diff --git a/dev-notebooks/HipsterHailvsVS_covariates.ipynb b/dev-notebooks/HipsterHailvsVS_covariates.ipynb
index 746c43d6..0e6d008e 100644
--- a/dev-notebooks/HipsterHailvsVS_covariates.ipynb
+++ b/dev-notebooks/HipsterHailvsVS_covariates.ipynb
@@ -21,26 +21,21 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "using variant-spark jar at '/Users/reg032/workspace/VariantSpark/target/variant-spark_2.11-0.5.0-a0-dev0-all.jar'\n",
-      "22/05/09 14:34:16 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable\n",
+      "using variant-spark jar at '/Users/reg032/workspace/VariantSpark/target/variant-spark_2.12-0.5.3-SNAPSHOT-all.jar'\n",
+      "23/01/24 10:36:42 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable\n",
       "Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties\n",
       "Setting default log level to \"WARN\".\n",
       "To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).\n",
-      "22/05/09 14:34:16 WARN Hail: This Hail JAR was compiled for Spark 3.1.1, running with Spark 3.1.2.\n",
+      "23/01/24 10:36:43 WARN Hail: This Hail JAR was compiled for Spark 3.1.1, running with Spark 3.1.2.\n",
       "  Compatibility is not guaranteed.\n",
-      "22/05/09 14:34:17 WARN Utils: Service 'SparkUI' could not bind on port 4040. Attempting port 4041.\n",
-      "22/05/09 14:34:17 WARN Utils: Service 'SparkUI' could not bind on port 4041. Attempting port 4042.\n",
-      "22/05/09 14:34:17 WARN Utils: Service 'SparkUI' could not bind on port 4042. Attempting port 4043.\n",
-      "22/05/09 14:34:17 WARN Utils: Service 'SparkUI' could not bind on port 4043. Attempting port 4044.\n",
-      "22/05/09 14:34:17 WARN Utils: Service 'SparkUI' could not bind on port 4044. Attempting port 4045.\n",
       "Running on Apache Spark version 3.1.2\n",
-      "SparkUI available at http://192.168.86.23:4045\n",
+      "SparkUI available at http://192.168.86.30:4040\n",
       "Welcome to\n",
       "     __  __     <>__\n",
       "    / /_/ /__  __/ /\n",
       "   / __  / _ `/ / /\n",
       "  /_/ /_/\\_,_/_/_/   version 0.2.74-0c3a74d12093\n",
-      "LOGGING: writing to /Users/reg032/workspace/hail-20220509-1434-0.2.74-0c3a74d12093.log\n"
+      "LOGGING: writing to /Users/reg032/workspace/VariantSpark/dev-notebooks/hail-20230124-1036-0.2.74-0c3a74d12093.log\n"
      ]
     }
    ],
@@ -402,7 +397,7 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "2022-05-09 14:34:22 Hail: INFO: Reading table without type imputation\n",
+      "2023-01-24 10:36:49 Hail: INFO: Reading table without type imputation\n",
       "  Loading field 'samples' as type str (not specified)\n",
       "  Loading field 'score' as type float64 (user-supplied)\n",
       "  Loading field 'label' as type float64 (user-supplied)\n",
@@ -501,7 +496,7 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "2022-05-09 14:34:25 Hail: INFO: Coerced almost-sorted dataset       (0 + 1) / 1]\n",
+      "2023-01-24 10:36:52 Hail: INFO: Coerced almost-sorted dataset       (0 + 1) / 1]\n",
       "[Stage 1:>                                                          (0 + 1) / 1]\r"
