forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy pathgen_aoti_c_shim.py
527 lines (461 loc) · 17.8 KB
/
gen_aoti_c_shim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
from __future__ import annotations
import textwrap
from dataclasses import dataclass
from typing import TYPE_CHECKING
from torchgen.api.types import DispatcherSignature
from torchgen.api.types.signatures import CppSignature, CppSignatureGroup
from torchgen.context import method_with_native_function
from torchgen.model import (
Argument,
BackendIndex,
BaseTy,
BaseType,
DispatchKey,
FunctionSchema,
ListType,
NativeFunction,
NativeFunctionsGroup,
OperatorName,
OptionalType,
Type,
)
from torchgen.utils import mapMaybe
if TYPE_CHECKING:
from collections.abc import Sequence
base_type_to_c_type = {
BaseTy.Tensor: "AtenTensorHandle",
BaseTy.bool: "int32_t", # Use int to pass bool
BaseTy.int: "int64_t",
BaseTy.SymInt: "int64_t", # Inductor-generated code won't see a SymInt
BaseTy.Scalar: "double", # Use double to pass both integer and floating point
BaseTy.float: "double", # TODO: how about other floating point types?
BaseTy.str: "const char*",
BaseTy.DeviceIndex: "int32_t",
BaseTy.Layout: "int32_t", # Represent enum as int
BaseTy.MemoryFormat: "int32_t", # Represent enum as int
BaseTy.ScalarType: "int32_t", # Represent enum as int
BaseTy.Generator: "AtenGeneratorHandle",
}
base_type_to_aten_type = {
BaseTy.Tensor: "at::Tensor",
BaseTy.bool: "bool",
BaseTy.int: "int64_t",
BaseTy.SymInt: "c10::SymInt",
BaseTy.Scalar: "c10::Scalar",
BaseTy.float: "double",
BaseTy.str: "c10::string_view",
BaseTy.DeviceIndex: "c10::DeviceIndex",
BaseTy.Layout: "c10::Layout",
BaseTy.MemoryFormat: "c10::MemoryFormat",
BaseTy.ScalarType: "c10::ScalarType",
BaseTy.Generator: "at::Generator",
}
base_type_to_callsite_expr = {
BaseTy.Tensor: "resolve_tensor_dispatch_flags",
BaseTy.bool: "",
BaseTy.int: "",
BaseTy.SymInt: "",
BaseTy.Scalar: "",
BaseTy.float: "",
BaseTy.str: "",
BaseTy.DeviceIndex: "static_cast<c10::DeviceIndex>",
BaseTy.Layout: "static_cast<c10::Layout>",
BaseTy.MemoryFormat: "static_cast<c10::MemoryFormat>",
BaseTy.ScalarType: "static_cast<c10::ScalarType>",
BaseTy.Generator: "*generator_handle_to_generator_pointer",
}
# convert args to C types, names in declarations, and expressions in function bodies
def convert_arg_type_and_name(
typ: Type,
name: str,
is_write: bool = False,
) -> tuple[list[str], list[str], list[str], list[str]]:
if isinstance(typ, BaseType):
if typ.name in base_type_to_c_type:
if typ.name == BaseTy.Tensor and is_write:
# For output tensors, our normal call to resolve_tensor_dispatch_flags
# results in an rvalue tensor, which can't be passed to at::Tensor&.
# Override this case specifically.
callsite_expr = [f"*tensor_handle_to_tensor_pointer({name})"]
else:
callsite_expr = [
f"{base_type_to_callsite_expr[typ.name]}({name})"
if base_type_to_callsite_expr[typ.name]
else name
]
return (
[base_type_to_c_type[typ.name]],
[name],
[base_type_to_aten_type[typ.name]],
callsite_expr,
)
elif typ.name == BaseTy.Device:
return (
["int32_t", "int32_t"],
[name, name + "_index_"],
["c10::Device"],
[
f"c10::Device(static_cast<c10::DeviceType>({name}), static_cast<c10::DeviceIndex>({name}_index_))"
],
)
else:
