Skip to content

[Bug]: Docker deployment returns zmq.error.ZMQError: Operation not supported #10856

Closed as not planned
@aqx95

Description

@aqx95

Your current environment

The output of `python collect_env.py`
Collecting environment information...
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.3 LTS (x86_64)
GCC version: (Ubuntu 10.5.0-1ubuntu1~22.04) 10.5.0
Clang version: Could not collect
CMake version: version 3.30.2
Libc version: glibc-2.35

Python version: 3.10.4 (main, Mar 31 2022, 08:41:55) [GCC 7.5.0] (64-bit runtime)
Python platform: Linux-6.2.0-33-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 11.8.89
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA A40
GPU 1: NVIDIA A40
GPU 2: NVIDIA A40
GPU 3: NVIDIA A40

Nvidia driver version: 535.86.05
cuDNN version: Probably one of the following:
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn.so.8.9.5
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.9.5
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.9.5
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.9.5
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.9.5
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.9.5
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.9.5
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn.so.8.9.5
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.9.5
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.9.5
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.9.5
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.9.5
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.9.5
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.9.5
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      48 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             128
On-line CPU(s) list:                0-127
Vendor ID:                          AuthenticAMD
Model name:                         AMD EPYC 7763 64-Core Processor
CPU family:                         25
Model:                              1
Thread(s) per core:                 2
Core(s) per socket:                 64
Socket(s):                          1
Stepping:                           1
Frequency boost:                    enabled
CPU max MHz:                        3529.0520
CPU min MHz:                        1500.0000
BogoMIPS:                           4890.52
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin brs arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm
Virtualization:                     AMD-V
L1d cache:                          2 MiB (64 instances)
L1i cache:                          2 MiB (64 instances)
L2 cache:                           32 MiB (64 instances)
L3 cache:                           256 MiB (8 instances)
NUMA node(s):                       1
NUMA node0 CPU(s):                  0-127
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.1.1
[pip3] torch==2.5.1
[pip3] torchvision==0.20.1
[pip3] transformers==4.46.3
[pip3] triton==3.1.0
[conda] numpy                     1.26.4                    <pip>
[conda] nvidia-cublas-cu12        12.4.5.8                  <pip>
[conda] nvidia-cuda-cupti-cu12    12.4.127                  <pip>
[conda] nvidia-cuda-nvrtc-cu12    12.4.127                  <pip>
[conda] nvidia-cuda-runtime-cu12  12.4.127                  <pip>
[conda] nvidia-cudnn-cu12         9.1.0.70                  <pip>
[conda] nvidia-cufft-cu12         11.2.1.3                  <pip>
[conda] nvidia-curand-cu12        10.3.5.147                <pip>
[conda] nvidia-cusolver-cu12      11.6.1.9                  <pip>
[conda] nvidia-cusparse-cu12      12.3.1.170                <pip>
[conda] nvidia-ml-py              12.560.30                 <pip>
[conda] nvidia-nccl-cu12          2.21.5                    <pip>
[conda] nvidia-nvjitlink-cu12     12.4.127                  <pip>
[conda] nvidia-nvtx-cu12          12.4.127                  <pip>
[conda] pyzmq                     26.1.1                    <pip>
[conda] torch                     2.5.1                     <pip>
[conda] torchvision               0.20.1                    <pip>
[conda] transformers              4.46.3                    <pip>
[conda] triton                    3.1.0                     <pip>
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.4.post2.dev205+gef31eabc
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
�[4mGPU0	GPU1	GPU2	GPU3	CPU Affinity	NUMA Affinity	GPU NUMA ID�[0m
GPU0	 X 	NV4	SYS	SYS	0-127		N/A		N/A
GPU1	NV4	 X 	SYS	SYS	0-127		N/A		N/A
GPU2	SYS	SYS	 X 	NV4	0-127		N/A		N/A
GPU3	SYS	SYS	NV4	 X 	0-127		N/A		N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

CUDA_HOME=/usr/local/cuda
CUDA_HOME=/usr/local/cuda
VLLM_LOGGING_LEVEL=DEBUG
LD_LIBRARY_PATH=/home/turingx/anaconda3/envs/vllm/lib/python3.10/site-packages/cv2/../../lib64:
CUDA_MODULE_LOADING=LAZY

