-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathPCA_analysis.py
90 lines (54 loc) · 1.69 KB
/
PCA_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# coding: utf-8
# In[16]:
import matplotlib.pyplot as plt
import numpy as np
from sklearn.decomposition import PCA
import FileManager
def PCA_analysis_all(data_all, number_of_components = None):
size = data_all.shape[1]
pca_list = []
for i in range(size):
data = data_all[:,i]
pca = PCA_analysis(data, number_of_components)
pca_list.append(pca)
return pca_list
def PCA_analysis(data, number_of_components):
data = data.reshape(-1,80)
pca = PCA(n_components= number_of_components)
pca.fit(data)
return pca
def PCA_reconstruction(pca, data):
projections = pca.transform(data)
reconstructions = pca.inverse_transform(projections)
return reconstructions
def get_eigenvalues(pca):
return pca.explained_variance_
def get_eigenvectors(pca):
return pca.components_
def get_mean(pca):
return pca.mean_
######### Visualization #########
def show_PCA(pca):
for i in range(len(pca.components_)):
eig = pca.components_[i].reshape(40,2)
plt.imshow(eig)
plt.show()
def show_PCAs(pca):
plt.figure()
n = len(pca.components_)
hn = int(n/2)
fig, ax = plt.subplots(figsize=(15, 7))
print('Showing PCA\'s')
for i, vector in enumerate(pca.components_):
vector= vector.reshape(40,2)
plt.subplot(2, hn, i+1)
plt.xticks(())
plt.yticks(())
FileManager.show_tooth_points(vector, False)
plt.show()
# In[17]:
if __name__ == "__main__":
#main
all_landmarks_std = FileManager.load_landmarks_std()
pcas = PCA_analysis_all(all_landmarks_std)
show_PCAs(pcas[0])