Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CI/TST: Address TestArrowArray::test_reduce_series_numeric supporting skew #61098

Merged
merged 5 commits into from
Mar 11, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions pandas/compat/__init__.py
Original file line number Diff line number Diff line change
@@ -35,6 +35,7 @@
pa_version_under17p0,
pa_version_under18p0,
pa_version_under19p0,
pa_version_under20p0,
)

if TYPE_CHECKING:
@@ -168,4 +169,5 @@ def is_ci_environment() -> bool:
"pa_version_under17p0",
"pa_version_under18p0",
"pa_version_under19p0",
"pa_version_under20p0",
]
39 changes: 26 additions & 13 deletions pandas/tests/extension/test_arrow.py
Original file line number Diff line number Diff line change
@@ -42,6 +42,7 @@
pa_version_under11p0,
pa_version_under13p0,
pa_version_under14p0,
pa_version_under20p0,
)

from pandas.core.dtypes.dtypes import (
@@ -453,31 +454,24 @@ def test_accumulate_series(self, data, all_numeric_accumulations, skipna, reques
self.check_accumulate(ser, op_name, skipna)

def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool:
if op_name in ["kurt", "skew"]:
if op_name == "kurt" or (pa_version_under20p0 and op_name == "skew"):
return False

dtype = ser.dtype
# error: Item "dtype[Any]" of "dtype[Any] | ExtensionDtype" has
# no attribute "pyarrow_dtype"
pa_dtype = dtype.pyarrow_dtype # type: ignore[union-attr]
if pa.types.is_temporal(pa_dtype) and op_name in ["sum", "var", "prod"]:
if pa.types.is_temporal(pa_dtype) and op_name in ["sum", "var", "prod", "skew"]:
if pa.types.is_duration(pa_dtype) and op_name in ["sum"]:
# summing timedeltas is one case that *is* well-defined
pass
else:
return False
elif pa.types.is_binary(pa_dtype) and op_name == "sum":
elif pa.types.is_binary(pa_dtype) and op_name in ["sum", "skew"]:
return False
elif (
pa.types.is_string(pa_dtype) or pa.types.is_binary(pa_dtype)
) and op_name in [
"mean",
"median",
"prod",
"std",
"sem",
"var",
]:
) and op_name in ["mean", "median", "prod", "std", "sem", "var", "skew"]:
return False

if (
@@ -561,7 +555,7 @@ def _get_expected_reduction_dtype(self, arr, op_name: str, skipna: bool):
else:
cmp_dtype = arr.dtype
elif arr.dtype.name == "decimal128(7, 3)[pyarrow]":
if op_name not in ["median", "var", "std", "sem"]:
if op_name not in ["median", "var", "std", "sem", "skew"]:
cmp_dtype = arr.dtype
else:
cmp_dtype = "float64[pyarrow]"
@@ -579,10 +573,29 @@ def _get_expected_reduction_dtype(self, arr, op_name: str, skipna: bool):
}[arr.dtype.kind]
return cmp_dtype

@pytest.mark.filterwarnings("ignore::RuntimeWarning")
@pytest.mark.parametrize("skipna", [True, False])
def test_reduce_series_numeric(self, data, all_numeric_reductions, skipna, request):
if (
not pa_version_under20p0
and skipna
and all_numeric_reductions == "skew"
and (
pa.types.is_integer(data.dtype.pyarrow_dtype)
or pa.types.is_floating(data.dtype.pyarrow_dtype)
)
):
request.applymarker(
pytest.mark.xfail(
reason="https://github.com/apache/arrow/issues/45733",
)
)
return super().test_reduce_series_numeric(data, all_numeric_reductions, skipna)

@pytest.mark.parametrize("skipna", [True, False])
def test_reduce_frame(self, data, all_numeric_reductions, skipna, request):
op_name = all_numeric_reductions
if op_name == "skew":
if op_name == "skew" and pa_version_under20p0:
if data.dtype._is_numeric:
mark = pytest.mark.xfail(reason="skew not implemented")
request.applymarker(mark)
Loading
Oops, something went wrong.