|
| 1 | +package com.thealgorithms.tree; |
| 2 | + |
| 3 | +import java.util.ArrayList; |
| 4 | +import java.util.List; |
| 5 | + |
| 6 | +/** |
| 7 | + * Heavy-Light Decomposition (HLD) implementation in Java. |
| 8 | + * HLD is used to efficiently handle path queries on trees, such as maximum, |
| 9 | + * sum, or updates. It decomposes the tree into heavy and light chains, |
| 10 | + * enabling queries in O(log N) time. |
| 11 | + * Wikipedia Reference: https://en.wikipedia.org/wiki/Heavy-light_decomposition |
| 12 | + * Author: Nithin U. |
| 13 | + * Github: https://github.com/NithinU2802 |
| 14 | + */ |
| 15 | + |
| 16 | +public class HeavyLightDecomposition { |
| 17 | + private List<List<Integer>> tree; |
| 18 | + private int[] parent; |
| 19 | + private int[] depth; |
| 20 | + private int[] subtreeSize; |
| 21 | + private int[] chainHead; |
| 22 | + private int[] position; |
| 23 | + private int[] nodeValue; |
| 24 | + private int[] segmentTree; |
| 25 | + private int positionIndex; |
| 26 | + |
| 27 | + public HeavyLightDecomposition(int n) { |
| 28 | + tree = new ArrayList<>(); |
| 29 | + for (int i = 0; i <= n; i++) { |
| 30 | + tree.add(new ArrayList<>()); |
| 31 | + } |
| 32 | + parent = new int[n + 1]; |
| 33 | + depth = new int[n + 1]; |
| 34 | + subtreeSize = new int[n + 1]; |
| 35 | + chainHead = new int[n + 1]; |
| 36 | + position = new int[n + 1]; |
| 37 | + nodeValue = new int[n + 1]; |
| 38 | + segmentTree = new int[4 * (n + 1)]; |
| 39 | + for (int i = 0; i <= n; i++) { |
| 40 | + chainHead[i] = -1; |
| 41 | + } |
| 42 | + positionIndex = 0; |
| 43 | + } |
| 44 | + |
| 45 | + public int getPosition(int index) { |
| 46 | + return position[index]; |
| 47 | + } |
| 48 | + |
| 49 | + public int getPositionIndex() { |
| 50 | + return positionIndex; |
| 51 | + } |
| 52 | + |
| 53 | + public void addEdge(int u, int v) { |
| 54 | + tree.get(u).add(v); |
| 55 | + tree.get(v).add(u); |
| 56 | + } |
| 57 | + |
| 58 | + private void dfsSize(int node, int parentNode) { |
| 59 | + parent[node] = parentNode; |
| 60 | + subtreeSize[node] = 1; |
| 61 | + for (int child : tree.get(node)) { |
| 62 | + if (child != parentNode) { |
| 63 | + depth[child] = depth[node] + 1; |
| 64 | + dfsSize(child, node); |
| 65 | + subtreeSize[node] += subtreeSize[child]; |
| 66 | + } |
| 67 | + } |
| 68 | + } |
| 69 | + |
| 70 | + private void decompose(int node, int head) { |
| 71 | + chainHead[node] = head; |
| 72 | + position[node] = positionIndex++; |
| 73 | + int heavyChild = -1; |
| 74 | + int maxSubtreeSize = -1; |
| 75 | + for (int child : tree.get(node)) { |
| 76 | + if (child != parent[node] && subtreeSize[child] > maxSubtreeSize) { |
| 77 | + heavyChild = child; |
| 78 | + maxSubtreeSize = subtreeSize[child]; |
| 79 | + } |
| 80 | + } |
| 81 | + if (heavyChild != -1) { |
| 82 | + decompose(heavyChild, head); |
| 83 | + } |
| 84 | + for (int child : tree.get(node)) { |
| 85 | + if (child != parent[node] && child != heavyChild) { |
| 86 | + decompose(child, child); |
| 87 | + } |
| 88 | + } |
| 89 | + } |
| 90 | + |
| 91 | + private void buildSegmentTree(int node, int start, int end) { |
| 92 | + if (start == end) { |
| 93 | + segmentTree[node] = nodeValue[start]; |
| 94 | + return; |
| 95 | + } |
| 96 | + int mid = (start + end) / 2; |
| 97 | + buildSegmentTree(2 * node, start, mid); |
| 98 | + buildSegmentTree(2 * node + 1, mid + 1, end); |
| 99 | + segmentTree[node] = Math.max(segmentTree[2 * node], segmentTree[2 * node + 1]); |
| 100 | + } |
| 101 | + |
| 102 | + public void updateSegmentTree(int node, int start, int end, int index, int value) { |
| 103 | + if (start == end) { |
| 104 | + segmentTree[node] = value; |
| 105 | + return; |
| 106 | + } |
| 107 | + int mid = (start + end) / 2; |
| 108 | + if (index <= mid) { |
| 109 | + updateSegmentTree(2 * node, start, mid, index, value); |
| 110 | + } else { |
| 111 | + updateSegmentTree(2 * node + 1, mid + 1, end, index, value); |
| 112 | + } |
| 113 | + segmentTree[node] = Math.max(segmentTree[2 * node], segmentTree[2 * node + 1]); |
| 114 | + } |
| 115 | + |
| 116 | + public int querySegmentTree(int node, int start, int end, int left, int right) { |
| 117 | + if (left > end || right < start) { |
| 118 | + return Integer.MIN_VALUE; |
| 119 | + } |
| 120 | + if (left <= start && end <= right) { |
| 121 | + return segmentTree[node]; |
| 122 | + } |
| 123 | + int mid = (start + end) / 2; |
| 124 | + int leftQuery = querySegmentTree(2 * node, start, mid, left, right); |
| 125 | + int rightQuery = querySegmentTree(2 * node + 1, mid + 1, end, left, right); |
| 126 | + return Math.max(leftQuery, rightQuery); |
| 127 | + } |
| 128 | + |
| 129 | + public int queryMaxInPath(int u, int v) { |
| 130 | + int result = Integer.MIN_VALUE; |
| 131 | + while (chainHead[u] != chainHead[v]) { |
| 132 | + if (depth[chainHead[u]] < depth[chainHead[v]]) { |
| 133 | + int temp = u; |
| 134 | + u = v; |
| 135 | + v = temp; |
| 136 | + } |
| 137 | + result = Math.max(result, querySegmentTree(1, 0, positionIndex - 1, position[chainHead[u]], position[u])); |
| 138 | + u = parent[chainHead[u]]; |
| 139 | + } |
| 140 | + if (depth[u] > depth[v]) { |
| 141 | + int temp = u; |
| 142 | + u = v; |
| 143 | + v = temp; |
| 144 | + } |
| 145 | + result = Math.max(result, querySegmentTree(1, 0, positionIndex - 1, position[u], position[v])); |
| 146 | + return result; |
| 147 | + } |
| 148 | + |
| 149 | + public void initialize(int root, int[] values) { |
| 150 | + dfsSize(root, -1); |
| 151 | + decompose(root, root); |
| 152 | + for (int i = 0; i < values.length; i++) { |
| 153 | + nodeValue[position[i]] = values[i]; |
| 154 | + } |
| 155 | + buildSegmentTree(1, 0, positionIndex - 1); |
| 156 | + } |
| 157 | +} |
0 commit comments