The Data Flow Server deploys Streams by delegating to Spring Cloud Skipper and deploys Tasks directly. Both Skipper and the Data Flow server can deploy to the local machine, Cloud Foundry, and Kubernetes.
Note
|
The local version of the Data Flow server should only be used for Stream development but can be used in a production environment for Task deployment as a replacement for the Spring Cloud Batch Admin Server. |
This shows how to start the Data Flow Server and Shell to create the time | log
stream.
-
Start Kafka locally (e.g.
kafka-server-start.sh /usr/local/etc/kafka/server.properties
) -
Build from the spring-cloud-dataflow root directory:
./mvnw clean install
-
Start the Data Flow Server application:
java -jar spring-cloud-dataflow-server/target/spring-cloud-dataflow-server-<version>.jar
-
Start the shell
$ java -jar spring-cloud-dataflow-shell/target/spring-cloud-dataflow-shell-<version>.jar
-
Create the 'ticktock' stream:
dataflow:>stream create --name ticktock --definition "time | log" Created new stream 'ticktock'
This is equivalent to the following HTTP POST request
$ curl -X POST -d "name=ticktock&definition=time | log" http://localhost:9393/streams/definitions?deploy=false
-
List all streams available in the repository:
dataflow:>stream list ╔═══════════╤═════════════════╤══════════╗ ║Stream Name│Stream Definition│ Status ║ ╠═══════════╪═════════════════╪══════════╣ ║ticktock │time | log │undeployed║ ╚═══════════╧═════════════════╧══════════╝
This is equivalent to the following HTTP get request
$ curl http://localhost:9393/streams/definitions
-
Deploy the 'ticktock' stream:
dataflow:>stream deploy --name ticktock Deployed stream 'ticktock'
This is equivalent to the following HTTP get request
$ curl -X POST http://localhost:9393/streams/deployments/ticktock
If successful you should see output similar to the following in the Data Flow Server
console:
...o.s.c.d.spi.local.LocalAppDeployer : deploying app ticktock.log instance 0 Logs will be in /some/path/ticktock.log
If you tail the stdout_0.log
file from the directory mentioned, you should see output similar to the following:
2016-04-26 15:10:18.320 INFO 59890 --- [pool-1-thread-1] log.sink : 04/26/16 15:10:18 2016-04-26 15:10:19.322 INFO 59890 --- [pool-1-thread-1] log.sink : 04/26/16 15:10:19 2016-04-26 15:10:20.322 INFO 59890 --- [pool-1-thread-1] log.sink : 04/26/16 15:10:20
To configure the Data Flow Server you can follow the configuration setup guidelines specified in the boot documentation found here
Note: The dataflow-server.yml
containing the defaults can be found here
The Spring Cloud Data Flow Server offers the user the ability to configure properties via
spring-cloud-config.
All configurations retrieved from the cloud config will take precedence over Boot’s
defaults enumerated above. The Spring Cloud Data Flow Server will look for the server at
localhost:8888
, however this can be overwritten by setting the spring.cloud.config.uri
property to the desired url.
To specify a repository in the cloud config server configuration.yml for the Data Flow Server,
setup a repo profile with the pattern spring-cloud-dataflow-server
. For example:
spring:
cloud:
config:
server:
git:
uri: https://github.com/myrepo/configurations
repos:
spring-cloud-dataflow-server:
pattern: spring-cloud-dataflow-server
uri: https://github.com/myrepo/configurations
searchPaths: dataFlowServer
In some cases, it may be desirable to fail startup of a service if it cannot connect to
the Config Server. If this is the desired behavior, set the bootstrap configuration
property spring.cloud.config.failFast=true
and the client will halt with an Exception.
If the Data Flow Server cannot connect to the cloud config server, the following warning message will be logged:
`WARN 42924 --- [main] c.c.c.ConfigServicePropertySourceLocator : Could not locate PropertySource: I/O error on GET request for "http://localhost:8888/spring-cloud-dataflow-server/default":Connection refused; nested exception is java.net.ConnectException: Connection refused`
To disable the cloud config server set the spring.cloud.config.enabled
property to false
.
Note
|
The docker-compose files have been decomposed so that you have to specify the database and messaging engine separately. Previously mysql and kafka was the default. |
To run the docker compose integration, enable the -Pfailsafe
maven profile and the -Dgroups="docker-compose"
JUnit tag.
