forked from micropython/micropython
-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathmisc_raytrace.py
258 lines (198 loc) · 7.11 KB
/
misc_raytrace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# A simple ray tracer
# MIT license; Copyright (c) 2019 Damien P. George
INF = 1e30
EPS = 1e-6
class Vec:
def __init__(self, x, y, z):
self.x, self.y, self.z = x, y, z
def __neg__(self):
return Vec(-self.x, -self.y, -self.z)
def __add__(self, rhs):
return Vec(self.x + rhs.x, self.y + rhs.y, self.z + rhs.z)
def __sub__(self, rhs):
return Vec(self.x - rhs.x, self.y - rhs.y, self.z - rhs.z)
def __mul__(self, rhs):
return Vec(self.x * rhs, self.y * rhs, self.z * rhs)
def length(self):
return (self.x**2 + self.y**2 + self.z**2) ** 0.5
def normalise(self):
l = self.length()
return Vec(self.x / l, self.y / l, self.z / l)
def dot(self, rhs):
return self.x * rhs.x + self.y * rhs.y + self.z * rhs.z
RGB = Vec
class Ray:
def __init__(self, p, d):
self.p, self.d = p, d
class View:
def __init__(self, width, height, depth, pos, xdir, ydir, zdir):
self.width = width
self.height = height
self.depth = depth
self.pos = pos
self.xdir = xdir
self.ydir = ydir
self.zdir = zdir
def calc_dir(self, dx, dy):
return (self.xdir * dx + self.ydir * dy + self.zdir * self.depth).normalise()
class Light:
def __init__(self, pos, colour, casts_shadows):
self.pos = pos
self.colour = colour
self.casts_shadows = casts_shadows
class Surface:
def __init__(self, diffuse, specular, spec_idx, reflect, transp, colour):
self.diffuse = diffuse
self.specular = specular
self.spec_idx = spec_idx
self.reflect = reflect
self.transp = transp
self.colour = colour
@staticmethod
def dull(colour):
return Surface(0.7, 0.0, 1, 0.0, 0.0, colour * 0.6)
@staticmethod
def shiny(colour):
return Surface(0.2, 0.9, 32, 0.8, 0.0, colour * 0.3)
@staticmethod
def transparent(colour):
return Surface(0.2, 0.9, 32, 0.0, 0.8, colour * 0.3)
class Sphere:
def __init__(self, surface, centre, radius):
self.surface = surface
self.centre = centre
self.radsq = radius**2
def intersect(self, ray):
v = self.centre - ray.p
b = v.dot(ray.d)
det = b**2 - v.dot(v) + self.radsq
if det > 0:
det **= 0.5
t1 = b - det
if t1 > EPS:
return t1
t2 = b + det
if t2 > EPS:
return t2
return INF
def surface_at(self, v):
return self.surface, (v - self.centre).normalise()
class Plane:
def __init__(self, surface, centre, normal):
self.surface = surface
self.normal = normal.normalise()
self.cdotn = centre.dot(normal)
def intersect(self, ray):
ddotn = ray.d.dot(self.normal)
if abs(ddotn) > EPS:
t = (self.cdotn - ray.p.dot(self.normal)) / ddotn
if t > 0:
return t
return INF
def surface_at(self, p):
return self.surface, self.normal
class Scene:
def __init__(self, ambient, light, objs):
self.ambient = ambient
self.light = light
self.objs = objs
def trace_scene(canvas, view, scene, max_depth):
for v in range(canvas.height):
y = (-v + 0.5 * (canvas.height - 1)) * view.height / canvas.height
for u in range(canvas.width):
x = (u - 0.5 * (canvas.width - 1)) * view.width / canvas.width
ray = Ray(view.pos, view.calc_dir(x, y))
c = trace_ray(scene, ray, max_depth)
