forked from huggingface/diffusers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_shap_e_to_diffusers.py
594 lines (452 loc) · 20 KB
/
convert_shap_e_to_diffusers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
import argparse
import tempfile
import torch
from accelerate import load_checkpoint_and_dispatch
from diffusers.models.prior_transformer import PriorTransformer
from diffusers.pipelines.shap_e import ShapERenderer
"""
Example - From the diffusers root directory:
Download weights:
```sh
$ wget "https://openaipublic.azureedge.net/main/shap-e/text_cond.pt"
```
Convert the model:
```sh
$ python scripts/convert_shap_e_to_diffusers.py \
--prior_checkpoint_path /home/yiyi_huggingface_co/shap-e/shap_e_model_cache/text_cond.pt \
--prior_image_checkpoint_path /home/yiyi_huggingface_co/shap-e/shap_e_model_cache/image_cond.pt \
--transmitter_checkpoint_path /home/yiyi_huggingface_co/shap-e/shap_e_model_cache/transmitter.pt\
--dump_path /home/yiyi_huggingface_co/model_repo/shap-e/renderer\
--debug renderer
```
"""
# prior
PRIOR_ORIGINAL_PREFIX = "wrapped"
PRIOR_CONFIG = {
"num_attention_heads": 16,
"attention_head_dim": 1024 // 16,
"num_layers": 24,
"embedding_dim": 1024,
"num_embeddings": 1024,
"additional_embeddings": 0,
"time_embed_act_fn": "gelu",
"norm_in_type": "layer",
"encoder_hid_proj_type": None,
"added_emb_type": None,
"time_embed_dim": 1024 * 4,
"embedding_proj_dim": 768,
"clip_embed_dim": 1024 * 2,
}
def prior_model_from_original_config():
model = PriorTransformer(**PRIOR_CONFIG)
return model
def prior_original_checkpoint_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
# <original>.time_embed.c_fc -> <diffusers>.time_embedding.linear_1
diffusers_checkpoint.update(
{
"time_embedding.linear_1.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.c_fc.weight"],
"time_embedding.linear_1.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.c_fc.bias"],
}
)
# <original>.time_embed.c_proj -> <diffusers>.time_embedding.linear_2
diffusers_checkpoint.update(
{
"time_embedding.linear_2.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.c_proj.weight"],
"time_embedding.linear_2.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.c_proj.bias"],
}
)
# <original>.input_proj -> <diffusers>.proj_in
diffusers_checkpoint.update(
{
"proj_in.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.input_proj.weight"],
"proj_in.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.input_proj.bias"],
}
)
# <original>.clip_emb -> <diffusers>.embedding_proj
diffusers_checkpoint.update(
{
"embedding_proj.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.clip_embed.weight"],
"embedding_proj.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.clip_embed.bias"],
}
)
# <original>.pos_emb -> <diffusers>.positional_embedding
diffusers_checkpoint.update({"positional_embedding": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.pos_emb"][None, :]})
# <original>.ln_pre -> <diffusers>.norm_in
diffusers_checkpoint.update(
{
"norm_in.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.ln_pre.weight"],
"norm_in.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.ln_pre.bias"],
}
)
# <original>.backbone.resblocks.<x> -> <diffusers>.transformer_blocks.<x>
for idx in range(len(model.transformer_blocks)):
diffusers_transformer_prefix = f"transformer_blocks.{idx}"
original_transformer_prefix = f"{PRIOR_ORIGINAL_PREFIX}.backbone.resblocks.{idx}"
# <original>.attn -> <diffusers>.attn1
diffusers_attention_prefix = f"{diffusers_transformer_prefix}.attn1"
original_attention_prefix = f"{original_transformer_prefix}.attn"
diffusers_checkpoint.update(
prior_attention_to_diffusers(
checkpoint,
diffusers_attention_prefix=diffusers_attention_prefix,
original_attention_prefix=original_attention_prefix,
attention_head_dim=model.attention_head_dim,
)
)
# <original>.mlp -> <diffusers>.ff
diffusers_ff_prefix = f"{diffusers_transformer_prefix}.ff"
original_ff_prefix = f"{original_transformer_prefix}.mlp"
diffusers_checkpoint.update(
prior_ff_to_diffusers(
checkpoint, diffusers_ff_prefix=diffusers_ff_prefix, original_ff_prefix=original_ff_prefix
)
)
# <original>.ln_1 -> <diffusers>.norm1
diffusers_checkpoint.update(