# TODO: BaseTy.Dimname, etc.
raise NotImplementedError(f"TODO: add support for arg type {repr(typ)}")
elif isinstance(typ, OptionalType):
c_types, names, aten_types, callsite_exprs = convert_arg_type_and_name(
typ.elem, name
)
j = 0 # index for names
new_aten_types = []
new_callsite_exprs = []
for aten_type in aten_types:
# Use pointer to denote optional type
c_types[j] = c_types[j] + "*"
if aten_type.startswith("c10::ArrayRef<"):
# ArrayRef is passed as pointer + size, but no need to add "*" to the size argument
new_aten_types.append(f"::std::optional<{aten_type}>")
base_type = aten_type[len("c10::ArrayRef<") : -1]
new_callsite_exprs.append(
f"pointer_to_optional_list<{base_type}>({names[j]}, {names[j + 1]})"
)
j += 2
elif aten_type == "c10::Device":
# Device is passed as device_type + device_index
new_aten_types.append("::std::optional<c10::Device>")
new_callsite_exprs.append(
f"pointer_to_optional_device({names[j]}, {names[j + 1]})"
)
j += 2
elif aten_type == "at::Tensor":
new_aten_types.append(f"::std::optional<{aten_type}>")
new_callsite_exprs.append(f"resolve_tensor_dispatch_flags({names[j]})")
j += 1
else:
new_aten_types.append(f"::std::optional<{aten_type}>")
new_callsite_exprs.append(
f"pointer_to_optional<{aten_type}>({names[j]})"
)
j += 1
return (
c_types,
names,
new_aten_types,
new_callsite_exprs,
)
elif isinstance(typ, ListType):
# Need to explicitly pass the list as pointer + length
c_types, names, aten_types, _ = convert_arg_type_and_name(typ.elem, name)
assert len(c_types) == 1, "ListType with unsupported element type " + repr(typ)
# The list content should never be modified
c_types[0] = f"const {c_types[0]}*"
c_types.append("int64_t")
name = names[0]
names.append(name + "_len_")
atype = aten_types[0]
callsite_exprs = []
if atype == "bool":
# no converter from std::vector<bool> to c10::ArrayRef<bool>
# construct std::array<bool, N> instead
assert typ.size is not None
callsite_exprs.append(f"pointer_to_list<{typ.size}>({name})")
elif atype == "at::Tensor" and not is_write:
callsite_exprs.append(
f"resolve_tensor_list_dispatch_flags({name}, {name}_len_)"
)
elif atype == "::std::optional<at::Tensor>":
# convert from std::vector<::std::optional<at::Tensor>> to c10::List<::std::optional<at::Tensor>>
callsite_exprs.append(
f"c10::List<{atype}>(c10::ArrayRef<{atype}>(resolve_tensor_list_dispatch_flags({name}, {name}_len_)))"
)
else:
callsite_exprs.append(f"pointer_to_list<{atype}>({name}, {name}_len_)")
aten_types = [f"c10::ArrayRef<{t}>" for t in aten_types]
return (
c_types,
names,
aten_types,
callsite_exprs,
)
raise NotImplementedError(f"Argument type {repr(typ)} not supported!")
def zip_type_and_name(types: list[str], names: list[str]) -> list[str]:
return [typ + " " + name for typ, name in zip(types, names)]
# Generate argument declarations and callsite expressions
def gen_arguments(flat_arguments: Sequence[Argument]) -> tuple[list[str], list[str]]:
types = []
new_names = []
callsite_exprs = []
for arg in flat_arguments:
new_types, names, _, new_callsite_exprs = convert_arg_type_and_name(
arg.type, arg.name, arg.is_write
)
types.extend(new_types)
new_names.extend(names)
callsite_exprs.extend(new_callsite_exprs)
