This repository was archived by the owner on Jun 5, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 136
/
Copy pathobj_detect_tracking.py
524 lines (412 loc) · 19 KB
/
obj_detect_tracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
# coding=utf-8
# run script
import sys, os, argparse
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # so here won't have poll allocator info
# remove all the annoying warnings from tf v1.10 to v1.13
import logging
logging.getLogger('tensorflow').disabled = True
from tqdm import tqdm
import numpy as np
import tensorflow as tf
import cv2
from models import get_model, resizeImage
import math, time, json, random, operator
import cPickle as pickle
import pycocotools.mask as cocomask
from deep_sort import nn_matching
from deep_sort.detection import Detection
from deep_sort.tracker import Tracker
from application_util import preprocessing
from deep_sort.utils import create_obj_infos,linear_inter_bbox,filter_short_objs
from utils import Dataset, Summary, get_op_tensor_name
from class_ids import targetClass2id_new_nopo
targetClass2id = targetClass2id_new_nopo
targetid2class = {targetClass2id[one]: one for one in targetClass2id}
def get_args():
global targetClass2id, targetid2class
parser = argparse.ArgumentParser()
parser.add_argument("--video_dir", default=None)
parser.add_argument("--video_lst_file", default=None, help="video_file_path = os.path.join(video_dir, $line)")
parser.add_argument("--out_dir", default=None, help="out_dir/$basename/%%d.json, start from 0 index")
parser.add_argument("--frame_gap", default=8, type=int)
parser.add_argument("--threshold_conf", default=0.0001, type=float)
# ------ for box feature extraction
parser.add_argument("--get_box_feat", action="store_true",
help="this will generate (num_box, 256, 7, 7) tensor for each frame")
parser.add_argument("--box_feat_path", default=None,
help="output will be out_dir/$basename/%%d.npy, start from 0 index")
parser.add_argument("--version", type=int, default=4, help="model version")
# ---- gpu params
parser.add_argument("--gpu", default=1, type=int, help="number of gpu")
parser.add_argument("--gpuid_start", default=0, type=int, help="start of gpu id")
parser.add_argument('--im_batch_size', type=int, default=1)
parser.add_argument("--use_all_mem", action="store_true")
# --- for internal visualization
parser.add_argument("--visualize", action="store_true")
parser.add_argument("--vis_path", default=None)
parser.add_argument("--vis_thres", default=0.7, type=float)
# ----------- model params
parser.add_argument("--num_class", type=int, default=15, help="num catagory + 1 background")
parser.add_argument("--model_path", default="/app/object_detection_model")
parser.add_argument("--rpn_batch_size", type=int, default=256, help="num roi per image for RPN training")
parser.add_argument("--frcnn_batch_size", type=int, default=512, help="num roi per image for fastRCNN training")
parser.add_argument("--rpn_test_post_nms_topk", type=int, default=1000, help="test post nms, input to fast rcnn")
parser.add_argument("--max_size", type=int, default=1920, help="num roi per image for RPN and fastRCNN training")
parser.add_argument("--short_edge_size", type=int, default=1080,
help="num roi per image for RPN and fastRCNN training")
# ----------- tracking params
parser.add_argument("--get_tracking", action="store_true",
help="this will generate tracking results for each frame")
parser.add_argument("--tracking_dir", default="/tmp",
help="output will be out_dir/$videoname.txt, start from 0 index")
parser.add_argument("--tracking_objs", default="Person,Vehicle",
help="Objects to be tracked, default are Person and Vehicle")
parser.add_argument("--min_confidence", default=0.85, type=float,
help="Detection confidence threshold. Disregard all detections "
"that have a confidence lower than this value.")
parser.add_argument("--min_detection_height", default=0, type=int,
help="Threshold on the detection bounding box height. Detections "
"with height smaller than this value are disregarded")
parser.add_argument("--nms_max_overlap", default=0.85, type=float,
help="Non-maxima suppression threshold: Maximum detection overlap.")
parser.add_argument("--max_cosine_distance", type=float, default=0.5,
help="Gating threshold for cosine distance metric (object appearance).")
parser.add_argument("--nn_budget", type=int, default=5,
help="Maximum size of the appearance descriptors gallery. If None, no budget is enforced.")
