Skip to content

Latest commit

 

History

History
117 lines (97 loc) · 3.29 KB

readme.md

File metadata and controls

117 lines (97 loc) · 3.29 KB

PyTorch

Tail-Enhanced Representation Learning for Surgical Triplet Recognition

Shuangchun Gui and Zhenkun Wang

This repository contains the pytorch implementation code and evaluation scripts.

Installation

conda env create -f environment.yaml

The code has been test on Linux operating system. It runs on both CPU and GPU. Equivalence of basic OS commands such as unzip, cd, wget, etc. will be needed to run in Windows or Mac OS.


Data Preparation

Download CholecT45 dataset

Expand this to visualize the dataset directory structure.
  ──CholecT45
      ├───data
      │   ├───VID01
      │   │   ├───000000.png
      │   │   ├───000001.png
      │   │   ├───000002.png
      │   │   ├───
      │   │   └───N.png
      │   ├───VID02
      │   │   ├───000000.png
      │   │   ├───000001.png
      │   │   ├───000002.png
      │   │   ├───
      │   │   └───N.png
      │   ├───
      │   ├───
      │   ├───
      │   |
      │   └───VIDN
      │       ├───000000.png
      │       ├───000001.png
      │       ├───000002.png
      │       ├───
      │       └───N.png
      |
      ├───triplet
      │   ├───VID01.txt
      │   ├───VID02.txt
      │   ├───
      │   └───VIDNN.txt
      |
      ├───instrument
      │   ├───VID01.txt
      │   ├───VID02.txt
      │   ├───
      │   └───VIDNN.txt
      |
      ├───verb
      │   ├───VID01.txt
      │   ├───VID02.txt
      │   ├───
      │   └───VIDNN.txt
      |
      ├───target
      │   ├───VID01.txt
      │   ├───VID02.txt
      │   ├───
      │   └───VIDNN.txt
      |
      ├───dict
      │   ├───triplet.txt
      │   ├───instrument.txt
      │   ├───verb.txt
      │   ├───target.txt
      │   └───maps.txt
      |
      ├───LICENSE
      └───README.md

Evaluation

Training

Acknowledgements

TERL's implementation is based on the code of RDV, Q2L, and SAHC. Thanks to them.

Citation

If this code is useful for your research, please consider citing:

@ARTICLE{111,
author={Gui, Shuangchun and Wang, Zhenkun},
title={Tail-Enhanced Representation Learning for Surgical Triplet Recognition},
booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
pages={1--1},
year={2024},
organization={Springer}}

Note