Model Input Dumps

No response

🐛 Describe the bug

Tried to serve a Llama model using vllm docker deployment, but encounter zmq error
Followed the instruction as documented in https://docs.vllm.ai/en/latest/serving/deploying_with_docker.html

Command

docker run --runtime nvidia --gpus '"device=3"' -v ~/.cache/huggingface:/root/.cache/huggingface --env "HUGGING_FACE_HUB_TOKEN=<token>" -p 8050:8000 --ipc=host vllm/vllm-openai:v0.6.4 --model meta-llama/Llama-Guard-3-1B

Error

INFO 12-02 23:35:00 api_server.py:585] vLLM API server version 0.6.4
INFO 12-02 23:35:00 api_server.py:586] args: Namespace(host=None, port=8000, uvicorn_log_level='info', allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key=None, lora_modules=None, prompt_adapters=None, chat_template=None, response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_auto_tool_choice=False, tool_call_parser=None, tool_parser_plugin='', model='meta-llama/Llama-Guard-3-1B', task='auto', tokenizer=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', chat_template_text_format='string', trust_remote_code=False, allowed_local_media_path=None, download_dir=None, load_format='auto', config_format=<ConfigFormat.AUTO: 'auto'>, dtype='auto', kv_cache_dtype='auto', quantization_param_path=None, max_model_len=None, guided_decoding_backend='outlines', distributed_executor_backend=None, worker_use_ray=False, pipeline_parallel_size=1, tensor_parallel_size=1, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=16, enable_prefix_caching=False, disable_sliding_window=False, use_v2_block_manager=False, num_lookahead_slots=0, seed=0, swap_space=4, cpu_offload_gb=0, gpu_memory_utilization=0.9, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_seqs=256, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, hf_overrides=None, enforce_eager=False, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt=None, mm_processor_kwargs=None, enable_lora=False, enable_lora_bias=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', num_scheduler_steps=1, multi_step_stream_outputs=True, scheduler_delay_factor=0.0, enable_chunked_prefill=None, speculative_model=None, speculative_model_quantization=None, num_speculative_tokens=None, speculative_disable_mqa_scorer=False, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, disable_logprobs_during_spec_decoding=None, model_loader_extra_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=None, qlora_adapter_name_or_path=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, scheduling_policy='fcfs', override_neuron_config=None, override_pooler_config=None, disable_log_requests=False, max_log_len=None, disable_fastapi_docs=False, enable_prompt_tokens_details=False)
INFO 12-02 23:35:00 api_server.py:175] Multiprocessing frontend to use ipc:///tmp/74bf6fc0-331c-4fc3-b084-528dbaa8cb07 for IPC Path.
INFO 12-02 23:35:00 api_server.py:194] Started engine process with PID 76
INFO 12-02 23:35:07 config.py:350] This model supports multiple tasks: {'generate', 'embedding'}. Defaulting to 'generate'.
WARNING 12-02 23:35:07 arg_utils.py:1013] Chunked prefill is enabled by default for models with max_model_len > 32K. Currently, chunked prefill might not work with some features or models. If you encounter any issues, please disable chunked prefill by setting --enable-chunked-prefill=False.
WARNING 12-02 23:35:07 arg_utils.py:1075] [DEPRECATED] Block manager v1 has been removed, and setting --use-v2-block-manager to True or False has no effect on vLLM behavior. Please remove --use-v2-block-manager in your engine argument. If your use case is not supported by SelfAttnBlockSpaceManager (i.e. block manager v2), please file an issue with detailed information.
INFO 12-02 23:35:07 config.py:1136] Chunked prefill is enabled with max_num_batched_tokens=512.
INFO 12-02 23:35:11 config.py:350] This model supports multiple tasks: {'embedding', 'generate'}. Defaulting to 'generate'.
WARNING 12-02 23:35:11 arg_utils.py:1013] Chunked prefill is enabled by default for models with max_model_len > 32K. Currently, chunked prefill might not work with some features or models. If you encounter any issues, please disable chunked prefill by setting --enable-chunked-prefill=False.
