-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathFileManager.py
196 lines (125 loc) · 4.48 KB
/
FileManager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# coding: utf-8
# In[3]:
import os
import glob
import cv2
import matplotlib.pyplot as plt
from scipy.spatial import procrustes
import numpy as np
import Image_preperation as prep
def pre_pocess(img):
median = prep.median_filter(img)
contrast = prep.contrast_stretching(median)
return contrast
def resolution_scale(img, points, scale):
new_points = resolution_scale_points(points, scale)
new_img = resolution_downscale_img(img, scale)
return new_img, new_points
def resolution_scale_points(points, scale):
return np.around(points*scale)
def resolution_downscale_img(img, scale):
x, y = img.shape
xn = int(x*scale)
yn = int(y*scale)
return cv2.resize(img, (yn ,xn))
def load_radiograph():
radiographs = load_radiographs()
radiograph = radiographs[0]
return radiograph
def load_tooth(i):
init = np.load("initial_position.npy")
return init[0,i,:,:]/0.3
def load_tooth_of_piece(id=4):
tooth = load_tooth(id)
tooth_of_piece = tooth
tooth_of_piece[:,0]=tooth[:,0]-1200
tooth_of_piece[:,1]=tooth[:,1]-700
return tooth_of_piece
def load_img_piece():
img = load_radiograph()
new_img = pre_pocess(img)
return new_img[700:1300,1200:1800]
def show_with_points(img, points):
fig, ax = plt.subplots(figsize=(7, 7))
plt.imshow(img)
plt.plot(points[:,0], points[:,1], 'ro', markersize=2)
plt.show()
def load_files(dir_images):
inputList = []
inputNames = glob.glob(dir_images)
for inputName in inputNames:
inputFile = cv2.imread(inputName, 0)
inputList.append(inputFile)
return inputList
def load_landmarks():
dir_landmarks = "_Data\Landmarks\original\*.txt"
inputNames = glob.glob(dir_landmarks)
inputList = np.empty([len(inputNames), 40, 2])
for i, inputName in enumerate(inputNames):
with open(inputName) as f:
content = f.readlines()
content = [float(x.strip()) for x in content]
inputList[i] = np.asarray(content).reshape(40,2)
inputList = inputList.reshape(14,8, 40, 2)
return inputList
def load_landmarks_std():
all_landmarks = load_landmarks()
return total_procrustes_analysis(all_landmarks)
def mean_landmarks(landmarks):
return np.mean(landmarks,0)
def procrustes_analysis(landmarks):
mean = np.mean(landmarks,0)
landmarks_std = np.empty_like(landmarks)
for i, landmark in enumerate(landmarks):
mean_std, landmark_std, disp = procrustes(mean, landmark)
landmarks_std[i] = landmark_std
return landmarks_std
def total_procrustes_analysis(all_landmarks):
#allign shapes in their set
all_landmarks = np.transpose(all_landmarks, (1,0,2,3))
all_landmarks_std = np.empty_like(all_landmarks)
for i, landmarks in enumerate(all_landmarks):
landmarks_std = procrustes_analysis(landmarks)
all_landmarks_std[i] = landmarks_std
all_landmarks_std = np.transpose(all_landmarks_std, (1,0,2,3))
return all_landmarks_std
######### Visualization #########
def show(img):
plt.imshow(img)
plt.show()
def show_tooth_points(landmark, show=True):
plt.plot(landmark[:,0], landmark[:,1], 'ro')
if show:
plt.show()
def show_teeth_points(landmarks):
plt.figure()
n = len(landmarks)
hn = int(n/2)
fig, ax = plt.subplots(figsize=(15, 7))
print('Showing Teeth Landmarks')
for i, landmark in enumerate(landmarks):
plt.subplot(2, hn, i+1)
if(i!=hn):
plt.xticks(())
plt.yticks(())
plt.plot(landmark[:,0], landmark[:,1], 'ro')
plt.show()
def load_radiographs():
dir_radiographs = "_Data\Radiographs\*.tif"
return load_files(dir_radiographs)
def load_segmentations():
dir_segmentations = "_Data\Segmentations\*.png"
return load_files(dir_segmentations)
# In[5]:
if __name__ == "__main__":
#main
dir_radiographs = "_Data\Radiographs\*.tif"
radiographs = load_files(dir_radiographs)
dir_segmentations = "_Data\Segmentations\*.png"
segmentations = load_files(dir_segmentations)
all_landmarks = load_landmarks()
show_teeth_points(all_landmarks[0])
all_landmarks_std = total_procrustes_analysis(all_landmarks)
show_teeth_points(all_landmarks_std[:,0])
all_landmarks_std = load_landmarks_std()
show_teeth_points(all_landmarks_std[:,0])