      ]
     },
@@ -536,8 +531,8 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "2022-05-09 14:34:29 Hail: INFO: Coerced almost-sorted dataset\n",
-      "2022-05-09 14:34:32 Hail: INFO: logistic_regression_rows: running score on 2504 samples for response variable y,\n",
+      "2023-01-24 10:36:56 Hail: INFO: Coerced almost-sorted dataset\n",
+      "2023-01-24 10:36:58 Hail: INFO: logistic_regression_rows: running score on 2504 samples for response variable y,\n",
       "    with input variable x, and 5 additional covariates...\n"
      ]
     }
@@ -607,7 +602,7 @@
        "\n",
        "\n",
        "\n",
-       "  <div class=\"bk-root\" id=\"0fd03b49-4886-4f4e-9d59-5213c8c2bbb3\" data-root-id=\"1003\"></div>\n"
+       "  <div class=\"bk-root\" id=\"bff7ed2c-a225-4e4d-83de-1b8dedb75e2c\" data-root-id=\"1003\"></div>\n"
       ]
      },
      "metadata": {},
@@ -619,8 +614,8 @@
        "(function(root) {\n",
        "  function embed_document(root) {\n",
        "    \n",
-       "  var docs_json = {\"ac18815b-0eb9-4df0-894c-610631249b9f\":{\"roots\":{\"references\":[{\"attributes\":{\"below\":[{\"id\":\"1013\",\"type\":\"LinearAxis\"}],\"center\":[{\"id\":\"1017\",\"type\":\"Grid\"},{\"id\":\"1022\",\"type\":\"Grid\"}],\"left\":[{\"id\":\"1018\",\"type\":\"LinearAxis\"},{\"id\":\"1074\",\"type\":\"Legend\"},{\"id\":\"1075\",\"type\":\"ColorBar\"}],\"plot_width\":1000,\"renderers\":[{\"id\":\"1044\",\"type\":\"GlyphRenderer\"},{\"id\":\"1050\",\"type\":\"GlyphRenderer\"},{\"id\":\"1056\",\"type\":\"GlyphRenderer\"},{\"id\":\"1062\",\"type\":\"GlyphRenderer\"},{\"id\":\"1068\",\"type\":\"GlyphRenderer\"},{\"id\":\"1096\",\"type\":\"Span\"}],\"title\":null,\"toolbar\":{\"id\":\"1029\",\"type\":\"Toolbar\"},\"x_range\":{\"id\":\"1005\",\"type\":\"DataRange1d\"},\"x_scale\":{\"id\":\"1009\",\"type\":\"LinearScale\"},\"y_range\":{\"id\":\"1007\",\"type\":\"DataRange1d\"},\"y_scale\":{\"id\":\"1011\",\"type\":\"LinearScale\"}},\"id\":\"1003\",\"subtype\":\"Figure\",\"type\":\"Plot\"},{\"attributes\":{},\"id\":\"1009\",\"type\":\"LinearScale\"},{\"attributes\":{\"data_source\":{\"id\":\"1038\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1048\",\"type\":\"Circle\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1049\",\"type\":\"Circle\"},\"selection_glyph\":null,\"view\":{\"id\":\"1046\",\"type\":\"CDSView\"}},\"id\":\"1050\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"column_name\":\"_contig\",\"group\":\"5\"},\"id\":\"1057\",\"type\":\"GroupFilter\"},{\"attributes\":{\"filters\":[{\"id\":\"1051\",\"type\":\"GroupFilter\"}],\"source\":{\"id\":\"1038\",\"type\":\"ColumnDataSource\"}},\"id\":\"1052\",\"type\":\"CDSView\"},{\"attributes\":{},\"id\":\"1019\",\"type\":\"BasicTicker\"},{\"attributes\":{\"callback\":null},\"id\":\"1005\",\"type\":\"DataRange1d\"},{\"attributes\":{},\"id\":\"1083\",\"type\":\"BasicTicker\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1055\",\"type\":\"Circle\"},{\"attributes\":{\"data_source\":{\"id\":\"1038\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1060\",\"type\":\"Circle\