# ---- tempory: for activity detection model
parser.add_argument("--actasobj", action="store_true")
parser.add_argument("--actmodel_path", default="/app/activity_detection_model")
parser.add_argument("--resnet152", action="store_true", help="")
parser.add_argument("--resnet50", action="store_true", help="")
parser.add_argument("--resnet34", action="store_true", help="")
parser.add_argument("--resnet18", action="store_true", help="")
parser.add_argument("--use_se", action="store_true", help="use squeeze and excitation in backbone")
parser.add_argument("--use_frcnn_class_agnostic", action="store_true", help="use class agnostic fc head")
parser.add_argument("--use_att_frcnn_head", action="store_true",
help="use attention to sum [K, 7, 7, C] feature into [K, C]")
# --------------- exp junk
parser.add_argument("--use_dilations", action="store_true", help="use dilations=2 in res5")
parser.add_argument("--use_deformable", action="store_true", help="use deformable conv")
parser.add_argument("--add_act", action="store_true", help="add activitiy model")
parser.add_argument("--finer_resolution", action="store_true", help="fpn use finer resolution conv")
parser.add_argument("--fix_fpn_model", action="store_true",
help="for finetuneing a fpn model, whether to fix the lateral and poshoc weights")
parser.add_argument("--is_cascade_rcnn", action="store_true", help="cascade rcnn on top of fpn")
parser.add_argument("--add_relation_nn", action="store_true", help="add relation network feature")
parser.add_argument("--test_frame_extraction", action="store_true")
parser.add_argument("--use_my_naming", action="store_true")
args = parser.parse_args()
assert args.gpu == args.im_batch_size # one gpu one image
args.controller = "/cpu:0" # parameter server
targetid2class = targetid2class
targetClass2id = targetClass2id
if args.actasobj:
from class_ids import targetAct2id
targetClass2id = targetAct2id
targetid2class = {targetAct2id[one]: one for one in targetAct2id}
assert len(targetClass2id) == args.num_class, (len(targetClass2id), args.num_class)
assert args.version in [2, 3, 4, 5, 6], "Currently we only have version 2-6 model"
if args.version == 2:
pass
elif args.version == 3:
args.use_dilations = True
elif args.version == 4:
args.use_frcnn_class_agnostic = True
args.use_dilations = True
elif args.version == 5:
args.use_frcnn_class_agnostic = True
args.use_dilations = True
elif args.version == 6:
args.use_frcnn_class_agnostic = True
args.use_se = True
# ---------------more defautls
args.diva_class3 = True
args.diva_class = False
args.diva_class2 = False
args.use_small_object_head = False
args.use_so_score_thres = False
args.use_so_association = False
args.use_gn = False
args.so_person_topk = 10
args.use_conv_frcnn_head = False
args.use_cpu_nms = False
args.use_bg_score = False
args.freeze_rpn = True
args.freeze_fastrcnn = True
args.freeze = 2
args.small_objects = ["Prop", "Push_Pulled_Object", "Prop_plus_Push_Pulled_Object", "Bike"]
args.no_obj_detect = False
args.add_mask = False
args.is_fpn = True
# args.new_tensorpack_model = True
args.mrcnn_head_dim = 256
args.is_train = False
args.rpn_min_size = 0
args.rpn_proposal_nms_thres = 0.7
args.anchor_strides = (4, 8, 16, 32, 64)
args.fpn_resolution_requirement = float(args.anchor_strides[3]) # [3] is 32, since we build FPN with r2,3,4,5?
