Closed as not planned
Closed as not planned
Description
Your current environment
The output of `python collect_env.py`
Collecting environment information...
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.3 LTS (x86_64)
GCC version: (Ubuntu 10.5.0-1ubuntu1~22.04) 10.5.0
Clang version: Could not collect
CMake version: version 3.30.2
Libc version: glibc-2.35
Python version: 3.10.4 (main, Mar 31 2022, 08:41:55) [GCC 7.5.0] (64-bit runtime)
Python platform: Linux-6.2.0-33-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 11.8.89
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A40
GPU 1: NVIDIA A40
GPU 2: NVIDIA A40
GPU 3: NVIDIA A40
Nvidia driver version: 535.86.05
cuDNN version: Probably one of the following:
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn.so.8.9.5
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.9.5
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.9.5
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.9.5
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.9.5
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.9.5
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.9.5
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn.so.8.9.5
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.9.5
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.9.5
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.9.5
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.9.5
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.9.5
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.9.5
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 128
On-line CPU(s) list: 0-127
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7763 64-Core Processor
CPU family: 25
Model: 1
Thread(s) per core: 2
Core(s) per socket: 64
Socket(s): 1
Stepping: 1
Frequency boost: enabled
CPU max MHz: 3529.0520
CPU min MHz: 1500.0000
BogoMIPS: 4890.52
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin brs arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm
Virtualization: AMD-V
L1d cache: 2 MiB (64 instances)
L1i cache: 2 MiB (64 instances)
L2 cache: 32 MiB (64 instances)
L3 cache: 256 MiB (8 instances)
NUMA node(s): 1
NUMA node0 CPU(s): 0-127
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.1.1
[pip3] torch==2.5.1
[pip3] torchvision==0.20.1
[pip3] transformers==4.46.3
[pip3] triton==3.1.0
[conda] numpy 1.26.4 <pip>
[conda] nvidia-cublas-cu12 12.4.5.8 <pip>
[conda] nvidia-cuda-cupti-cu12 12.4.127 <pip>
[conda] nvidia-cuda-nvrtc-cu12 12.4.127 <pip>
[conda] nvidia-cuda-runtime-cu12 12.4.127 <pip>
[conda] nvidia-cudnn-cu12 9.1.0.70 <pip>
[conda] nvidia-cufft-cu12 11.2.1.3 <pip>
[conda] nvidia-curand-cu12 10.3.5.147 <pip>
[conda] nvidia-cusolver-cu12 11.6.1.9 <pip>
[conda] nvidia-cusparse-cu12 12.3.1.170 <pip>
[conda] nvidia-ml-py 12.560.30 <pip>
[conda] nvidia-nccl-cu12 2.21.5 <pip>
[conda] nvidia-nvjitlink-cu12 12.4.127 <pip>
[conda] nvidia-nvtx-cu12 12.4.127 <pip>
[conda] pyzmq 26.1.1 <pip>
[conda] torch 2.5.1 <pip>
[conda] torchvision 0.20.1 <pip>
[conda] transformers 4.46.3 <pip>
[conda] triton 3.1.0 <pip>
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.4.post2.dev205+gef31eabc
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
�[4mGPU0 GPU1 GPU2 GPU3 CPU Affinity NUMA Affinity GPU NUMA ID�[0m
GPU0 X NV4 SYS SYS 0-127 N/A N/A
GPU1 NV4 X SYS SYS 0-127 N/A N/A
GPU2 SYS SYS X NV4 0-127 N/A N/A
GPU3 SYS SYS NV4 X 0-127 N/A N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
CUDA_HOME=/usr/local/cuda
CUDA_HOME=/usr/local/cuda
VLLM_LOGGING_LEVEL=DEBUG
LD_LIBRARY_PATH=/home/turingx/anaconda3/envs/vllm/lib/python3.10/site-packages/cv2/../../lib64:
CUDA_MODULE_LOADING=LAZY
Model Input Dumps
No response
🐛 Describe the bug
Tried to serve a Llama model using vllm docker deployment, but encounter zmq error
Followed the instruction as documented in https://docs.vllm.ai/en/latest/serving/deploying_with_docker.html
Command