{
f"{diffusers_transformer_prefix}.norm1.weight": checkpoint[
f"{original_transformer_prefix}.ln_1.weight"
],
f"{diffusers_transformer_prefix}.norm1.bias": checkpoint[f"{original_transformer_prefix}.ln_1.bias"],
}
)
# <original>.ln_2 -> <diffusers>.norm3
diffusers_checkpoint.update(
{
f"{diffusers_transformer_prefix}.norm3.weight": checkpoint[
f"{original_transformer_prefix}.ln_2.weight"
],
f"{diffusers_transformer_prefix}.norm3.bias": checkpoint[f"{original_transformer_prefix}.ln_2.bias"],
}
)
# <original>.ln_post -> <diffusers>.norm_out
diffusers_checkpoint.update(
{
"norm_out.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.ln_post.weight"],
"norm_out.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.ln_post.bias"],
}
)
# <original>.output_proj -> <diffusers>.proj_to_clip_embeddings
diffusers_checkpoint.update(
{
"proj_to_clip_embeddings.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.output_proj.weight"],
"proj_to_clip_embeddings.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.output_proj.bias"],
}
)
return diffusers_checkpoint
def prior_attention_to_diffusers(
checkpoint, *, diffusers_attention_prefix, original_attention_prefix, attention_head_dim
):
diffusers_checkpoint = {}
# <original>.c_qkv -> <diffusers>.{to_q, to_k, to_v}
[q_weight, k_weight, v_weight], [q_bias, k_bias, v_bias] = split_attentions(
weight=checkpoint[f"{original_attention_prefix}.c_qkv.weight"],
bias=checkpoint[f"{original_attention_prefix}.c_qkv.bias"],
split=3,
chunk_size=attention_head_dim,
)
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.to_q.weight": q_weight,
f"{diffusers_attention_prefix}.to_q.bias": q_bias,
f"{diffusers_attention_prefix}.to_k.weight": k_weight,
f"{diffusers_attention_prefix}.to_k.bias": k_bias,
f"{diffusers_attention_prefix}.to_v.weight": v_weight,
f"{diffusers_attention_prefix}.to_v.bias": v_bias,
}
)
# <original>.c_proj -> <diffusers>.to_out.0
diffusers_checkpoint.update(
{
f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{original_attention_prefix}.c_proj.weight"],
f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{original_attention_prefix}.c_proj.bias"],
}
)
return diffusers_checkpoint
def prior_ff_to_diffusers(checkpoint, *, diffusers_ff_prefix, original_ff_prefix):
diffusers_checkpoint = {
# <original>.c_fc -> <diffusers>.net.0.proj
f"{diffusers_ff_prefix}.net.{0}.proj.weight": checkpoint[f"{original_ff_prefix}.c_fc.weight"],
f"{diffusers_ff_prefix}.net.{0}.proj.bias": checkpoint[f"{original_ff_prefix}.c_fc.bias"],
# <original>.c_proj -> <diffusers>.net.2
f"{diffusers_ff_prefix}.net.{2}.weight": checkpoint[f"{original_ff_prefix}.c_proj.weight"],
f"{diffusers_ff_prefix}.net.{2}.bias": checkpoint[f"{original_ff_prefix}.c_proj.bias"],
}
return diffusers_checkpoint
# done prior
# prior_image (only slightly different from prior)
PRIOR_IMAGE_ORIGINAL_PREFIX = "wrapped"
# Uses default arguments
PRIOR_IMAGE_CONFIG = {
"num_attention_heads": 8,
"attention_head_dim": 1024 // 8,
"num_layers": 24,
"embedding_dim": 1024,
"num_embeddings": 1024,
"additional_embeddings": 0,
"time_embed_act_fn": "gelu",
"norm_in_type": "layer",
"embedding_proj_norm_type": "layer",
"encoder_hid_proj_type": None,
"added_emb_type": None,
"time_embed_dim": 1024 * 4,
"embedding_proj_dim": 1024,
"clip_embed_dim": 1024 * 2,
}
def prior_image_model_from_original_config():
model = PriorTransformer(**PRIOR_IMAGE_CONFIG)
return model
def prior_image_original_checkpoint_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
# <original>.time_embed.c_fc -> <diffusers>.time_embedding.linear_1
diffusers_checkpoint.update(
{
"time_embedding.linear_1.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.time_embed.c_fc.weight"],
"time_embedding.linear_1.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.time_embed.c_fc.bias"],
}
)
# <original>.time_embed.c_proj -> <diffusers>.time_embedding.linear_2
diffusers_checkpoint.update(
{
"time_embedding.linear_2.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.time_embed.c_proj.weight"],
"time_embedding.linear_2.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.time_embed.c_proj.bias"],