canvas.put_pix(u, v, c)
def trace_ray(scene, ray, depth):
# Find closest intersecting object
hit_t = INF
hit_obj = None
for obj in scene.objs:
t = obj.intersect(ray)
if t < hit_t:
hit_t = t
hit_obj = obj
# Check if any objects hit
if hit_obj is None:
return RGB(0, 0, 0)
# Compute location of ray intersection
point = ray.p + ray.d * hit_t
surf, surf_norm = hit_obj.surface_at(point)
if ray.d.dot(surf_norm) > 0:
surf_norm = -surf_norm
# Compute reflected ray
reflected = ray.d - surf_norm * (surf_norm.dot(ray.d) * 2)
# Ambient light
col = surf.colour * scene.ambient
# Diffuse, specular and shadow from light source
light_vec = scene.light.pos - point
light_dist = light_vec.length()
light_vec = light_vec.normalise()
ndotl = surf_norm.dot(light_vec)
ldotv = light_vec.dot(reflected)
if ndotl > 0 or ldotv > 0:
light_ray = Ray(point + light_vec * EPS, light_vec)
light_col = trace_to_light(scene, light_ray, light_dist)
if ndotl > 0:
col += light_col * surf.diffuse * ndotl
if ldotv > 0:
col += light_col * surf.specular * ldotv**surf.spec_idx
# Reflections
if depth > 0 and surf.reflect > 0:
col += trace_ray(scene, Ray(point + reflected * EPS, reflected), depth - 1) * surf.reflect
# Transparency
if depth > 0 and surf.transp > 0:
col += trace_ray(scene, Ray(point + ray.d * EPS, ray.d), depth - 1) * surf.transp
return col
def trace_to_light(scene, ray, light_dist):
col = scene.light.colour
for obj in scene.objs:
t = obj.intersect(ray)
if t < light_dist:
col *= obj.surface.transp
return col
class Canvas:
def __init__(self, width, height):
self.width = width
self.height = height
self.data = bytearray(3 * width * height)
def put_pix(self, x, y, c):
off = 3 * (y * self.width + x)
self.data[off] = min(255, max(0, int(255 * c.x)))
self.data[off + 1] = min(255, max(0, int(255 * c.y)))
self.data[off + 2] = min(255, max(0, int(255 * c.z)))
def write_ppm(self, filename):
with open(filename, "wb") as f:
f.write(bytes("P6 %d %d 255\n" % (self.width, self.height), "ascii"))
f.write(self.data)
def main(w, h, d):
canvas = Canvas(w, h)
view = View(32, 32, 64, Vec(0, 0, 50), Vec(1, 0, 0), Vec(0, 1, 0), Vec(0, 0, -1))
scene = Scene(
0.5,
Light(Vec(0, 8, 0), RGB(1, 1, 1), True),
[
Plane(Surface.dull(RGB(1, 0, 0)), Vec(-10, 0, 0), Vec(1, 0, 0)),
Plane(Surface.dull(RGB(0, 1, 0)), Vec(10, 0, 0), Vec(-1, 0, 0)),
Plane(Surface.dull(RGB(1, 1, 1)), Vec(0, 0, -10), Vec(0, 0, 1)),
Plane(Surface.dull(RGB(1, 1, 1)), Vec(0, -10, 0), Vec(0, 1, 0)),
Plane(Surface.dull(RGB(1, 1, 1)), Vec(0, 10, 0), Vec(0, -1, 0)),
Sphere(Surface.shiny(RGB(1, 1, 1)), Vec(-5, -4, 3), 4),
Sphere(Surface.dull(RGB(0, 0, 1)), Vec(4, -5, 0), 4),
Sphere(Surface.transparent(RGB(0.2, 0.2, 0.2)), Vec(6, -1, 8), 4),
],
)
trace_scene(canvas, view, scene, d)
return canvas
# For testing
# main(256, 256, 4).write_ppm('rt.ppm')
###########################################################################
# Benchmark interface
bm_params = {
(100, 100): (5, 5, 2),
(1000, 100): (18, 18, 3),
(5000, 100): (40, 40, 3),
}
def bm_setup(params):
return lambda: main(*params), lambda: (params[0] * params[1] * params[2], None)