WARNING 12-02 23:35:11 arg_utils.py:1075] [DEPRECATED] Block manager v1 has been removed, and setting --use-v2-block-manager to True or False has no effect on vLLM behavior. Please remove --use-v2-block-manager in your engine argument. If your use case is not supported by SelfAttnBlockSpaceManager (i.e. block manager v2), please file an issue with detailed information.
INFO 12-02 23:35:11 config.py:1136] Chunked prefill is enabled with max_num_batched_tokens=512.
INFO 12-02 23:35:11 llm_engine.py:249] Initializing an LLM engine (v0.6.4) with config: model='meta-llama/Llama-Guard-3-1B', speculative_config=None, tokenizer='meta-llama/Llama-Guard-3-1B', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=131072, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=0, served_model_name=meta-llama/Llama-Guard-3-1B, num_scheduler_steps=1, chunked_prefill_enabled=True multi_step_stream_outputs=True, enable_prefix_caching=False, use_async_output_proc=True, use_cached_outputs=True, chat_template_text_format=string, mm_processor_kwargs=None, pooler_config=None)
INFO 12-02 23:35:12 selector.py:135] Using Flash Attention backend.
Task exception was never retrieved
future: <Task finished name='Task-2' coro=<MQLLMEngineClient.run_output_handler_loop() done, defined at /usr/local/lib/python3.12/dist-packages/vllm/engine/multiprocessing/client.py:178> exception=ZMQError('Operation not supported')>
Traceback (most recent call last):
  File "/usr/local/lib/python3.12/dist-packages/vllm/engine/multiprocessing/client.py", line 184, in run_output_handler_loop
    while await self.output_socket.poll(timeout=VLLM_RPC_TIMEOUT
                ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/usr/local/lib/python3.12/dist-packages/zmq/_future.py", line 400, in poll
    raise _zmq.ZMQError(_zmq.ENOTSUP)
zmq.error.ZMQError: Operation not supported
Traceback (most recent call last):
  File "<frozen runpy>", line 198, in _run_module_as_main
  File "<frozen runpy>", line 88, in _run_code
  File "/usr/local/lib/python3.12/dist-packages/vllm/entrypoints/openai/api_server.py", line 643, in <module>
    uvloop.run(run_server(args))
  File "/usr/local/lib/python3.12/dist-packages/uvloop/__init__.py", line 109, in run
    return __asyncio.run(
           ^^^^^^^^^^^^^^
  File "/usr/lib/python3.12/asyncio/runners.py", line 194, in run
    return runner.run(main)
           ^^^^^^^^^^^^^^^^
  File "/usr/lib/python3.12/asyncio/runners.py", line 118, in run
    return self._loop.run_until_complete(task)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "uvloop/loop.pyx", line 1518, in uvloop.loop.Loop.run_until_complete
  File "/usr/local/lib/python3.12/dist-packages/uvloop/__init__.py", line 61, in wrapper
    return await main
           ^^^^^^^^^^
  File "/usr/local/lib/python3.12/dist-packages/vllm/entrypoints/openai/api_server.py", line 609, in run_server
    async with build_async_engine_client(args) as engine_client:
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/usr/lib/python3.12/contextlib.py", line 210, in __aenter__
    return await anext(self.gen)
           ^^^^^^^^^^^^^^^^^^^^^
  File "/usr/local/lib/python3.12/dist-packages/vllm/entrypoints/openai/api_server.py", line 113, in build_async_engine_client
    async with build_async_engine_client_from_engine_args(
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/usr/lib/python3.12/contextlib.py", line 210, in __aenter__
    return await anext(self.gen)
           ^^^^^^^^^^^^^^^^^^^^^
  File "/usr/local/lib/python3.12/dist-packages/vllm/entrypoints/openai/api_server.py", line 210, in build_async_engine_client_from_engine_args
    raise RuntimeError(
RuntimeError: Engine process failed to start. See stack trace for the root cause.
 *  Terminal will be reused by tasks, press any key to close it. * 

Tried serving using Python API in the host environment works for me

pip install vllm==0.6.4
CUDA_VISIBLE_DEVICES=3 vllm serve /home/turingx/work/shared_models/llama_guard_hf/Llama-Guard-3-1B --host 0.0.0.0 --port 8060 --gpu-memory-utilization 0.6 --tensor-parallel-size 1 --served-model-name Llama-Guard-3-1B --max-model-len 500 --chat-template-content-format openai

Was wondering what could be the error trigger using docker deployment

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't workingstaleOver 90 days of inactivity

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions