-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmarket-analysis-i.sql
101 lines (86 loc) · 3.07 KB
/
market-analysis-i.sql
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
/*
Table: Users
+----------------+---------+
| Column Name | Type |
+----------------+---------+
| user_id | int |
| join_date | date |
| favorite_brand | varchar |
+----------------+---------+
user_id is the primary key of this table.
This table has the info of the users of an online shopping website where users can sell and buy items.
Table: Orders
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| order_id | int |
| order_date | date |
| item_id | int |
| buyer_id | int |
| seller_id | int |
+---------------+---------+
order_id is the primary key of this table.
item_id is a foreign key to the Items table.
buyer_id and seller_id are foreign keys to the Users table.
Table: Items
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| item_id | int |
| item_brand | varchar |
+---------------+---------+
item_id is the primary key of this table.
Write an SQL query to find for each user, the join date and the number of orders they made as a buyer in 2019.
Return the result table in any order.
The query result format is in the following example.
Example 1:
Input:
Users table:
+---------+------------+----------------+
| user_id | join_date | favorite_brand |
+---------+------------+----------------+
| 1 | 2018-01-01 | Lenovo |
| 2 | 2018-02-09 | Samsung |
| 3 | 2018-01-19 | LG |
| 4 | 2018-05-21 | HP |
+---------+------------+----------------+
Orders table:
+----------+------------+---------+----------+-----------+
| order_id | order_date | item_id | buyer_id | seller_id |
+----------+------------+---------+----------+-----------+
| 1 | 2019-08-01 | 4 | 1 | 2 |
| 2 | 2018-08-02 | 2 | 1 | 3 |
| 3 | 2019-08-03 | 3 | 2 | 3 |
| 4 | 2018-08-04 | 1 | 4 | 2 |
| 5 | 2018-08-04 | 1 | 3 | 4 |
| 6 | 2019-08-05 | 2 | 2 | 4 |
+----------+------------+---------+----------+-----------+
Items table:
+---------+------------+
| item_id | item_brand |
+---------+------------+
| 1 | Samsung |
| 2 | Lenovo |
| 3 | LG |
| 4 | HP |
+---------+------------+
Output:
+-----------+------------+----------------+
| buyer_id | join_date | orders_in_2019 |
+-----------+------------+----------------+
| 1 | 2018-01-01 | 1 |
| 2 | 2018-02-09 | 2 |
| 3 | 2018-01-19 | 0 |
| 4 | 2018-05-21 | 0 |
+-----------+------------+----------------+
*/
SELECT A.user_id AS buyer_id ,TO_CHAR(A.join_date) AS join_date
,SUM(CASE WHEN EXTRACT(YEAR FROM B.order_date ) = '2019' THEN 1 ELSE 0 END) orders_in_2019
FROM Users A
LEFT JOIN
(SELECT A.* FROM Orders A RIGHT JOIN Items B ON A.item_id = B.item_id) B
ON A.user_id = B.buyer_id
WHERE 1=1
GROUP BY A.user_id , TO_CHAR(A.join_date)
ORDER BY A.user_id ASC
;