args.max_size = np.ceil(args.max_size / args.fpn_resolution_requirement) * args.fpn_resolution_requirement
args.fpn_num_channel = 256
args.fpn_frcnn_fc_head_dim = 1024
# ---- all the mask rcnn config
args.resnet_num_block = [3, 4, 23, 3] # resnet 101
args.use_basic_block = False # for resnet-34 and resnet-18
if args.resnet152:
args.resnet_num_block = [3, 8, 36, 3]
if args.resnet50:
args.resnet_num_block = [3, 4, 6, 3]
if args.resnet34:
args.resnet_num_block = [3, 4, 6, 3]
args.use_basic_block = True
if args.resnet18:
args.resnet_num_block = [2, 2, 2, 2]
args.use_basic_block = True
args.anchor_stride = 16 # has to be 16 to match the image feature total stride
args.anchor_sizes = (32, 64, 128, 256, 512)
args.anchor_ratios = (0.5, 1, 2)
args.num_anchors = len(args.anchor_sizes) * len(args.anchor_ratios)
# iou thres to determine anchor label
# args.positive_anchor_thres = 0.7
# args.negative_anchor_thres = 0.3
# when getting region proposal, avoid getting too large boxes
args.bbox_decode_clip = np.log(args.max_size / 16.0)
# fastrcnn
args.fastrcnn_batch_per_im = args.frcnn_batch_size
args.fastrcnn_bbox_reg_weights = np.array([10, 10, 5, 5], dtype='float32')
args.fastrcnn_fg_thres = 0.5 # iou thres
# args.fastrcnn_fg_ratio = 0.25 # 1:3 -> pos:neg
# testing
args.rpn_test_pre_nms_topk = 6000
args.fastrcnn_nms_iou_thres = 0.5
args.result_score_thres = args.threshold_conf
args.result_per_im = 100
return args
def initialize(config, sess):
tf.global_variables_initializer().run()
allvars = tf.global_variables()
allvars = [var for var in allvars if "global_step" not in var.name]
restore_vars = allvars
opts = ["Adam", "beta1_power", "beta2_power", "Adam_1", "Adadelta_1", "Adadelta", "Momentum"]
restore_vars = [var for var in restore_vars if var.name.split(":")[0].split("/")[-1] not in opts]
saver = tf.train.Saver(restore_vars, max_to_keep=5)
load_from = config.model_path
ckpt = tf.train.get_checkpoint_state(load_from)
if ckpt and ckpt.model_checkpoint_path:
loadpath = ckpt.model_checkpoint_path
saver.restore(sess, loadpath)
else:
raise Exception("Model not exists")
# check argument
def check_args(args):
assert args.video_dir is not None
assert args.video_lst_file is not None
assert args.frame_gap >= 1
if args.get_box_feat:
assert args.box_feat_path is not None
if not os.path.exists(args.box_feat_path):
os.makedirs(args.box_feat_path)
#print "cv2 version %s" % (cv2.__version__)
# not used, not implemented yet
def load_models(config):
models = []
for i in xrange(config.gpuid_start, config.gpuid_start + config.gpu):
models.append(get_model(config, i, controller=config.controller))
model_final_boxes = [model.final_boxes for model in models]
# [R]
model_final_labels = [model.final_labels for model in models]
model_final_probs = [model.final_probs for model in models]
return models
if __name__ == "__main__":
args = get_args()
check_args(args)
videolst = [os.path.join(args.video_dir, one.strip()) for one in open(args.video_lst_file).readlines()]
if not os.path.exists(args.out_dir):
os.makedirs(args.out_dir)
if args.visualize:
from viz import draw_boxes
vis_path = args.vis_path
if not os.path.exists(vis_path):
os.makedirs(vis_path)
# 1. load the object detection model
# models = load_models(args)
model = get_model(args, args.gpuid_start, controller=args.controller)