-
You can run just the integration tests like this:
./mvnw clean test-compile failsafe:integration-test -pl spring-cloud-dataflow-server -Pfailsafe -Dgroups="docker-compose"
With the help of the TestProperties
properties one can change the docker-compose files used, the exact versions of the
SCDF, Skipper servers installed, or the versions Stream and Task apps:
./mvnw clean test-compile failsafe:integration-test -pl spring-cloud-dataflow-server -Pfailsafe -Dgroups="docker-compose" \ -Dtest.docker.compose.paths="../src/docker-compose/docker-compose.yml,../src/docker-compose/docker-compose-influxdb.yml,../src/docker-compose/docker-compose-postgres.yml,../src/docker-compose/docker-compose-rabbitmq.yml" \ -Dtest.docker.compose.stream.apps.uri=https://dataflow.spring.io/rabbitmq-maven-5-0-x \ -Dtest.docker.compose.dataflow.version=2.8.0-SNAPSHOT \ -Dtest.docker.compose.skipper.version=2.7.0-SNAPSHOT \
The test.docker.compose.paths
property accepts comma separated list of docker compose file names and supports file:
, classpath:
, and http:
/https:
URI schemas. If the schema prefix is not explicitly set, the file is treated as local one.
./mvnw clean test-compile integration-test -pl spring-cloud-dataflow-server -Pfailsafe -Dgroups="docker-compose" \ -Dtest.docker.compose.paths=""../src/docker-compose/docker-compose.yml,\ ../src/docker-compose/docker-compose-mysql.yml, \ ../src/docker-compose/docker-compose-kafka.yml, \ ../src/docker-compose/docker-compose-dood.yml, \ ../src/docker-compose/docker-compose-prometheus.yml" \ -Dtest.docker.compose.stream.apps.uri=https://dataflow.spring.io/kafka-docker-5-0-x \ -Dtest.docker.compose.task.apps.uri=https://dataflow.spring.io/task-docker-3-0-x \ -Dtest.docker.compose.dataflow.version=2.8.0-SNAPSHOT \ -Dtest.docker.compose.skipper.version=2.7.0-SNAPSHOT \ -Dtest.docker.compose.apps.port.range=80 \ -Dtest.docker.compose.pullOnStartup=false
Use the -Dtest.docker.compose.dood=true
property to activate the DooD (Docker-Out-Of-Docker) shortcut that implicitly will add docker-compose-dood.yml
to your configuration :
./mvnw clean test-compile integration-test -pl spring-cloud-dataflow-server -Pfailsafe -Dgroups="docker-compose" \ -Dtest.docker.compose.dood=true \ -Dtest.docker.compose.pullOnStartup=false
Use the -Dit.test=class-name#method-name
to filter only selected tests.
./mvnw clean test-compile integration-test -pl spring-cloud-dataflow-server -Pfailsafe -Dgroups="docker-compose" \ -Dtest.docker.compose.paths=""../src/docker-compose/docker-compose.yml,\ ../src/docker-compose/docker-compose-mysql.yml, \ ../src/docker-compose/docker-compose-kafka.yml, \ ../src/docker-compose/docker-compose-ssl.yml" \ -Dtest.docker.compose.dataflow.uri=https://dataflow-server:9393 \ -Dtest.docker.compose.skipper.uri=https://skipper-server:7577 \ -Dtest.docker.compose.waiting.for.service.format=https://$HOST:$EXTERNAL_PORT \ -Dit.test=DataFlowIT#streamPartitioning \ -Dspring.cloud.dataflow.client.server-uri=https://localhost:9393 \ -Dspring.cloud.dataflow.client.skip-ssl-validation=true \ -Dtest.platform.connection.application-over-https=true
Use the following env. variables to run an IT test from IDE:
TEST_DOCKER_COMPOSE_PATHS=../src/docker-compose/docker-compose.yml,\ ../src/docker-compose/docker-compose-mysql.yml, \ ../src/docker-compose/docker-compose-kafka.yml, \ ../src/docker-compose/docker-compose-ssl.yml TEST_DOCKER_COMPOSE_SKIPPER_URI=https://skipper-server:7577 TEST_DOCKER_COMPOSE_DATAFLOW_URI=https://dataflow-server:9393 TEST_DOCKER_COMPOSE_WAITING_FOR_SERVICE_FORMAT=https://$HOST:$EXTERNAL_PORT TEST_PLATFORM_CONNECTION_APPLICATIONOVERHTTPS=true SPRING_CLOUD_DATAFLOW_CLIENT_SKIPSSLVALIDATION=true SPRING_CLOUD_DATAFLOW_CLIENT_SERVERURI=https://localhost:9393 COMPOSE_HTTP_TIMEOUT=300
Use the following env. variables to run an IT test from IDE with existing docker-compose cluster:
