Skip to content

BUG: .mode(dropna=False) doesn't work with nullable integers #61132

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Mar 17, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v3.0.0.rst
Original file line number Diff line number Diff line change
@@ -838,6 +838,7 @@ Other
- Bug in :meth:`Series.diff` allowing non-integer values for the ``periods`` argument. (:issue:`56607`)
- Bug in :meth:`Series.dt` methods in :class:`ArrowDtype` that were returning incorrect values. (:issue:`57355`)
- Bug in :meth:`Series.isin` raising ``TypeError`` when series is large (>10**6) and ``values`` contains NA (:issue:`60678`)
- Bug in :meth:`Series.mode` where an exception was raised when taking the mode with nullable types with no null values in the series. (:issue:`58926`)
- Bug in :meth:`Series.rank` that doesn't preserve missing values for nullable integers when ``na_option='keep'``. (:issue:`56976`)
- Bug in :meth:`Series.replace` and :meth:`DataFrame.replace` inconsistently replacing matching instances when ``regex=True`` and missing values are present. (:issue:`56599`)
- Bug in :meth:`Series.replace` and :meth:`DataFrame.replace` throwing ``ValueError`` when ``regex=True`` and all NA values. (:issue:`60688`)
2 changes: 1 addition & 1 deletion pandas/_libs/hashtable_func_helper.pxi.in
Original file line number Diff line number Diff line change
@@ -430,7 +430,7 @@ def mode(ndarray[htfunc_t] values, bint dropna, const uint8_t[:] mask=None):

if na_counter > 0:
res_mask = np.zeros(j+1, dtype=np.bool_)
res_mask[j] = True
res_mask[j] = (na_counter == max_count)
return modes[:j + 1], res_mask


12 changes: 7 additions & 5 deletions pandas/core/algorithms.py
Original file line number Diff line number Diff line change
@@ -987,7 +987,7 @@ def duplicated(

def mode(
values: ArrayLike, dropna: bool = True, mask: npt.NDArray[np.bool_] | None = None
) -> ArrayLike:
) -> tuple[np.ndarray, npt.NDArray[np.bool_]] | ExtensionArray:
"""
Returns the mode(s) of an array.

@@ -1000,7 +1000,7 @@ def mode(

Returns
-------
np.ndarray or ExtensionArray
Union[Tuple[np.ndarray, npt.NDArray[np.bool_]], ExtensionArray]
"""
values = _ensure_arraylike(values, func_name="mode")
original = values
@@ -1014,8 +1014,10 @@ def mode(
values = _ensure_data(values)

npresult, res_mask = htable.mode(values, dropna=dropna, mask=mask)
if res_mask is not None:
return npresult, res_mask # type: ignore[return-value]
if res_mask is None:
res_mask = np.zeros(npresult.shape, dtype=np.bool_)
else:
return npresult, res_mask

try:
npresult = safe_sort(npresult)
@@ -1026,7 +1028,7 @@ def mode(
)

result = _reconstruct_data(npresult, original.dtype, original)
return result
return result, res_mask


def rank(
5 changes: 3 additions & 2 deletions pandas/core/arrays/base.py
Original file line number Diff line number Diff line change
@@ -2511,8 +2511,9 @@ def _mode(self, dropna: bool = True) -> Self:
Sorted, if possible.
"""
# error: Incompatible return value type (got "Union[ExtensionArray,
# ndarray[Any, Any]]", expected "Self")
return mode(self, dropna=dropna) # type: ignore[return-value]
# Tuple[np.ndarray, npt.NDArray[np.bool_]]", expected "Self")
result, _ = mode(self, dropna=dropna)
return result # type: ignore[return-value]

def __array_ufunc__(self, ufunc: np.ufunc, method: str, *inputs, **kwargs):
if any(
2 changes: 1 addition & 1 deletion pandas/core/arrays/categorical.py
Original file line number Diff line number Diff line change
@@ -2477,7 +2477,7 @@ def _mode(self, dropna: bool = True) -> Categorical:
if dropna:
mask = self.isna()

res_codes = algorithms.mode(codes, mask=mask)
res_codes, _ = algorithms.mode(codes, mask=mask)
res_codes = cast(np.ndarray, res_codes)
assert res_codes.dtype == codes.dtype
res = self._from_backing_data(res_codes)
2 changes: 1 addition & 1 deletion pandas/core/arrays/datetimelike.py
Original file line number Diff line number Diff line change
@@ -1635,7 +1635,7 @@ def _mode(self, dropna: bool = True):
if dropna:
mask = self.isna()