tfconfig = tf.ConfigProto(allow_soft_placement=True)
if not args.use_all_mem:
tfconfig.gpu_options.allow_growth = True
tfconfig.gpu_options.visible_device_list = "%s" % (
",".join(["%s" % i for i in range(args.gpuid_start, args.gpuid_start + args.gpu)]))
with tf.Session(config=tfconfig) as sess:
initialize(config=args, sess=sess)
for videofile in tqdm(videolst, ascii=True):
# 2. read the video file
try:
vcap = cv2.VideoCapture(videofile)
if not vcap.isOpened():
raise Exception("cannot open %s" % videofile)
except Exception as e:
raise e
# initialize tracking module
if args.get_tracking:
tracking_objs = args.tracking_objs.split(',')
tracker_dict = {}
tracking_results_dict = {}
tmp_tracking_results_dict = {}
for tracking_obj in tracking_objs:
metric = metric = nn_matching.NearestNeighborDistanceMetric(
"cosine", args.max_cosine_distance, args.nn_budget)
tracker_dict[tracking_obj] = Tracker(metric)
tracking_results_dict[tracking_obj] = []
tmp_tracking_results_dict[tracking_obj] = {}
# videoname = os.path.splitext(os.path.basename(videofile))[0]
videoname = os.path.basename(videofile)
video_out_path = os.path.join(args.out_dir, videoname)
if not os.path.exists(video_out_path):
os.makedirs(video_out_path)
# for box feature
if args.get_box_feat:
feat_out_path = os.path.join(args.box_feat_path, videoname)
if not os.path.exists(feat_out_path):
os.makedirs(feat_out_path)
# opencv 2
if cv2.__version__.split(".")[0] == "2":
frame_count = vcap.get(cv2.cv.CV_CAP_PROP_FRAME_COUNT)
else:
# opencv 3/4
frame_count = vcap.get(cv2.CAP_PROP_FRAME_COUNT)
# 3. read frame one by one
cur_frame = 0
vis_count = 0
frame_stack = []
while cur_frame < frame_count:
suc, frame = vcap.read()
if not suc:
cur_frame += 1
tqdm.write("warning, %s frame of %s failed" % (cur_frame, videoname))
continue
# skip some frame if frame_gap >1
if cur_frame % args.frame_gap != 0:
cur_frame += 1
continue
# 4. run detection on the frame stack if there is enough
im = frame.astype("float32")
if args.test_frame_extraction:
frame_file = os.path.join(video_out_path, "%d.jpg" % cur_frame)
cv2.imwrite(frame_file, im)
cur_frame += 1
continue
resized_image = resizeImage(im, args.short_edge_size, args.max_size)
scale = (resized_image.shape[0] * 1.0 / im.shape[0] + resized_image.shape[1] * 1.0 / im.shape[1]) / 2.0
feed_dict = model.get_feed_dict_forward(resized_image)
if args.get_box_feat:
sess_input = [model.final_boxes, model.final_labels, model.final_probs, model.fpn_box_feat]
final_boxes, final_labels, final_probs, box_feats = sess.run(sess_input, feed_dict=feed_dict)
assert len(box_feats) == len(final_boxes)
# save the box feature first
featfile = os.path.join(feat_out_path, "%d.npy" % (cur_frame))
np.save(featfile, box_feats)
elif args.get_tracking:
sess_input = [model.final_boxes, model.final_labels, model.final_probs, model.fpn_box_feat]
final_boxes, final_labels, final_probs, box_feats = sess.run(sess_input, feed_dict=feed_dict)
assert len(box_feats) == len(final_boxes)
for tracking_obj in tracking_objs:
target_tracking_obs = [tracking_obj]
detections = create_obj_infos(cur_frame, final_boxes, final_probs, final_labels, box_feats,
targetid2class, target_tracking_obs, args.min_confidence,
args.min_detection_height, scale)
