-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathex07_newtonSquareRoot.py
36 lines (34 loc) · 1.13 KB
/
ex07_newtonSquareRoot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# MIT License
# Copyright (c) 2022 Mahmoud Harmouch
"""
Compute the square root of a number.
1. The input is a number.
2. The outputs are the program's estimate of the square root
using Newton's method of successive approximations, and
Python's own estimate using math.sqrt.
• real value : 1.414235624 (sqrt(2))
• formula: new_estimate = old_estimate/2 + x/(old_estimate * 2)
• old_estimate = 1 # initial guess of sqrt(2) (x = 2)
• new_estimate = old_estimate/2 + 1 = 1.5
• new_estimate = new_estimate/2 + 2/3 = 1.41666
• new_estimate = 0.7083 + 2/2.833 = 1.41425
"""
import math
if __name__ == "__main__":
try :
# Receive the input number from the user
x = float(input("Enter a positive number: "))
# Initialize the tolerance and estimate
tolerance = 0.000001
estimate = 1.0
# Perform the successive approximations
while True:
estimate = (estimate + x / estimate) / 2
difference = abs(x - estimate ** 2)
if difference <= tolerance:
break
# Output the result
print("The program's estimate:", estimate)
print("Python's estimate:", math.sqrt(x))
except ValueError:
print("ValueError exception has been raised!")