i8modes = algorithms.mode(self.view("i8"), mask=mask)
i8modes, _ = algorithms.mode(self.view("i8"), mask=mask)
npmodes = i8modes.view(self._ndarray.dtype)
npmodes = cast(np.ndarray, npmodes)
return self._from_backing_data(npmodes)
8 changes: 2 additions & 6 deletions pandas/core/arrays/masked.py
Original file line number Diff line number Diff line change
@@ -1099,12 +1099,8 @@ def value_counts(self, dropna: bool = True) -> Series:
return Series(arr, index=index, name="count", copy=False)

def _mode(self, dropna: bool = True) -> Self:
if dropna:
result = mode(self._data, dropna=dropna, mask=self._mask)
res_mask = np.zeros(result.shape, dtype=np.bool_)
else:
result, res_mask = mode(self._data, dropna=dropna, mask=self._mask)
result = type(self)(result, res_mask) # type: ignore[arg-type]
result, res_mask = mode(self._data, dropna=dropna, mask=self._mask)
result = type(self)(result, res_mask)
return result[result.argsort()]

@doc(ExtensionArray.equals)
2 changes: 1 addition & 1 deletion pandas/core/series.py
Original file line number Diff line number Diff line change
@@ -2071,7 +2071,7 @@ def mode(self, dropna: bool = True) -> Series:
# TODO: Add option for bins like value_counts()
values = self._values
if isinstance(values, np.ndarray):
res_values = algorithms.mode(values, dropna=dropna)
res_values, _ = algorithms.mode(values, dropna=dropna)
else:
res_values = values._mode(dropna=dropna)

23 changes: 23 additions & 0 deletions pandas/tests/series/test_reductions.py
Original file line number Diff line number Diff line change
@@ -51,6 +51,29 @@ def test_mode_nullable_dtype(any_numeric_ea_dtype):
tm.assert_series_equal(result, expected)


def test_mode_nullable_dtype_edge_case(any_numeric_ea_dtype):
# GH##58926
ser = Series([1, 2, 3, 1], dtype=any_numeric_ea_dtype)
result = ser.mode(dropna=False)
expected = Series([1], dtype=any_numeric_ea_dtype)
tm.assert_series_equal(result, expected)

ser2 = Series([1, 1, 2, 3, pd.NA], dtype=any_numeric_ea_dtype)
result = ser2.mode(dropna=False)
expected = Series([1], dtype=any_numeric_ea_dtype)
tm.assert_series_equal(result, expected)

ser3 = Series([1, pd.NA, pd.NA], dtype=any_numeric_ea_dtype)
result = ser3.mode(dropna=False)
expected = Series([pd.NA], dtype=any_numeric_ea_dtype)
tm.assert_series_equal(result, expected)

ser4 = Series([1, 1, pd.NA, pd.NA], dtype=any_numeric_ea_dtype)
result = ser4.mode(dropna=False)
expected = Series([1, pd.NA], dtype=any_numeric_ea_dtype)
tm.assert_series_equal(result, expected)


def test_mode_infer_string():
# GH#56183
pytest.importorskip("pyarrow")
47 changes: 31 additions & 16 deletions pandas/tests/test_algos.py
Original file line number Diff line number Diff line change
@@ -1831,7 +1831,8 @@ def test_pct_max_many_rows(self):
class TestMode:
def test_no_mode(self):
exp = Series([], dtype=np.float64, index=Index([], dtype=int))
tm.assert_numpy_array_equal(algos.mode(np.array([])), exp.values)
result, _ = algos.mode(np.array([]))
tm.assert_numpy_array_equal(result, exp.values)

def test_mode_single(self, any_real_numpy_dtype):
# GH 15714
@@ -1843,20 +1844,24 @@ def test_mode_single(self, any_real_numpy_dtype):

ser = Series(data_single, dtype=any_real_numpy_dtype)
exp = Series(exp_single, dtype=any_real_numpy_dtype)
tm.assert_numpy_array_equal(algos.mode(ser.values), exp.values)
result, _ = algos.mode(ser.values)
tm.assert_numpy_array_equal(result, exp.values)
tm.assert_series_equal(ser.mode(), exp)

ser = Series(data_multi, dtype=any_real_numpy_dtype)
exp = Series(exp_multi, dtype=any_real_numpy_dtype)
tm.assert_numpy_array_equal(algos.mode(ser.values), exp.values)
result, _ = algos.mode(ser.values)
tm.assert_numpy_array_equal(result, exp.values)
tm.assert_series_equal(ser.mode(), exp)

def test_mode_obj_int(self):
exp = Series([1], dtype=int)
tm.assert_numpy_array_equal(algos.mode(exp.values), exp.values)
result, _ = algos.mode(exp.values)
tm.assert_numpy_array_equal(result, exp.values)

