forked from snrazavi/Machine-Learning-in-Python-Workshop
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path07A_iris-pca.py
32 lines (26 loc) · 1.11 KB
/
07A_iris-pca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data,
iris.target,
random_state=0,
stratify=iris.target)
sc = StandardScaler()
sc.fit(X_train)
pca = PCA(n_components=2)
X_train_pca = pca.fit_transform(sc.transform(X_train))
X_test_pca = pca.transform(sc.transform(X_test))
for X, y in zip((X_train_pca, X_test_pca), (y_train, y_test)):
for i, annot in enumerate(zip(('Iris-setosa', 'Iris-versicolor', 'Iris-virginica'),
('blue', 'red', 'green'))):
plt.scatter(X[y==i, 0],
X[y==i, 1],
label=annot[0],
c=annot[1])
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.legend(loc='best')
plt.tight_layout()
plt.show()