on: pyspark30_p37_cpu_v5,\n",
1212
" keywords: kerberos, big data service, bds,\n",
1313
" license: Universal Permissive License v 1.0\n",
1414
"}"

notebook_examples/big_data_service-(BDS)-livy.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
"@notebook{big_data_service-(BDS)-livy.ipynb,\n",
99
" title: Using Livy on the Big Data Service,\n",
1010
" summary: Work interactively with a BDS cluster using Livy and two different connection techniques, SparkMagic (for a notebook environment) and with REST.,\n",
11-
" developed on: pyspark30_p37_cpu_v5,\n",
11+
" developed_on: pyspark30_p37_cpu_v5,\n",
1212
" keywords: bds, big data service, livy,\n",
1313
" license: Universal Permissive License v 1.0\n",
1414
"}"

0 commit comments

Comments
 (0)