}
)
# <original>.input_proj -> <diffusers>.proj_in
diffusers_checkpoint.update(
{
"proj_in.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.input_proj.weight"],
"proj_in.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.input_proj.bias"],
}
)
# <original>.clip_embed.0 -> <diffusers>.embedding_proj_norm
diffusers_checkpoint.update(
{
"embedding_proj_norm.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.clip_embed.0.weight"],
"embedding_proj_norm.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.clip_embed.0.bias"],
}
)
# <original>..clip_embed.1 -> <diffusers>.embedding_proj
diffusers_checkpoint.update(
{
"embedding_proj.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.clip_embed.1.weight"],
"embedding_proj.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.clip_embed.1.bias"],
}
)
# <original>.pos_emb -> <diffusers>.positional_embedding
diffusers_checkpoint.update(
{"positional_embedding": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.pos_emb"][None, :]}
)
# <original>.ln_pre -> <diffusers>.norm_in
diffusers_checkpoint.update(
{
"norm_in.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.ln_pre.weight"],
"norm_in.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.ln_pre.bias"],
}
)
# <original>.backbone.resblocks.<x> -> <diffusers>.transformer_blocks.<x>
for idx in range(len(model.transformer_blocks)):
diffusers_transformer_prefix = f"transformer_blocks.{idx}"
original_transformer_prefix = f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.backbone.resblocks.{idx}"
# <original>.attn -> <diffusers>.attn1
diffusers_attention_prefix = f"{diffusers_transformer_prefix}.attn1"
original_attention_prefix = f"{original_transformer_prefix}.attn"
diffusers_checkpoint.update(
prior_attention_to_diffusers(
checkpoint,
diffusers_attention_prefix=diffusers_attention_prefix,
original_attention_prefix=original_attention_prefix,
attention_head_dim=model.attention_head_dim,
)
)
# <original>.mlp -> <diffusers>.ff
diffusers_ff_prefix = f"{diffusers_transformer_prefix}.ff"
original_ff_prefix = f"{original_transformer_prefix}.mlp"
diffusers_checkpoint.update(
prior_ff_to_diffusers(
checkpoint, diffusers_ff_prefix=diffusers_ff_prefix, original_ff_prefix=original_ff_prefix
)
)
# <original>.ln_1 -> <diffusers>.norm1
diffusers_checkpoint.update(
{
f"{diffusers_transformer_prefix}.norm1.weight": checkpoint[
f"{original_transformer_prefix}.ln_1.weight"
],
f"{diffusers_transformer_prefix}.norm1.bias": checkpoint[f"{original_transformer_prefix}.ln_1.bias"],
}
)
# <original>.ln_2 -> <diffusers>.norm3
diffusers_checkpoint.update(
{
f"{diffusers_transformer_prefix}.norm3.weight": checkpoint[
f"{original_transformer_prefix}.ln_2.weight"
],
f"{diffusers_transformer_prefix}.norm3.bias": checkpoint[f"{original_transformer_prefix}.ln_2.bias"],
}
)
# <original>.ln_post -> <diffusers>.norm_out
diffusers_checkpoint.update(
{
"norm_out.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.ln_post.weight"],
"norm_out.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.ln_post.bias"],
}
)
# <original>.output_proj -> <diffusers>.proj_to_clip_embeddings
diffusers_checkpoint.update(
{
"proj_to_clip_embeddings.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.output_proj.weight"],
"proj_to_clip_embeddings.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.output_proj.bias"],
}
)
return diffusers_checkpoint
# done prior_image
# renderer
RENDERER_CONFIG = {}
def renderer_model_from_original_config():
model = ShapERenderer(**RENDERER_CONFIG)
return model
RENDERER_MLP_ORIGINAL_PREFIX = "renderer.nerstf"
RENDERER_PARAMS_PROJ_ORIGINAL_PREFIX = "encoder.params_proj"
def renderer_model_original_checkpoint_to_diffusers_checkpoint(model, checkpoint):
diffusers_checkpoint = {}
diffusers_checkpoint.update(
{f"mlp.{k}": checkpoint[f"{RENDERER_MLP_ORIGINAL_PREFIX}.{k}"] for k in model.mlp.state_dict().keys()}
)
diffusers_checkpoint.update(
{
f"params_proj.{k}": checkpoint[f"{RENDERER_PARAMS_PROJ_ORIGINAL_PREFIX}.{k}"]
for k in model.params_proj.state_dict().keys()
}
)
diffusers_checkpoint.update({"void.background": torch.tensor([0.0, 0.0, 0.0], dtype=torch.float32)})