return zip_type_and_name(types, new_names), callsite_exprs
# Return values are passed out as pointer arguments because all the C shim functions
# are expected to return AOTITorchError.
# Generate returns as declarations and callsite expressions
def gen_returns(schema: FunctionSchema) -> tuple[list[str], list[str]]:
types = []
names = []
for idx, ret in enumerate(schema.returns):
names.append(f"ret{idx}")
if isinstance(ret.type, BaseType) and ret.type.name in base_type_to_c_type:
types.append(base_type_to_c_type[ret.type.name] + "*")
else:
raise NotImplementedError(
f"TODO: add support for return type {repr(ret.type)}"
)
def convert_return(typ: BaseType, val: str) -> str:
if typ.name == BaseTy.Tensor:
return f"new_tensor_handle(std::move({val}));"
elif typ.name == BaseTy.SymInt:
return f"{val}.expect_int()"
elif typ.name == BaseTy.Scalar:
return f"{val}.toDouble()"
else:
return val
ret_pointer_can_be_null = False
unambiguous_name = schema.name.unambiguous_name()
for name in [
"_scaled_dot_product_flash_attention",
"_scaled_dot_product_efficient_attention",
"_scaled_dot_product_cudnn_attention",
"_scaled_dot_product_fused_attention_overrideable",
"convolution_backward",
]:
if name in unambiguous_name:
ret_pointer_can_be_null = True
break
callsite_exprs: list[str] = []
for idx, ret in enumerate(schema.returns):
tmp = "tmp_result" if len(names) == 1 else f"std::get<{idx}>(tmp_result)"
assert isinstance(ret.type, BaseType)
rval = convert_return(ret.type, tmp)
if ret_pointer_can_be_null:
callsite_exprs.append(f"if ({names[idx]}) {{ *{names[idx]} = {rval}; }}")
else:
callsite_exprs.append(f"*{names[idx]} = {rval};")
return zip_type_and_name(types, names), callsite_exprs
# gen.py generates header first and then src, so caching the result here to avoid duplicate work
declaration_definition_cache: dict[tuple[str, str, str], tuple[str, str]] = {}
def gen_declaration_and_definition(
schema: FunctionSchema, device: str, backend_call: str
) -> tuple[str, str]:
func_name = schema.name.unambiguous_name()
global declaration_definition_cache
if (func_name, device, backend_call) in declaration_definition_cache:
return declaration_definition_cache[(func_name, device, backend_call)]
if schema.is_out_fn():
# out_variant has out arguments in the front, and it's ok to ignore return values
# because C shim functions only return AOTITorchError
args, callsite_exprs = gen_arguments(
[*schema.arguments.out, *schema.arguments.flat_non_out]
)
ret_assignments: list[str] = []
else:
args, callsite_exprs = gen_arguments(schema.arguments.flat_all)
# ignore return values for inplace ops
ret_declarations, ret_assignments = (
([], []) if schema.name.name.inplace else gen_returns(schema)
)
args.extend(ret_declarations)
declaration = f"AOTITorchError aoti_torch_{device}_{func_name}({', '.join(args)})"
tmp_result = "auto tmp_result = " if ret_assignments else ""
ret_assignments_str = "\n" + "\n".join(ret_assignments) if ret_assignments else ""
definition = f"""
{declaration} {{
AOTI_TORCH_CONVERT_EXCEPTION_TO_ERROR_CODE({{
{tmp_result}{backend_call}(
{textwrap.indent(", ".join(callsite_exprs), " ")}
);{textwrap.indent(ret_assignments_str, " ")}
}});
}}
"""
declaration_definition_cache[(func_name, device, backend_call)] = (
declaration,
definition,
)
return declaration, definition
def gen_static_dispatch_backend_call_signature(
sig: CppSignature | DispatcherSignature,
f: NativeFunction,
) -> CppSignature:
sig = DispatcherSignature.from_schema(f.func)
cpp_sigs = CppSignatureGroup.from_native_function(
f, method=False, fallback_binding=False
)
if sig.symint and f.func.has_symint():
cpp_sig = cpp_sigs.symint_signature
else:
cpp_sig = cpp_sigs.signature
assert cpp_sig is not None
return cpp_sig
def gen_static_dispatch_backend_call(
f: NativeFunction,
backend_index: BackendIndex,
) -> str:
sig = DispatcherSignature.from_schema(f.func)
cpp_sig = gen_static_dispatch_backend_call_signature(sig, f)
return f"at::{backend_index.dispatch_key.lower()}::{cpp_sig.name()}"
def get_backend_index_for_aoti(
func: NativeFunction,
func_group_mapping: dict[OperatorName, NativeFunctionsGroup],
dispatch_key: DispatchKey,
backend_indices: dict[DispatchKey, BackendIndex],
extend_aoti_c_shim: bool,
) -> BackendIndex | None:
backend_index = None
if backend_indices[dispatch_key].has_kernel(func) or (
func.structured_delegate is not None
and func.structured_delegate in func_group_mapping