TEST_DOCKER_COMPOSE_DISABLE_EXTENSION=true SPRING_CLOUD_DATAFLOW_CLIENT_SERVERURI=https://localhost:9393 SPRING_CLOUD_DATAFLOW_CLIENT_SKIPSSLVALIDATION=true TEST_PLATFORM_CONNECTION_APPLICATIONOVERHTTPS=true
Create HTTPS docker-compose from shell:
export DATAFLOW_URI=https://dataflow-server:9393 export SKIPPER_URI=https://skipper-server:7577 docker-compose -f ./src/docker-compose/docker-compose.yml \ -f ./src/docker-compose/docker-compose-mysql.yml, \ -f ./src/docker-compose/docker-compose-kafka.yml, \ -f ./src/docker-compose/docker-compose-ssl.yml
For this you need a pre-installed Data Flow on GKE or minikube. Register the OOTB kafka/docker and task/docker apps and the run:
./mvnw integration-test -pl spring-cloud-dataflow-server -Dtest=foo -DfailIfNoTests=false -Dgroups="docker-compose" \ -Dtest.docker.compose.disable.extension=true \ -Dspring.cloud.dataflow.client.server-uri=http://your-k8s-scdf-server \ -Pfailsafe
-
replace
http://your-k8s-scdf-server
with the url of your Data Flow server. -
the
test.docker.compose.disable.extension=true
property disables the docker-compose fixture. -
the
spring.cloud.dataflow.client.server-uri=
property points to the pre-installed DataFlow REST API.
For the analytic tests you need to pre-install Prometheus according to the installation instructions and forward the prometheus server’s 9090 port
kubectl port-forward prometheus-67896dcc8-7wm4h 9090:9090
Replace the prometheus-67896dcc8-7wm4h
with your pod name.
Or use the test.platform.connection.prometheusUrl
property to set an alternative Prometheus url.
The Integration Tests require that the Kubernetes cluster running Data Flow provides a Load Balancer service.
Most cloud providers offer the Load Balancer service by default. For Minikube, you would need to install one yourself.
The MetalLB is a lightweight load balancer implementation for Kubernetes and is one option to provide the LoadBalancer
service on Minikube.
-
Install MetalLB
kubectl apply -f https://raw.githubusercontent.com/google/metallb/v0.8.3/manifests/metallb.yaml
-
Create a ConfigMap with the appropriate settings
cat <<EOF >metallbcm.yaml apiVersion: v1 kind: ConfigMap metadata: namespace: metallb-system name: config data: config: | address-pools: - name: default protocol: layer2 addresses: - 192.168.99.116/28 EOF
Note
|
The IP in the addresses section is based on running Minikube via the default VirtualBox driver with default Minikube IP is 192.168.99.100 .
For different Minikube configurations, you might need to customize the address.
|
-
Apply the ConfigMap:
kubectl apply -f metallbcm.yaml
At this point MetalLB is setup and ready to hand out IP’s to any service of type LoadBalancer, just as things would work in say GKE.
-
If a change is made to the ConfigMap and re-applied, bounce the pods in the metallb-system namespace to pick-up the new changes, ie:
kubectl delete pod --all -n metallb-system
Some database and security tests are executed in containers. There are a set of junit tags which can be used to disect which tests to run. Here are some examples how to run those locally.
Run oauth security tests:
./mvnw integration-test -pl spring-cloud-dataflow-server -Dgroups=oauth -Pfailsafe
Run database tests:
./mvnw integration-test -pl spring-cloud-dataflow-server -Dgroups=database -Pfailsafe
Run mariadb, postgres or mssql tests:
./mvnw integration-test -pl spring-cloud-dataflow-server -Dgroups=mariadb -Pfailsafe ./mvnw integration-test -pl spring-cloud-dataflow-server -Dgroups=postgres -Pfailsafe ./mvnw integration-test -pl spring-cloud-dataflow-server -Dgroups=mssql -Pfailsafe
Run mariadb tests with shared database and with latest dataflow:
./mvnw integration-test -pl spring-cloud-dataflow-server -Dgroups="mariadb&database-shared&dataflow_main" -Pfailsafe
Run database and oauth tests:
./mvnw integration-test -pl spring-cloud-dataflow-server -Dgroups="database|oauth" -Pfailsafe