forked from snrazavi/Machine-Learning-in-Python-Workshop
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path05A_knn_with_diff_k.py
30 lines (23 loc) · 1.11 KB
/
05A_knn_with_diff_k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
iris = load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.25,
random_state=1234,
stratify=y)
X_trainsub, X_valid, y_trainsub, y_valid = train_test_split(X_train, y_train,
test_size=0.5,
random_state=1234,
stratify=y_train)
for k in range(1, 20):
knn = KNeighborsClassifier(n_neighbors=k)
train_score = knn.fit(X_trainsub, y_trainsub).\
score(X_trainsub, y_trainsub)
valid_score = knn.score(X_valid, y_valid)
print('k: %d, Train/Valid Acc: %.3f/%.3f' %
(k, train_score, valid_score))
knn = KNeighborsClassifier(n_neighbors=9)
knn.fit(X_train, y_train)
print('k=9 Test Acc: %.3f' % knn.score(X_test, y_test))