forked from berkeleydeeprlcourse/homework
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathrun_expert.py
executable file
·197 lines (159 loc) · 6.67 KB
/
run_expert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#!/usr/bin/env python
"""
Code to load an expert policy and generate roll-out data for behavioral cloning.
Example usage:
python run_expert.py experts/RoboschoolHumanoid-v1.py --render \
--num_rollouts 20
"""
import argparse
import pickle
import tensorflow as tf
import numpy as np
import gym
import importlib
import random
from keras.models import Sequential
from keras.layers import Dense
# Extracts the number of input and output units from an OpenAI Gym environment.
def env_dims(env):
return (env.observation_space.shape[0], env.action_space.shape[0])
# A neural network that learns a mapping from observations to actions.
class SupervisedPolicy:
def __init__(self, env):
input_len, output_len = env_dims(env)
self.model = Sequential()
self.model.add(Dense(units=64, input_dim=input_len, activation='relu'))
self.model.add(Dense(units=output_len))
self.model.compile(loss='mse', optimizer='sgd')
def train(self, train_data, val_data, epochs, verbose):
self.model.fit(train_data[0], train_data[1],
batch_size=128,
epochs=epochs,
verbose=verbose,
validation_data=val_data)
def act(self, obs):
obs_batch = np.expand_dims(obs, 0)
act_batch = self.model.predict_on_batch(obs_batch)
return np.ndarray.flatten(act_batch)
def save(self, filename):
self.model.save_weights(filename)
def load(self, filename):
self.model.load_weights(filename)
# A policy that may use the student's action but, with probability
# fraction_assist, uses the teacher's action instead. In either case, it
# remembers the teacher's action, which can be used for supervised learning.
class AssistedPolicy:
def __init__(self, env, student, teacher):
self.CAPACITY = 50000
self.student = student
self.teacher = teacher
self.fraction_assist = 1.
self.next_idx = 0
self.size = 0
input_len, output_len = env_dims(env)
self.obs_data = np.empty([self.CAPACITY, input_len])
self.act_data = np.empty([self.CAPACITY, output_len])
def act(self, obs):
teacher_act = self.teacher.act(obs)
self.obs_data[self.next_idx] = obs
self.act_data[self.next_idx] = teacher_act
self.next_idx = (self.next_idx + 1) % self.CAPACITY
self.size = min(self.size + 1, self.CAPACITY)
if random.random() < self.fraction_assist:
return teacher_act
else:
return self.student.act(obs)
def teacher_data(self):
return (self.obs_data[:self.size], self.act_data[:self.size])
# Generates rollouts of the policy on the environment, prints the mean & std of
# the rewards, and returns the observations and actions.
def generate_rollouts(env, policy, max_steps, num_rollouts, render, verbose):
returns = []
observations = []
actions = []
for i in range(num_rollouts):
obs = env.reset()
done = False
totalr = 0.
steps = 0
while not done:
action = policy.act(obs)
observations.append(obs)
actions.append(action)
obs, r, done, _ = env.step(action)
totalr += r
steps += 1
if render:
env.render()
if steps % 100 == 0 and verbose >= 2:
print("%i/%i" % (steps, max_steps))
if steps >= max_steps:
break
if verbose >= 1:
print('rollout %i/%i return=%f' % (i + 1, num_rollouts, totalr))
returns.append(totalr)
print('Return summary: mean=%f, std=%f' % (np.mean(returns), np.std(returns)))
return (np.array(observations), np.array(actions))
# Make a small but low-variance validation test by subsampling across many episodes.
def make_validation(env, teacher, max_steps):
val_data = generate_rollouts(env, teacher, max_steps, 50, False, 0)
val_data = (val_data[0][::10], val_data[1][::10])
return val_data
# Trains the student network using Behavior Cloning.
def behavior_cloning(env, student, teacher, max_steps, verbose):
train_data = generate_rollouts(env, teacher, max_steps, 100, False, 0)
val_data = make_validation(env, teacher, max_steps)
student.train(train_data, val_data, 300, verbose)
return student
# Trains the student network using DAgger.
def dagger(env, student, teacher, max_steps, verbose):
val_data = make_validation(env, teacher, max_steps)
mixed_policy = AssistedPolicy(env, student, teacher)
for i in range(200):
print('DAgger iter', i)
if i == 0:
rollouts = 50
epochs = 100
else:
rollouts = 1
epochs = 4
mixed_policy.fraction_assist -= 0.01
generate_rollouts(env, mixed_policy, max_steps, rollouts, False, verbose)
student.train(mixed_policy.teacher_data(), val_data, epochs, verbose)
return student
# Specify and read arguments from the command line.
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('expert_policy_file', type=str)
parser_algorithm = parser.add_mutually_exclusive_group()
parser_algorithm.add_argument('--cloning', action='store_true')
parser_algorithm.add_argument('--dagger', action='store_true')
parser.add_argument('-v', '--verbose', type=int, choices=[0, 1, 2], default=1)
parser.add_argument('-r', '--render', action='store_true')
parser.add_argument("--max_timesteps", type=int)
parser.add_argument('--num_rollouts', type=int, default=20)
parser.add_argument('--load_weights', type=str)
parser.add_argument('--save_weights', type=str)
return parser.parse_args()
def main():
args = parse_arguments()
print('loading expert policy')
module_name = args.expert_policy_file.replace('/', '.')
if module_name.endswith('.py'):
module_name = module_name[:-3]
policy_module = importlib.import_module(module_name)
print('loaded')
env, teacher = policy_module.get_env_and_policy()
max_steps = args.max_timesteps or env.spec.timestep_limit
student = SupervisedPolicy(env)
if args.load_weights:
student.load(args.load_weights)
if args.cloning:
behavior_cloning(env, student, teacher, max_steps, args.verbose)
elif args.dagger:
dagger(env, student, teacher, max_steps, args.verbose)
if args.save_weights:
student.save(args.save_weights)
generate_rollouts(env, student, max_steps, args.num_rollouts, args.render, args.verbose)
if __name__ == '__main__':
main()