exp = Series(["a", "b", "c"], dtype=object)
tm.assert_numpy_array_equal(algos.mode(exp.values), exp.values)
result, _ = algos.mode(exp.values)
tm.assert_numpy_array_equal(result, exp.values)

def test_number_mode(self, any_real_numpy_dtype):
exp_single = [1]
@@ -1867,12 +1872,14 @@ def test_number_mode(self, any_real_numpy_dtype):

ser = Series(data_single, dtype=any_real_numpy_dtype)
exp = Series(exp_single, dtype=any_real_numpy_dtype)
tm.assert_numpy_array_equal(algos.mode(ser.values), exp.values)
result, _ = algos.mode(ser.values)
tm.assert_numpy_array_equal(result, exp.values)
tm.assert_series_equal(ser.mode(), exp)

ser = Series(data_multi, dtype=any_real_numpy_dtype)
exp = Series(exp_multi, dtype=any_real_numpy_dtype)
tm.assert_numpy_array_equal(algos.mode(ser.values), exp.values)
result, _ = algos.mode(ser.values)
tm.assert_numpy_array_equal(result, exp.values)
tm.assert_series_equal(ser.mode(), exp)

def test_strobj_mode(self):
@@ -1881,7 +1888,8 @@ def test_strobj_mode(self):

ser = Series(data, dtype="c")
exp = Series(exp, dtype="c")
tm.assert_numpy_array_equal(algos.mode(ser.values), exp.values)
result, _ = algos.mode(ser.values)
tm.assert_numpy_array_equal(result, exp.values)
tm.assert_series_equal(ser.mode(), exp)

@pytest.mark.parametrize("dt", [str, object])
@@ -1891,10 +1899,11 @@ def test_strobj_multi_char(self, dt, using_infer_string):

ser = Series(data, dtype=dt)
exp = Series(exp, dtype=dt)
result, _ = algos.mode(ser.values)
if using_infer_string and dt is str:
tm.assert_extension_array_equal(algos.mode(ser.values), exp.values)
tm.assert_extension_array_equal(result, exp.values)
else:
tm.assert_numpy_array_equal(algos.mode(ser.values), exp.values)
tm.assert_numpy_array_equal(result, exp.values)
tm.assert_series_equal(ser.mode(), exp)

def test_datelike_mode(self):
@@ -1928,18 +1937,21 @@ def test_timedelta_mode(self):
def test_mixed_dtype(self):
exp = Series(["foo"], dtype=object)
ser = Series([1, "foo", "foo"])
tm.assert_numpy_array_equal(algos.mode(ser.values), exp.values)
result, _ = algos.mode(ser.values)
tm.assert_numpy_array_equal(result, exp.values)
tm.assert_series_equal(ser.mode(), exp)

def test_uint64_overflow(self):
exp = Series([2**63], dtype=np.uint64)
ser = Series([1, 2**63, 2**63], dtype=np.uint64)
tm.assert_numpy_array_equal(algos.mode(ser.values), exp.values)
result, _ = algos.mode(ser.values)
tm.assert_numpy_array_equal(result, exp.values)
tm.assert_series_equal(ser.mode(), exp)

exp = Series([1, 2**63], dtype=np.uint64)
ser = Series([1, 2**63], dtype=np.uint64)
tm.assert_numpy_array_equal(algos.mode(ser.values), exp.values)
result, _ = algos.mode(ser.values)
tm.assert_numpy_array_equal(result, exp.values)
tm.assert_series_equal(ser.mode(), exp)

def test_categorical(self):
@@ -1961,15 +1973,18 @@ def test_categorical(self):
def test_index(self):
idx = Index([1, 2, 3])
exp = Series([1, 2, 3], dtype=np.int64)
tm.assert_numpy_array_equal(algos.mode(idx), exp.values)
result, _ = algos.mode(idx)
tm.assert_numpy_array_equal(result, exp.values)

idx = Index([1, "a", "a"])
exp = Series(["a"], dtype=object)
tm.assert_numpy_array_equal(algos.mode(idx), exp.values)
result, _ = algos.mode(idx)
tm.assert_numpy_array_equal(result, exp.values)

idx = Index([1, 1, 2, 3, 3])
exp = Series([1, 3], dtype=np.int64)
tm.assert_numpy_array_equal(algos.mode(idx), exp.values)
result, _ = algos.mode(idx)
tm.assert_numpy_array_equal(result, exp.values)

idx = Index(
["1 day", "1 day", "-1 day", "-1 day 2 min", "2 min", "2 min"],