A lightweight and modular object detection framework powered by Detectron2, focusing on easy training and deployment.
- π― Pre-configured Detectron2 models (Faster R-CNN, RetinaNet)
- π Simple data pipeline for custom datasets
- π Built-in evaluation metrics (COCO metrics, RMSE, MSE, PSNR)
- π Easy model configuration and training
# Install dependencies
pip install -r requirements.txt
# Train a model
from Model.modelling.detectron2 import Detectron2
model = Detectron2(
model="COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml",
max_iter=500,
base_lr=0.00025
)
model.train()
ML/
βββ Model/
β βββ modelling/ # Core model implementations
β βββ dataset/ # Dataset handling utilities
β βββ metrics/ # Evaluation metrics
βββ tests/ # Unit tests
- Models: Faster R-CNN, RetinaNet
- Metrics: COCO AP, RMSE, MSE, PSNR
- Data formats: COCO-style annotations
- GPU acceleration with CUDA
Apache License 2.0