return diffusers_checkpoint
# done renderer
# TODO maybe document and/or can do more efficiently (build indices in for loop and extract once for each split?)
def split_attentions(*, weight, bias, split, chunk_size):
weights = [None] * split
biases = [None] * split
weights_biases_idx = 0
for starting_row_index in range(0, weight.shape[0], chunk_size):
row_indices = torch.arange(starting_row_index, starting_row_index + chunk_size)
weight_rows = weight[row_indices, :]
bias_rows = bias[row_indices]
if weights[weights_biases_idx] is None:
assert weights[weights_biases_idx] is None
weights[weights_biases_idx] = weight_rows
biases[weights_biases_idx] = bias_rows
else:
assert weights[weights_biases_idx] is not None
weights[weights_biases_idx] = torch.concat([weights[weights_biases_idx], weight_rows])
biases[weights_biases_idx] = torch.concat([biases[weights_biases_idx], bias_rows])
weights_biases_idx = (weights_biases_idx + 1) % split
return weights, biases
# done unet utils
# Driver functions
def prior(*, args, checkpoint_map_location):
print("loading prior")
prior_checkpoint = torch.load(args.prior_checkpoint_path, map_location=checkpoint_map_location)
prior_model = prior_model_from_original_config()
prior_diffusers_checkpoint = prior_original_checkpoint_to_diffusers_checkpoint(prior_model, prior_checkpoint)
del prior_checkpoint
load_prior_checkpoint_to_model(prior_diffusers_checkpoint, prior_model)
print("done loading prior")
return prior_model
def prior_image(*, args, checkpoint_map_location):
print("loading prior_image")
print(f"load checkpoint from {args.prior_image_checkpoint_path}")
prior_checkpoint = torch.load(args.prior_image_checkpoint_path, map_location=checkpoint_map_location)
prior_model = prior_image_model_from_original_config()
prior_diffusers_checkpoint = prior_image_original_checkpoint_to_diffusers_checkpoint(prior_model, prior_checkpoint)
del prior_checkpoint
load_prior_checkpoint_to_model(prior_diffusers_checkpoint, prior_model)
print("done loading prior_image")
return prior_model
def renderer(*, args, checkpoint_map_location):
print(" loading renderer")
renderer_checkpoint = torch.load(args.transmitter_checkpoint_path, map_location=checkpoint_map_location)
renderer_model = renderer_model_from_original_config()
renderer_diffusers_checkpoint = renderer_model_original_checkpoint_to_diffusers_checkpoint(
renderer_model, renderer_checkpoint
)
del renderer_checkpoint
load_checkpoint_to_model(renderer_diffusers_checkpoint, renderer_model, strict=True)
print("done loading renderer")
return renderer_model
# prior model will expect clip_mean and clip_std, whic are missing from the state_dict
PRIOR_EXPECTED_MISSING_KEYS = ["clip_mean", "clip_std"]
def load_prior_checkpoint_to_model(checkpoint, model):
with tempfile.NamedTemporaryFile() as file:
torch.save(checkpoint, file.name)
del checkpoint
missing_keys, unexpected_keys = model.load_state_dict(torch.load(file.name), strict=False)
missing_keys = list(set(missing_keys) - set(PRIOR_EXPECTED_MISSING_KEYS))
if len(unexpected_keys) > 0:
raise ValueError(f"Unexpected keys when loading prior model: {unexpected_keys}")
if len(missing_keys) > 0:
raise ValueError(f"Missing keys when loading prior model: {missing_keys}")
def load_checkpoint_to_model(checkpoint, model, strict=False):
with tempfile.NamedTemporaryFile() as file:
torch.save(checkpoint, file.name)
del checkpoint
if strict:
model.load_state_dict(torch.load(file.name), strict=True)
else:
load_checkpoint_and_dispatch(model, file.name, device_map="auto")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--prior_checkpoint_path",
default=None,
type=str,
required=False,
help="Path to the prior checkpoint to convert.",
)
parser.add_argument(
"--prior_image_checkpoint_path",
default=None,
type=str,
required=False,
help="Path to the prior_image checkpoint to convert.",
)
parser.add_argument(
"--transmitter_checkpoint_path",
default=None,
type=str,
required=False,
help="Path to the transmitter checkpoint to convert.",
)
parser.add_argument(
"--checkpoint_load_device",
default="cpu",
type=str,
required=False,
help="The device passed to `map_location` when loading checkpoints.",
)
parser.add_argument(
"--debug",
default=None,
type=str,
required=False,
help="Only run a specific stage of the convert script. Used for debugging",
)
args = parser.parse_args()
print(f"loading checkpoints to {args.checkpoint_load_device}")
checkpoint_map_location = torch.device(args.checkpoint_load_device)
if args.debug is not None:
print(f"debug: only executing {args.debug}")
if args.debug is None:
print("YiYi TO-DO")
elif args.debug == "prior":
prior_model = prior(args=args, checkpoint_map_location=checkpoint_map_location)
prior_model.save_pretrained(args.dump_path)
elif args.debug == "prior_image":
prior_model = prior_image(args=args, checkpoint_map_location=checkpoint_map_location)
prior_model.save_pretrained(args.dump_path)
elif args.debug == "renderer":
renderer_model = renderer(args=args, checkpoint_map_location=checkpoint_map_location)
renderer_model.save_pretrained(args.dump_path)
else:
raise ValueError(f"unknown debug value : {args.debug}")