forked from avinashkranjan/Amazing-Python-Scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflameDect-v2-1.py
executable file
·127 lines (113 loc) · 4.17 KB
/
flameDect-v2-1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#! /usr/bin/env python
# coding=utf-8
# ++++++++++++++++++++++++++++++++++++++++++++++++++
# 存在的问题:
# 1.RGB下火焰像素点的规律未掌握
# 2.程序现在的运行速度是每祯处理2秒
#
# 先灰度化,二值化,中值滤波,开运算,
# 根据颜色找火焰区域,画轮廓
#
# author:stone 2015.08.30
# ++++++++++++++++++++++++++++++++++++++++++++++++++
import numpy as np
import cv2
import time
tStart = time.time()
# ++++++++++++++++++++++获取视频+++++++++++++++++++++
vName = 'videos/forest1.avi'
# Boat_Fire_Stream.wmv
# controlled3.avi
# Extreme_Fire_Scenes_Stream.wmv
# forest1.avi
# forest2.avi
cap = cv2.VideoCapture(vName)
# +++++++++++++++++++++处理视频++++++++++++++++++++++
while True:
ret, frame = cap.read()
if frame is None:
print("视频读取完毕")
break
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
ret, binary = cv2.threshold(gray, 180, 255, cv2.THRESH_BINARY)
height, width = binary.shape
npframe = np.array(frame)
# nphsv = np.array(hsv)
npbinary = np.array(binary)
# +++++++++++++++++++++去噪+++++++++++++++++++++++++
# 二维卷积
# kernel = np.ones((5, 5), np.float32)/25
# dst = cv2.filter2D(binary, -1, kernel)
# 中值模糊
dst = cv2.medianBlur(binary, 5)
# 高斯模糊
# dst = cv2.GaussianBlur(binary, (5, 5), 0)
# 均值模糊
# dst = cv2.blur(binary, (5, 5))
# +++++++++++++++做开运算(先腐蚀再膨胀)除噪点++++++++++++
kernal2 = np.ones((5, 5), np.uint8)
opening = cv2.morphologyEx(dst, cv2.MORPH_OPEN, kernal2)
openning2 = cv2.morphologyEx(dst, cv2.MORPH_OPEN, kernal2)
# +++++++++++++++判断亮点颜色是否R >= G > B+++++++++++++
binary_x = 0
Rt = 135
St = 55
while binary_x < height:
binary_y = 0
while binary_y < width:
if (opening[binary_x, binary_y] == 255):
p = npframe[(binary_x, binary_y)]
# p2 = hsv[(binary_x, binary_y)]
# ??????怎么转换到hsv颜色空间,然后再增加一条限制: S >= ((255-R)*ST/RT)
# ??????加上S限制之后效果不好,可能是S有误,需要研究一下HSV 或者 HSI 或者其他有S的颜色空间
if p[2] >= p[1] >= p[0]: # & p2[2] >= 5:
binary_y += 1
continue
else:
opening[binary_x, binary_y] = 0
binary_y += 1
binary_x += 1
# +++++++++++++++显示高亮区域轮廓+++++++++++++++++++++++
image, contour, hierarchy = cv2.findContours(opening,
cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
if contour == []:
print('无轮廓')
else:
# 在视频窗口中显示轮廓
cv2.drawContours(frame, contour, -1, (0, 0, 255), 2)
# +++++++++++++++图像中的点是否在轮廓内++++++++++++++++++++
# ???无轮廓时索引异常
# if np.array(contour)[0] == None:
# print '无轮廓'
# else:
# npcontour = np.array(contour)[0]
# npframe = np.array(frame)
# t = time.time()
# for x in xrange(height):
# for y in xrange(width):
# inContour = cv2.pointPolygonTest(npcontour, (x, y), False)
# if (inContour > 0):
# print npframe[(x, y)]
# t1 = time.time()
# print t - t1
# ++++++++++++++++++++++显示视频++++++++++++++++++++++
cv2.imshow('frame', frame) # 原图像
cv2.imshow('binary', binary)
# cv2.imshow('hsv', hsv)
# cv2.imshow('contour', opening) #开运算图像
# cv2.imshow('opening2', openning2) #中值模糊图像
tEnd = time.time()
totalTime = (tEnd - tStart)
print(tStart)
print(tEnd)
print('总时间 %d ' % totalTime)
if cv2.waitKey(1) & 0xFF == 27:
print('中止播放')
break
# tEnd = time.time()
cap.release()
cv2.destroyAllWindows()
# totalTime = (tEnd - tStart)
print(time.clock())
# print '总时间 %d ' % totalTime