forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbasic_graphs.py
409 lines (342 loc) · 10.5 KB
/
basic_graphs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
from collections import deque
def _input(message):
return input(message).strip().split(" ")
def initialize_unweighted_directed_graph(
node_count: int, edge_count: int
) -> dict[int, list[int]]:
graph: dict[int, list[int]] = {}
for i in range(node_count):
graph[i + 1] = []
for e in range(edge_count):
x, y = (int(i) for i in _input(f"Edge {e + 1}: <node1> <node2> "))
graph[x].append(y)
return graph
def initialize_unweighted_undirected_graph(
node_count: int, edge_count: int
) -> dict[int, list[int]]:
graph: dict[int, list[int]] = {}
for i in range(node_count):
graph[i + 1] = []
for e in range(edge_count):
x, y = (int(i) for i in _input(f"Edge {e + 1}: <node1> <node2> "))
graph[x].append(y)
graph[y].append(x)
return graph
def initialize_weighted_undirected_graph(
node_count: int, edge_count: int
) -> dict[int, list[tuple[int, int]]]:
graph: dict[int, list[tuple[int, int]]] = {}
for i in range(node_count):
graph[i + 1] = []
for e in range(edge_count):
x, y, w = (int(i) for i in _input(f"Edge {e + 1}: <node1> <node2> <weight> "))
graph[x].append((y, w))
graph[y].append((x, w))
return graph
if __name__ == "__main__":
n, m = (int(i) for i in _input("Number of nodes and edges: "))
graph_choice = int(
_input(
"Press 1 or 2 or 3 \n"
"1. Unweighted directed \n"
"2. Unweighted undirected \n"
"3. Weighted undirected \n"
)[0]
)
g = {
1: initialize_unweighted_directed_graph,
2: initialize_unweighted_undirected_graph,
3: initialize_weighted_undirected_graph,
}[graph_choice](n, m)
"""
--------------------------------------------------------------------------------
Depth First Search.
Args : G - Dictionary of edges
s - Starting Node
Vars : vis - Set of visited nodes
S - Traversal Stack
--------------------------------------------------------------------------------
"""
def dfs(g, s):
"""
>>> dfs({1: [2, 3], 2: [4, 5], 3: [], 4: [], 5: []}, 1)
1
2
4
5
3
"""
vis, _s = {s}, [s]
print(s)
while _s:
flag = 0
for i in g[_s[-1]]:
if i not in vis:
_s.append(i)
vis.add(i)
flag = 1
print(i)
break
if not flag:
_s.pop()
"""
--------------------------------------------------------------------------------
Breadth First Search.
Args : G - Dictionary of edges
s - Starting Node
Vars : vis - Set of visited nodes
Q - Traversal Stack
--------------------------------------------------------------------------------
"""
def bfs(g, s):
"""
>>> bfs({1: [2, 3], 2: [4, 5], 3: [6, 7], 4: [], 5: [8], 6: [], 7: [], 8: []}, 1)
1
2
3
4
5
6
7
8
"""
vis, q = {s}, deque([s])
print(s)
while q:
u = q.popleft()
for v in g[u]:
if v not in vis:
vis.add(v)
q.append(v)
print(v)
"""
--------------------------------------------------------------------------------
Dijkstra's shortest path Algorithm
Args : G - Dictionary of edges
s - Starting Node
Vars : dist - Dictionary storing shortest distance from s to every other node
known - Set of knows nodes
path - Preceding node in path
--------------------------------------------------------------------------------
"""
def dijk(g, s):
"""
dijk({1: [(2, 7), (3, 9), (6, 14)],
2: [(1, 7), (3, 10), (4, 15)],
3: [(1, 9), (2, 10), (4, 11), (6, 2)],
4: [(2, 15), (3, 11), (5, 6)],
5: [(4, 6), (6, 9)],
6: [(1, 14), (3, 2), (5, 9)]}, 1)
7
9
11
20
20
"""
dist, known, path = {s: 0}, set(), {s: 0}
while True:
if len(known) == len(g) - 1:
break
mini = 100000
for key, value in dist:
if key not in known and value < mini:
mini = value
u = key
known.add(u)
for v in g[u]:
if v[0] not in known and dist[u] + v[1] < dist.get(v[0], 100000):
dist[v[0]] = dist[u] + v[1]
path[v[0]] = u
for key, value in dist.items():
if key != s:
print(value)
"""
--------------------------------------------------------------------------------
Topological Sort
--------------------------------------------------------------------------------
"""
def topo(g, ind=None, q=None):
if q is None:
q = [1]
if ind is None:
ind = [0] * (len(g) + 1) # SInce oth Index is ignored
for u in g:
for v in g[u]:
ind[v] += 1
q = deque()
for i in g:
if ind[i] == 0:
q.append(i)
if len(q) == 0:
return
v = q.popleft()
print(v)
for w in g[v]:
ind[w] -= 1
if ind[w] == 0:
q.append(w)
topo(g, ind, q)
"""
--------------------------------------------------------------------------------
