-
Notifications
You must be signed in to change notification settings - Fork 247
/
Copy pathbenchmark_aq.py
226 lines (178 loc) · 6.82 KB
/
benchmark_aq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD 3-Clause license found in the
# LICENSE file in the root directory of this source tree.
"""Benchmarks for affine quantized tensor, this includes int8 dynamic quant, int8 weight only quant and int4 weight only quant APIs"""
import copy
import torch
from torchao.quantization.quant_api import (
_replace_with_custom_fn_if_matches_filter,
int4_weight_only,
int8_dynamic_activation_int8_weight,
int8_weight_only,
quantize_,
)
from torchao.quantization.subclass import (
Int4WeightOnlyQuantizedLinearWeight,
Int8WeightOnlyQuantizedLinearWeight,
)
from torchao.utils import (
TORCH_VERSION_AT_LEAST_2_4,
TORCH_VERSION_AT_LEAST_2_5,
unwrap_tensor_subclass,
)
def _int8wo_api(mod, **kwargs):
if TORCH_VERSION_AT_LEAST_2_4:
quantize_(mod, int8_weight_only(**kwargs), set_inductor_config=False)
if not TORCH_VERSION_AT_LEAST_2_5:
unwrap_tensor_subclass(mod)
else:
change_linear_weights_to_int8_woqtensors(mod, **kwargs)
def _int8da_int8w_api(mod, **kwargs):
if TORCH_VERSION_AT_LEAST_2_4:
quantize_(
mod,
int8_dynamic_activation_int8_weight(**kwargs),
set_inductor_config=False,
)
if not TORCH_VERSION_AT_LEAST_2_5:
unwrap_tensor_subclass(mod)
else:
change_linear_weights_to_int8_dqtensors(mod, **kwargs)
def _int4wo_api(mod, **kwargs):
if TORCH_VERSION_AT_LEAST_2_4:
kwargs_copy = kwargs.copy()
if "groupsize" in kwargs_copy:
kwargs_copy["group_size"] = kwargs_copy["groupsize"]
del kwargs_copy["groupsize"]
quantize_(mod, int4_weight_only(**kwargs_copy), set_inductor_config=False)
if not TORCH_VERSION_AT_LEAST_2_5:
unwrap_tensor_subclass(mod)
else:
change_linear_weights_to_int4_woqtensors(mod, **kwargs)
class ToyLinearModel(torch.nn.Module):
"""Single linear for m * k * n problem size"""
def __init__(
self, m=64, n=32, k=64, has_bias=False, dtype=torch.float, device="cuda"
):
super().__init__()
self.m = m
self.dtype = dtype
self.device = device
self.linear = torch.nn.Linear(k, n, bias=has_bias).to(
dtype=self.dtype, device=self.device
)
def example_inputs(self):
return (
torch.randn(
self.m, self.linear.in_features, dtype=self.dtype, device=self.device
),
)
def forward(self, x):
x = self.linear(x)
return x
def _ref_change_linear_weights_to_int8_dqtensors(model, filter_fn=None, **kwargs):
"""
The deprecated implementation for int8 dynamic quant API, used as a reference for
numerics and performance
"""
from torchao.quantization.quant_api import (
_get_subclass_inserter,
_in_features_greater_than_16,
_is_linear,
)
from torchao.quantization.subclass import Int8DynamicallyQuantizedLinearWeight
if filter_fn is None:
filter_fn = lambda *args: _is_linear(*args) and _in_features_greater_than_16(
*args
)
_replace_with_custom_fn_if_matches_filter(
model,
_get_subclass_inserter(
Int8DynamicallyQuantizedLinearWeight, enable_parametrization=False, **kwargs
),
filter_fn,
)
def _get_ref_change_linear_weights_to_woqtensors(deprecated_tenosr_subclass):
def _ref_change_linear_weights_to_woqtensors(model, filter_fn=None, **kwargs):
"""
The deprecated implementation for weight only quant API, used as a reference for
numerics and performance
"""
from torchao.quantization.quant_api import _get_subclass_inserter, _is_linear
filter_fn = kwargs.pop("filter_fn", _is_linear)
_replace_with_custom_fn_if_matches_filter(
model,
_get_subclass_inserter(
deprecated_tenosr_subclass, enable_parametrization=True, **kwargs
),
filter_fn,
)
return _ref_change_linear_weights_to_woqtensors
_ref_change_linear_weights_to_int8_woqtensors = (
_get_ref_change_linear_weights_to_woqtensors(Int8WeightOnlyQuantizedLinearWeight)
)
_ref_change_linear_weights_to_int4_woqtensors = (
_get_ref_change_linear_weights_to_woqtensors(Int4WeightOnlyQuantizedLinearWeight)
)
torch._dynamo.config.cache_size_limit = 50000
@torch.no_grad
def _bench_quantized_tensor_subclass_perf(api, ref_api, M, N, K, kwargs=None):
if kwargs is None:
kwargs = {}
m = ToyLinearModel(
M, N, K, has_bias=True, dtype=torch.bfloat16, device="cuda"
).eval()
m_bf16 = copy.deepcopy(m)
m_ref = copy.deepcopy(m)
example_inputs = m.example_inputs()
api(m, **kwargs)
# reference
ref_api(m_ref, **kwargs)
res = m(*example_inputs)
ref = m_ref(*example_inputs)
assert torch.equal(res, ref)
# perf comparison
from torchao.utils import benchmark_model
# warmup
WARMUP = 20
RUNS = 100
torch._dynamo.reset()
m_ref = torch.compile(m_ref, mode="max-autotune", fullgraph=True)
benchmark_model(m_ref, WARMUP, example_inputs)
ref_elapsed_time = benchmark_model(m_ref, RUNS, example_inputs)
torch._dynamo.reset()
m = torch.compile(m, mode="max-autotune", fullgraph=True)
benchmark_model(m, WARMUP, example_inputs)
elapsed_time = benchmark_model(m, RUNS, example_inputs)
torch._dynamo.reset()
m_bf16 = torch.compile(m_bf16, mode="max-autotune", fullgraph=True)
benchmark_model(m_bf16, WARMUP, example_inputs)
bf16_elapsed_time = benchmark_model(m_bf16, RUNS, example_inputs)
print(
f"{(M, N, K)}: elapsed time: {elapsed_time}, ref elapsed time: {ref_elapsed_time}, bf16 elapsed time: {bf16_elapsed_time}"
)
if __name__ == "__main__" and TORCH_VERSION_AT_LEAST_2_4 and torch.cuda.is_available():
all_shapes = [
(20, 2048, 2048),
]
print("_int8da_int8w_api")
from torchao.quantization.quant_api import change_linear_weights_to_int8_dqtensors
for M, N, K in all_shapes:
_bench_quantized_tensor_subclass_perf(
_int8da_int8w_api, _ref_change_linear_weights_to_int8_dqtensors, M, N, K
)
print("_int8wo_api")
from torchao.quantization.quant_api import change_linear_weights_to_int8_woqtensors
for M, N, K in all_shapes:
_bench_quantized_tensor_subclass_perf(
_int8wo_api, _ref_change_linear_weights_to_int8_woqtensors, M, N, K
)
print("_int4wo_api")
kwargs = {"groupsize": 32}
from torchao.quantization.quant_api import change_linear_weights_to_int4_woqtensors
for M, N, K in all_shapes:
_bench_quantized_tensor_subclass_perf(
_int4wo_api, _ref_change_linear_weights_to_int4_woqtensors, M, N, K, kwargs
)