# Run non-maxima suppression.
boxes = np.array([d.tlwh for d in detections])
scores = np.array([d.confidence for d in detections])
indices = preprocessing.non_max_suppression(
boxes, args.nms_max_overlap, scores)
detections = [detections[i] for i in indices]
# tracking
tracker_dict[tracking_obj].predict()
tracker_dict[tracking_obj].update(detections)
# Store results
for track in tracker_dict[tracking_obj].tracks:
if not track.is_confirmed() or track.time_since_update > 1:
if (not track.is_confirmed()) and track.time_since_update == 0:
bbox = track.to_tlwh()
if track.track_id not in tmp_tracking_results_dict[tracking_obj]:
tmp_tracking_results_dict[tracking_obj][track.track_id] = [[cur_frame, track.track_id,
bbox[0], bbox[1], bbox[2], bbox[3]]]
else:
tmp_tracking_results_dict[tracking_obj][track.track_id].append([cur_frame, track.track_id,
bbox[0], bbox[1], bbox[2],
bbox[3]])
continue
bbox = track.to_tlwh()
if track.track_id in tmp_tracking_results_dict[tracking_obj]:
pred_list = tmp_tracking_results_dict[tracking_obj][track.track_id]
for pred_data in pred_list:
tracking_results_dict[tracking_obj].append(pred_data)
tmp_tracking_results_dict[tracking_obj].pop(track.track_id, None)
tracking_results_dict[tracking_obj].append([
cur_frame, track.track_id, bbox[0], bbox[1], bbox[2], bbox[3]])
else:
sess_input = [model.final_boxes, model.final_labels, model.final_probs]
final_boxes, final_labels, final_probs = sess.run(sess_input, feed_dict=feed_dict)
# print "sess run done"
# scale back the box to original image size
final_boxes = final_boxes / scale
# save as json
pred = []
for j, (box, prob, label) in enumerate(zip(final_boxes, final_probs, final_labels)):
box[2] -= box[0]
box[3] -= box[1] # produce x,y,w,h output
cat_id = label
cat_name = targetid2class[cat_id]
# encode mask
rle = None
res = {
"category_id": cat_id,
"cat_name": cat_name, # [0-80]
"score": float(round(prob, 7)),
"bbox": list(map(lambda x: float(round(x, 2)), box)),
"segmentation": rle,
}
pred.append(res)
# predfile = os.path.join(args.out_dir, "%s_F_%08d.json"%(videoname, cur_frame))
if args.use_my_naming:
predfile = os.path.join(video_out_path,
"%s_F_%08d.json" % (os.path.splitext(videoname)[0], cur_frame))
else:
predfile = os.path.join(video_out_path, "%d.json" % (cur_frame))
with open(predfile, "w") as f:
json.dump(pred, f)
# for visualization
if args.visualize:
good_ids = [i for i in xrange(len(final_boxes)) if final_probs[i] >= args.vis_thres]
final_boxes, final_labels, final_probs = final_boxes[good_ids], final_labels[good_ids], final_probs[
good_ids]
vis_boxes = np.asarray([[box[0], box[1], box[2] + box[0], box[3] + box[1]] for box in final_boxes])
vis_labels = ["%s_%.2f" % (targetid2class[cat_id], prob) for cat_id, prob in
zip(final_labels, final_probs)]
newim = draw_boxes(im, vis_boxes, vis_labels, color=np.array([255, 0, 0]), font_scale=0.5,
thickness=2)
vis_file = os.path.join(vis_path, "%s_F_%08d.jpg" % (videoname, vis_count))
cv2.imwrite(vis_file, newim)
vis_count += 1
cur_frame += 1
if args.get_tracking:
for tracking_obj in tracking_objs:
output_dir = os.path.join(args.tracking_dir, videoname, tracking_obj)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
output_file = os.path.join(output_dir, '{}.txt'.format(videoname.split('.')[0]))
# output_file = os.path.join(tracking_dir, '{}.txt'.format(videoname.split('.')[0]))
tracking_results = sorted(tracking_results_dict[tracking_obj], key=lambda x: (x[0], x[1]))
# print len(tracking_results)
tracking_data = np.asarray(tracking_results)
# print tracking_data.shape
tracking_data = linear_inter_bbox(tracking_data, args.frame_gap)
tracking_data = filter_short_objs(tracking_data)
tracking_results = tracking_data.tolist()
with open(output_file, 'wb') as fw:
for row in tracking_results:
line = '%d,%d,%.2f,%.2f,%.2f,%.2f,1,-1,-1,-1' % (
row[0], row[1], row[2], row[3], row[4], row[5])
fw.write(line + '\n')
if args.test_frame_extraction:
tqdm.write(
"video %s got %s frames, opencv said frame count is %s" % (videoname, cur_frame, frame_count))