forked from xtensor-stack/xtensor-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_pyarray.py
173 lines (136 loc) · 5.81 KB
/
test_pyarray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
############################################################################
# Copyright (c) 2016, Johan Mabille and Sylvain Corlay #
# #
# Distributed under the terms of the BSD 3-Clause License. #
# #
# The full license is in the file LICENSE, distributed with this software. #
############################################################################
import os
import sys
import subprocess
# Build the test extension
here = os.path.abspath(os.path.dirname(__file__))
subprocess.check_call([sys.executable, os.path.join(here, 'setup.py'), 'build_ext', '--inplace'], cwd=here)
# Test it!
from unittest import TestCase
import xtensor_python_test as xt
import numpy as np
class XtensorTest(TestCase):
def test_rm(self):
xt.test_rm(np.array([10], dtype=int))
def test_example1(self):
self.assertEqual(4, xt.example1([4, 5, 6]))
def test_example2(self):
x = np.array([[0., 1.], [2., 3.]])
res = np.array([[2., 3.], [4., 5.]])
y = xt.example2(x)
np.testing.assert_allclose(y, res, 1e-12)
def test_vectorize(self):
x1 = np.array([[0, 1], [2, 3]])
x2 = np.array([0, 1])
res = np.array([[0, 2], [2, 4]])
y = xt.vectorize_example1(x1, x2)
np.testing.assert_array_equal(y, res)
def test_readme_example1(self):
v = np.arange(15).reshape(3, 5)
y = xt.readme_example1(v)
np.testing.assert_allclose(y, 1.2853996391883833, 1e-12)
def test_complex_overload_reg(self):
a = 23.23
c = 2.0 + 3.1j
self.assertEqual(xt.complex_overload_reg(a), a)
self.assertEqual(xt.complex_overload_reg(c), c)
def test_complex_overload(self):
a = np.random.rand(3, 3)
b = np.random.rand(3, 3)
c = a + b * 1j
y = xt.complex_overload(c)
np.testing.assert_allclose(np.imag(y), np.imag(c))
np.testing.assert_allclose(np.real(y), np.real(c))
x = xt.complex_overload(b)
self.assertEqual(x.dtype, b.dtype)
np.testing.assert_allclose(x, b)
def test_readme_example2(self):
x = np.arange(15).reshape(3, 5)
y = [1, 2, 3, 4, 5]
z = xt.readme_example2(x, y)
np.testing.assert_allclose(z,
[[-0.540302, 1.257618, 1.89929 , 0.794764, -1.040465],
[-1.499227, 0.136731, 1.646979, 1.643002, 0.128456],
[-1.084323, -0.583843, 0.45342 , 1.073811, 0.706945]], 1e-5)
def test_rect_to_polar(self):
x = np.ones(10, dtype=complex)
z = xt.rect_to_polar(x[::2]);
np.testing.assert_allclose(z, np.ones(5, dtype=float), 1e-5)
def test_shape_comparison(self):
x = np.ones([4, 4])
y = np.ones([5, 5])
z = np.zeros([4, 4])
self.assertFalse(xt.compare_shapes(x, y))
self.assertTrue(xt.compare_shapes(x, z))
def test_int_overload(self):
for dtype in [np.uint8, np.int8, np.uint16, np.int16, np.uint32, np.int32, np.uint64, np.int64]:
b = xt.int_overload(np.ones((10), dtype))
self.assertEqual(str(dtype.__name__), b)
def test_dtype(self):
var = xt.dtype_to_python()
self.assertEqual(var.dtype.names, ('a', 'b', 'c', 'x'))
exp_dtype = {
'a': (np.dtype('float64'), 0),
'b': (np.dtype('int32'), 8),
'c': (np.dtype('int8'), 12),
'x': (np.dtype(('<f8', (3,))), 16)
}
self.assertEqual(var.dtype.fields, exp_dtype)
self.assertEqual(var[0]['a'], 123)
self.assertEqual(var[0]['b'], 321)
self.assertEqual(var[0]['c'], ord('a'))
self.assertTrue(np.all(var[0]['x'] == [1, 2, 3]))
self.assertEqual(var[1]['a'], 111)
self.assertEqual(var[1]['b'], 222)
self.assertEqual(var[1]['c'], ord('x'))
self.assertTrue(np.all(var[1]['x'] == [5, 5, 5]))
d_dtype = np.dtype({'names':['a','b'], 'formats':['<f8','<i4'], 'offsets':[0,8], 'itemsize':16})
darr = np.array([(1, ord('p')), (123, ord('c'))], dtype=d_dtype)
self.assertEqual(darr[0]['a'], 1)
res = xt.dtype_from_python(darr)
self.assertEqual(res[0]['a'], 123.)
self.assertEqual(darr[0]['a'], 123.)
def test_char_array(self):
var = np.array(['hello', 'from', 'python'], dtype=np.dtype('|S20'));
self.assertEqual(var[0], b'hello')
xt.char_array(var)
self.assertEqual(var[0], b'hello')
self.assertEqual(var[1], b'from')
self.assertEqual(var[2], b'c++')
def test_col_row_major(self):
var = np.arange(50, dtype=float).reshape(2, 5, 5)
with self.assertRaises(RuntimeError):
xt.col_major_array(var)
with self.assertRaises(RuntimeError):
xt.row_major_tensor(var.T)
with self.assertRaises(RuntimeError):
xt.row_major_tensor(var[:, ::2, ::2])
with self.assertRaises(RuntimeError):
# raise for wrong dimension
xt.row_major_tensor(var[0, 0, :])
xt.row_major_tensor(var)
varF = np.arange(50, dtype=float).reshape(2, 5, 5, order='F')
xt.col_major_array(varF)
xt.col_major_array(varF[:, :, 0]) # still col major!
def test_bad_argument_call(self):
with self.assertRaises(TypeError):
xt.simple_array("foo")
with self.assertRaises(TypeError):
xt.simple_tensor("foo")
class AttributeTest(TestCase):
def setUp(self):
self.c = xt.C()
def test_copy(self):
arr = self.c.copy
arr[0] = 1
self.assertEqual([0.]*4, self.c.copy.tolist())
def test_reference(self):
arr = self.c.ref
arr[0] = 1
self.assertEqual([1.] + [0.]*3, self.c.ref.tolist())