-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathde.py
151 lines (114 loc) · 4.02 KB
/
de.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#[1997]-"Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces"
import numpy as np
from numpy.random import rand
from FS.functionHO import Fun
def init_position(lb, ub, N, dim):
X = np.zeros([N, dim], dtype='float')
for i in range(N):
for d in range(dim):
X[i,d] = lb[0,d] + (ub[0,d] - lb[0,d]) * rand()
return X
def binary_conversion(X, thres, N, dim):
Xbin = np.zeros([N, dim], dtype='int')
for i in range(N):
for d in range(dim):
if X[i,d] > thres:
Xbin[i,d] = 1
else:
Xbin[i,d] = 0
return Xbin
def boundary(x, lb, ub):
if x < lb:
x = lb
if x > ub:
x = ub
return x
def jfs(xtrain, ytrain, opts):
# Parameters
ub = 1
lb = 0
thres = 0.5
CR = 0.9 # crossover rate
F = 0.5 # factor
N = opts['N']
max_iter = opts['T']
if 'CR' in opts:
CR = opts['CR']
if 'F' in opts:
F = opts['F']
# Dimension
dim = np.size(xtrain, 1)
if np.size(lb) == 1:
ub = ub * np.ones([1, dim], dtype='float')
lb = lb * np.ones([1, dim], dtype='float')
# Initialize position
X = init_position(lb, ub, N, dim)
# Binary conversion
Xbin = binary_conversion(X, thres, N, dim)
# Fitness at first iteration
fit = np.zeros([N, 1], dtype='float')
Xgb = np.zeros([1, dim], dtype='float')
fitG = float('inf')
for i in range(N):
fit[i,0] = Fun(xtrain, ytrain, Xbin[i,:], opts)
if fit[i,0] < fitG:
Xgb[0,:] = X[i,:]
fitG = fit[i,0]
# Pre
curve = np.zeros([1, max_iter], dtype='float')
t = 0
curve[0,t] = fitG.copy()
print("Generation:", t + 1)
print("Best (DE):", curve[0,t])
t += 1
while t < max_iter:
V = np.zeros([N, dim], dtype='float')
U = np.zeros([N, dim], dtype='float')
for i in range(N):
# Choose r1, r2, r3 randomly, but not equal to i
RN = np.random.permutation(N)
for j in range(N):
if RN[j] == i:
RN = np.delete(RN, j)
break
r1 = RN[0]
r2 = RN[1]
r3 = RN[2]
# mutation (2)
for d in range(dim):
V[i,d] = X[r1,d] + F * (X[r2,d] - X[r3,d])
# Boundary
V[i,d] = boundary(V[i,d], lb[0,d], ub[0,d])
# Random one dimension from 1 to dim
index = np.random.randint(low = 0, high = dim)
# crossover (3-4)
for d in range(dim):
if (rand() <= CR) or (d == index):
U[i,d] = V[i,d]
else:
U[i,d] = X[i,d]
# Binary conversion
Ubin = binary_conversion(U, thres, N, dim)
# Selection
for i in range(N):
fitU = Fun(xtrain, ytrain, Ubin[i,:], opts)
if fitU <= fit[i,0]:
X[i,:] = U[i,:]
fit[i,0] = fitU
if fit[i,0] < fitG:
Xgb[0,:] = X[i,:]
fitG = fit[i,0]
# Store result
curve[0,t] = fitG.copy()
print("Generation:", t + 1)
print("Best (DE):", curve[0,t])
t += 1
# Best feature subset
Gbin = binary_conversion(Xgb, thres, 1, dim)
Gbin = Gbin.reshape(dim)
pos = np.asarray(range(0, dim))
sel_index = pos[Gbin == 1]
num_feat = len(sel_index)
# Create dictionary
de_data = {'sf': sel_index, 'c': curve, 'nf': num_feat}
return de_data