and backend_indices[dispatch_key].has_kernel(
func_group_mapping[func.structured_delegate]
)
):
backend_index = backend_indices[dispatch_key]
else:
# for the extend out-of-tree kernels, we don't need to
# duplicatly create C shim wrappers for other dispatch keys
if extend_aoti_c_shim:
return backend_index
elif backend_indices[DispatchKey.CompositeExplicitAutograd].has_kernel(func):
# We need to create C shim wrappers for CompositeExplicitAutograd kernels
backend_index = backend_indices[DispatchKey.CompositeExplicitAutograd]
elif backend_indices[
DispatchKey.CompositeExplicitAutogradNonFunctional
].has_kernel(func):
# We need to create C shim wrappers for CompositeExplicitAutogradNonFunctional kernels
backend_index = backend_indices[
DispatchKey.CompositeExplicitAutogradNonFunctional
]
elif backend_indices[DispatchKey.CompositeImplicitAutograd].has_kernel(func):
backend_index = backend_indices[DispatchKey.CompositeImplicitAutograd]
return backend_index
def get_header_for_aoti(
func: NativeFunction,
func_group_mapping: dict[OperatorName, NativeFunctionsGroup],
dispatch_key: DispatchKey,
backend_indices: dict[DispatchKey, BackendIndex],
extend_aoti_c_shim: bool,
) -> str | None:
backend_index = get_backend_index_for_aoti(
func, func_group_mapping, dispatch_key, backend_indices, extend_aoti_c_shim
)
return (
None
if backend_index is None
else f"#include <ATen/ops/{func.root_name}_{backend_index.dispatch_key.lower()}_dispatch.h>"
)
def get_fallback_op_name(func: NativeFunction) -> str:
return (
f"{func.namespace}.{func.func.name.name}.{func.func.name.overload_name}"
if func.func.name.overload_name
else f"{func.namespace}.{func.func.name.name}.default"
)
def gen_c_shim(
func: NativeFunction,
func_group_mapping: dict[OperatorName, NativeFunctionsGroup],
dispatch_key: DispatchKey,
backend_indices: dict[DispatchKey, BackendIndex],
header: bool,
extend_aoti_c_shim: bool,
) -> str | None:
backend_index = get_backend_index_for_aoti(
func, func_group_mapping, dispatch_key, backend_indices, extend_aoti_c_shim
)
if backend_index is None:
return None
schema = func.func
device = dispatch_key.lower()
backend_call = gen_static_dispatch_backend_call(
func,
backend_index,
)
try:
if header:
declaration, _ = gen_declaration_and_definition(
schema, device, backend_call
)
return f"AOTI_TORCH_EXPORT {declaration};"
else:
_, definition = gen_declaration_and_definition(schema, device, backend_call)
return definition
except NotImplementedError:
return None
@dataclass(frozen=True)
class ShimGenerator:
func_group_mapping: dict[OperatorName, NativeFunctionsGroup]
dispatch_key: DispatchKey
backend_indices: dict[DispatchKey, BackendIndex]
header: bool # True to generate .h and False to generate .cpp
extend_aoti_c_shim: bool
@method_with_native_function
def __call__(
self,
func: NativeFunction,
) -> str | None:
result = gen_c_shim(
func,
self.func_group_mapping,
self.dispatch_key,
self.backend_indices,
self.header,
self.extend_aoti_c_shim,
)
return result
def gen_aoti_c_shim(
native_functions: Sequence[NativeFunction],
func_group_mapping: dict[OperatorName, NativeFunctionsGroup],
dispatch_key: DispatchKey,
backend_indices: dict[DispatchKey, BackendIndex],
header: bool,
extend_aoti_c_shim: bool,
includes: str = "",
) -> str:
body = "\n".join(
list(
mapMaybe(
ShimGenerator(
func_group_mapping,
dispatch_key,
backend_indices,
header,
extend_aoti_c_shim,
),
native_functions,
)
)
)
device = dispatch_key.lower()
warning = """
// WARNING: THIS FILE IS AUTOGENERATED BY torchgen. DO NOT MODIFY BY HAND.
// See https://github.com/pytorch/pytorch/blob/7e86a7c0155295539996e0cf422883571126073e/torchgen/gen.py#L2424-L2436 for details"""
if header:
return f"""
{warning}
#pragma once
#include <torch/csrc/inductor/aoti_torch/c/shim.h>
#ifdef __cplusplus
extern "C" {{
#endif
{body}
#ifdef __cplusplus
}} // extern "C"
#endif
"""
else:
return f"""
{warning}
#include <torch/csrc/inductor/aoti_torch/generated/{"extend/" if extend_aoti_c_shim else ""}c_shim_{device}.h>
#include <torch/csrc/inductor/aoti_torch/utils.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/{str(dispatch_key)}Functions.h>
#include <ATen/CompositeExplicitAutogradFunctions.h>
#include <ATen/CompositeExplicitAutogradNonFunctionalFunctions.h>
#include <ATen/CompositeImplicitAutogradFunctions.h>
#else
{includes}
#endif
using namespace torch::aot_inductor;
{body}"""