Reading an Adjacency matrix
--------------------------------------------------------------------------------
"""
def adjm():
r"""
Reading an Adjacency matrix
Parameters:
None
Returns:
tuple: A tuple containing a list of edges and number of edges
Example:
>>> # Simulate user input for 3 nodes
>>> input_data = "4\n0 1 0 1\n1 0 1 0\n0 1 0 1\n1 0 1 0\n"
>>> import sys,io
>>> original_input = sys.stdin
>>> sys.stdin = io.StringIO(input_data) # Redirect stdin for testing
>>> adjm()
([(0, 1, 0, 1), (1, 0, 1, 0), (0, 1, 0, 1), (1, 0, 1, 0)], 4)
>>> sys.stdin = original_input # Restore original stdin
"""
n = int(input().strip())
a = []
for _ in range(n):
a.append(tuple(map(int, input().strip().split())))
return a, n
"""
--------------------------------------------------------------------------------
Floyd Warshall's algorithm
Args : G - Dictionary of edges
s - Starting Node
Vars : dist - Dictionary storing shortest distance from s to every other node
known - Set of knows nodes
path - Preceding node in path
--------------------------------------------------------------------------------
"""
def floy(a_and_n):
(a, n) = a_and_n
dist = list(a)
path = [[0] * n for i in range(n)]
for k in range(n):
for i in range(n):
for j in range(n):
if dist[i][j] > dist[i][k] + dist[k][j]:
dist[i][j] = dist[i][k] + dist[k][j]
path[i][k] = k
print(dist)
"""
--------------------------------------------------------------------------------
Prim's MST Algorithm
Args : G - Dictionary of edges
s - Starting Node
Vars : dist - Dictionary storing shortest distance from s to nearest node
known - Set of knows nodes
path - Preceding node in path
--------------------------------------------------------------------------------
"""
def prim(g, s):
dist, known, path = {s: 0}, set(), {s: 0}
while True:
if len(known) == len(g) - 1:
break
mini = 100000
for key, value in dist.items():
if key not in known and value < mini:
mini = value
u = key
known.add(u)
for v in g[u]:
if v[0] not in known and v[1] < dist.get(v[0], 100000):
dist[v[0]] = v[1]
path[v[0]] = u
return dist
"""
--------------------------------------------------------------------------------
Accepting Edge list
Vars : n - Number of nodes
m - Number of edges
Returns : l - Edge list
n - Number of Nodes
--------------------------------------------------------------------------------
"""
def edglist():
r"""
Get the edges and number of edges from the user
Parameters:
None
Returns:
tuple: A tuple containing a list of edges and number of edges
Example:
>>> # Simulate user input for 3 edges and 4 vertices: (1, 2), (2, 3), (3, 4)
>>> input_data = "4 3\n1 2\n2 3\n3 4\n"
>>> import sys,io
>>> original_input = sys.stdin
>>> sys.stdin = io.StringIO(input_data) # Redirect stdin for testing
>>> edglist()
([(1, 2), (2, 3), (3, 4)], 4)
>>> sys.stdin = original_input # Restore original stdin
"""
n, m = tuple(map(int, input().split(" ")))
edges = []
for _ in range(m):
edges.append(tuple(map(int, input().split(" "))))
return edges, n
"""
--------------------------------------------------------------------------------
Kruskal's MST Algorithm
Args : E - Edge list
n - Number of Nodes
Vars : s - Set of all nodes as unique disjoint sets (initially)
--------------------------------------------------------------------------------
"""
def krusk(e_and_n):
"""
Sort edges on the basis of distance
"""
(e, n) = e_and_n
e.sort(reverse=True, key=lambda x: x[2])
s = [{i} for i in range(1, n + 1)]
while True:
if len(s) == 1:
break
print(s)
x = e.pop()
for i in range(len(s)):
if x[0] in s[i]:
break
for j in range(len(s)):
if x[1] in s[j]:
if i == j:
break
s[j].update(s[i])
s.pop(i)
break
def find_isolated_nodes(graph):
"""
Find the isolated node in the graph
Parameters:
graph (dict): A dictionary representing a graph.
Returns:
list: A list of isolated nodes.
Examples:
>>> graph1 = {1: [2, 3], 2: [1, 3], 3: [1, 2], 4: []}
>>> find_isolated_nodes(graph1)
[4]
>>> graph2 = {'A': ['B', 'C'], 'B': ['A'], 'C': ['A'], 'D': []}
>>> find_isolated_nodes(graph2)
['D']
>>> graph3 = {'X': [], 'Y': [], 'Z': []}
>>> find_isolated_nodes(graph3)
['X', 'Y', 'Z']
>>> graph4 = {1: [2, 3], 2: [1, 3], 3: [1, 2]}
>>> find_isolated_nodes(graph4)
[]
>>> graph5 = {}
>>> find_isolated_nodes(graph5)
[]
"""
isolated = []
for node in graph:
if not graph[node]:
isolated.append(node)
return isolated