docker run --runtime nvidia --gpus '"device=3"' -v ~/.cache/huggingface:/root/.cache/huggingface --env "HUGGING_FACE_HUB_TOKEN=<token>" -p 8050:8000 --ipc=host vllm/vllm-openai:v0.6.4 --model meta-llama/Llama-Guard-3-1B
Error
INFO 12-02 23:35:00 api_server.py:585] vLLM API server version 0.6.4
INFO 12-02 23:35:00 api_server.py:586] args: Namespace(host=None, port=8000, uvicorn_log_level='info', allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key=None, lora_modules=None, prompt_adapters=None, chat_template=None, response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_auto_tool_choice=False, tool_call_parser=None, tool_parser_plugin='', model='meta-llama/Llama-Guard-3-1B', task='auto', tokenizer=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', chat_template_text_format='string', trust_remote_code=False, allowed_local_media_path=None, download_dir=None, load_format='auto', config_format=<ConfigFormat.AUTO: 'auto'>, dtype='auto', kv_cache_dtype='auto', quantization_param_path=None, max_model_len=None, guided_decoding_backend='outlines', distributed_executor_backend=None, worker_use_ray=False, pipeline_parallel_size=1, tensor_parallel_size=1, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=16, enable_prefix_caching=False, disable_sliding_window=False, use_v2_block_manager=False, num_lookahead_slots=0, seed=0, swap_space=4, cpu_offload_gb=0, gpu_memory_utilization=0.9, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_seqs=256, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, hf_overrides=None, enforce_eager=False, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt=None, mm_processor_kwargs=None, enable_lora=False, enable_lora_bias=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', num_scheduler_steps=1, multi_step_stream_outputs=True, scheduler_delay_factor=0.0, enable_chunked_prefill=None, speculative_model=None, speculative_model_quantization=None, num_speculative_tokens=None, speculative_disable_mqa_scorer=False, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, disable_logprobs_during_spec_decoding=None, model_loader_extra_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=None, qlora_adapter_name_or_path=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, scheduling_policy='fcfs', override_neuron_config=None, override_pooler_config=None, disable_log_requests=False, max_log_len=None, disable_fastapi_docs=False, enable_prompt_tokens_details=False)
INFO 12-02 23:35:00 api_server.py:175] Multiprocessing frontend to use ipc:///tmp/74bf6fc0-331c-4fc3-b084-528dbaa8cb07 for IPC Path.
INFO 12-02 23:35:00 api_server.py:194] Started engine process with PID 76
INFO 12-02 23:35:07 config.py:350] This model supports multiple tasks: {'generate', 'embedding'}. Defaulting to 'generate'.
WARNING 12-02 23:35:07 arg_utils.py:1013] Chunked prefill is enabled by default for models with max_model_len > 32K. Currently, chunked prefill might not work with some features or models. If you encounter any issues, please disable chunked prefill by setting --enable-chunked-prefill=False.
WARNING 12-02 23:35:07 arg_utils.py:1075] [DEPRECATED] Block manager v1 has been removed, and setting --use-v2-block-manager to True or False has no effect on vLLM behavior. Please remove --use-v2-block-manager in your engine argument. If your use case is not supported by SelfAttnBlockSpaceManager (i.e. block manager v2), please file an issue with detailed information.
INFO 12-02 23:35:07 config.py:1136] Chunked prefill is enabled with max_num_batched_tokens=512.
INFO 12-02 23:35:11 config.py:350] This model supports multiple tasks: {'embedding', 'generate'}. Defaulting to 'generate'.
WARNING 12-02 23:35:11 arg_utils.py:1013] Chunked prefill is enabled by default for models with max_model_len > 32K. Currently, chunked prefill might not work with some features or models. If you encounter any issues, please disable chunked prefill by setting --enable-chunked-prefill=False.
