Description
Code Sample, a copy-pastable example if possible
import pandas as pd
foo = pd.Categorical(['a', 'b'], categories=['a', 'b', 'c'])
bar = pd.Categorical(['d', 'e'], categories=['d', 'e', 'f'])
pd.crosstab(foo, bar)
col_0 d e
row_0
a 1 0
b 0 1
c 0 0
Problem description
This is from the documentation:
Any input passed containing Categorical data will have all of its categories included in the cross-tabulation, even if the actual data does not contain any instances of a particular category.
However, f is not included in the table while c is.
Please let me know if this is in fact a bug, then I will be glad to write give writing a patch a try.
Thanks a lot in advance!
Expected Output
col_0 d e f
row_0
a 1 0 0
b 0 1 0
c 0 0 0
Output of pd.show_versions()
pandas: 0.20.1
pytest: 2.8.7
pip: 8.1.1
setuptools: 20.7.0
Cython: None
numpy: 1.12.1
scipy: 0.17.0
xarray: None
IPython: None
sphinx: None
patsy: 0.4.1
dateutil: 2.6.0
pytz: 2017.2
blosc: None
bottleneck: None
tables: 3.2.2
numexpr: 2.6.2
feather: None
matplotlib: 1.5.1
openpyxl: 2.3.0
xlrd: 0.9.4
xlwt: 0.7.5
xlsxwriter: None
lxml: 3.5.0
bs4: 4.4.1
html5lib: 0.999
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: None
s3fs: None
pandas_gbq: None
pandas_datareader: None