WARNING 12-02 23:35:11 arg_utils.py:1075] [DEPRECATED] Block manager v1 has been removed, and setting --use-v2-block-manager to True or False has no effect on vLLM behavior. Please remove --use-v2-block-manager in your engine argument. If your use case is not supported by SelfAttnBlockSpaceManager (i.e. block manager v2), please file an issue with detailed information.
INFO 12-02 23:35:11 config.py:1136] Chunked prefill is enabled with max_num_batched_tokens=512.
INFO 12-02 23:35:11 llm_engine.py:249] Initializing an LLM engine (v0.6.4) with config: model='meta-llama/Llama-Guard-3-1B', speculative_config=None, tokenizer='meta-llama/Llama-Guard-3-1B', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=131072, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=0, served_model_name=meta-llama/Llama-Guard-3-1B, num_scheduler_steps=1, chunked_prefill_enabled=True multi_step_stream_outputs=True, enable_prefix_caching=False, use_async_output_proc=True, use_cached_outputs=True, chat_template_text_format=string, mm_processor_kwargs=None, pooler_config=None)
INFO 12-02 23:35:12 selector.py:135] Using Flash Attention backend.
Task exception was never retrieved
future: <Task finished name='Task-2' coro=<MQLLMEngineClient.run_output_handler_loop() done, defined at /usr/local/lib/python3.12/dist-packages/vllm/engine/multiprocessing/client.py:178> exception=ZMQError('Operation not supported')>
Traceback (most recent call last):
File "/usr/local/lib/python3.12/dist-packages/vllm/engine/multiprocessing/client.py", line 184, in run_output_handler_loop
while await self.output_socket.poll(timeout=VLLM_RPC_TIMEOUT
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/zmq/_future.py", line 400, in poll
raise _zmq.ZMQError(_zmq.ENOTSUP)
zmq.error.ZMQError: Operation not supported
Traceback (most recent call last):
File "<frozen runpy>", line 198, in _run_module_as_main
File "<frozen runpy>", line 88, in _run_code
File "/usr/local/lib/python3.12/dist-packages/vllm/entrypoints/openai/api_server.py", line 643, in <module>
uvloop.run(run_server(args))
File "/usr/local/lib/python3.12/dist-packages/uvloop/__init__.py", line 109, in run
return __asyncio.run(
^^^^^^^^^^^^^^
File "/usr/lib/python3.12/asyncio/runners.py", line 194, in run
return runner.run(main)
^^^^^^^^^^^^^^^^
File "/usr/lib/python3.12/asyncio/runners.py", line 118, in run
return self._loop.run_until_complete(task)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "uvloop/loop.pyx", line 1518, in uvloop.loop.Loop.run_until_complete
File "/usr/local/lib/python3.12/dist-packages/uvloop/__init__.py", line 61, in wrapper
return await main
^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/vllm/entrypoints/openai/api_server.py", line 609, in run_server
async with build_async_engine_client(args) as engine_client:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/lib/python3.12/contextlib.py", line 210, in __aenter__
return await anext(self.gen)
^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/vllm/entrypoints/openai/api_server.py", line 113, in build_async_engine_client
async with build_async_engine_client_from_engine_args(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/lib/python3.12/contextlib.py", line 210, in __aenter__
return await anext(self.gen)
^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/vllm/entrypoints/openai/api_server.py", line 210, in build_async_engine_client_from_engine_args
raise RuntimeError(
RuntimeError: Engine process failed to start. See stack trace for the root cause.
* Terminal will be reused by tasks, press any key to close it. *
Tried serving using Python API in the host environment works for me
pip install vllm==0.6.4
CUDA_VISIBLE_DEVICES=3 vllm serve /home/turingx/work/shared_models/llama_guard_hf/Llama-Guard-3-1B --host 0.0.0.0 --port 8060 --gpu-memory-utilization 0.6 --tensor-parallel-size 1 --served-model-name Llama-Guard-3-1B --max-model-len 500 --chat-template-content-format openai
Was wondering what could be the error trigger using docker deployment
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.