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1061\",\"type\":\"Circle\"},\"selection_glyph\":null,\"view\":{\"id\":\"1058\",\"type\":\"CDSView\"}},\"id\":\"1062\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"factors\":[\"1\",\"2\",\"3\",\"4\",\"5\",\"6\",\"7\",\"8\",\"9\",\"10\",\"11\",\"12\",\"13\",\"14\",\"15\",\"16\",\"17\",\"18\",\"19\",\"20\",\"21\",\"22\",\"X\",\"Y\",\"MT\",\"GL000207.1\",\"GL000226.1\",\"GL000229.1\",\"GL000231.1\",\"GL000210.1\",\"GL000239.1\",\"GL000235.1\",\"GL000201.1\",\"GL000247.1\",\"GL000245.1\",\"GL000197.1\",\"GL000203.1\",\"GL000246.1\",\"GL000249.1\",\"GL000196.1\",\"GL000248.1\",\"GL000244.1\",\"GL000238.1\",\"GL000202.1\",\"GL000234.1\",\"GL000232.1\",\"GL000206.1\",\"GL000240.1\",\"GL000236.1\",\"GL000241.1\",\"GL000243.1\",\"GL000242.1\",\"GL000230.1\",\"GL000237.1\",\"GL000233.1\",\"GL000204.1\",\"GL000198.1\",\"GL000208.1\",\"GL000191.1\",\"GL000227.1\",\"GL000228.1\",\"GL000214.1\",\"GL000221.1\",\"GL000209.1\",\"GL000218.1\",\"GL000220.1\",\"GL000213.1\",\"GL000211.1\",\"GL000199.1\",\"GL000217.1\",\"GL000216.1\",\"GL000215.1\",\"GL000205.1\",\"GL000219.1\",\"GL000224.1\",\"GL000223.1\",\"GL000195.1\",\"GL000212.1\",\"GL000222.1\",\"GL000200.1\",\"GL000193.1\",\"GL000194.1\",\"GL000225.1\",\"GL000192.1\"],\"palette\":[\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\"]},\"id\":\"1002\",\"type\":\"CategoricalColorMapper\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1067\",\"type\":\"Circle\"},{\"attributes\":{\"ticks\":[370850307,786049562,972084330,1313226358,2358551415]},\"id\":\"1076\",\"type\":\"FixedTicker\"},{\"attributes\":{\"fill_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1002\",\"type\":\"CategoricalColorMapper\"}},\"line_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1002\",\"type\":\"CategoricalColorMapper\"}},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1042\",\"type\":\"Circle\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1043\",\"type\":\"Circle\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1061\",\"type\":\"Circle\"},{\"attributes\":{\"callback\":null,\"tooltips\":[[\"rs\",\"@rs\"],[\"locus\",\"@locus\"],[\"p_value\",\"@p_value\"]]},\"id\":\"1037\",\"type\":\"HoverTool\"},{\"attributes\":{\"column_name\":\"_contig\",\"group\":\"7\"},\"id\":\"1063\",\"type\":\"GroupFilter\"},{\"attributes\":{\"column_name\":\"_contig\",\"group\":\"15\"},\"id\":\"1039\",\"type\":\"GroupFilter\"},{\"attributes\":{\"callback\":null,\"data\":{\"_contig\":[\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\"],\"_global_locus\":{\"__ndarray__\":\"AAAAIkZitUEAAACjRmK1QQAAAFpGYrVBAAAAY0ZitUEAAABnRmK1QQAAABxSYrVBAAAAKEpitUEAAADoSWK1QQAAAGZJYrVBAAAAdk9itUEAAAC9TmK1QQAAAJFHYrVBAAAAJVRitUEAAAC4eCa8QQAAABp2JrxBAAAAVnUmvEEAAACQdia8QQAAADyCJrxBAAAAuXwmvEEAAACkeCa8QQAAAJyGJrxBAAAAzoAmvEEAAABXdSa8QQAAAP51JrxBAAAAG4MmvEEAAAD0dya8QQAAAKt5JrxBAAAA6nkmvEEAAADCgCa8QQAAAIt3JrxBAAAA7YImvEEAAAC2fSa8QQAAAAJ6JrxBAAAAYIUmvEEAAACHgia8QQAAAGZ8JrxBAAAAHn4mvEEAAAAIxDPGQQAAACXDM8ZBAACASMMzxkEAAIAexDPGQQAAAOHEM8ZBAAAAd8gzxkEAAIB/xDPGQQAAgJ7DM8ZBAACA1MUzxkEAAAAlxjPGQQAAANbDM8ZBAACAqMszxkEAAAChxDPGQQAAAEHLM8ZBAACAgMUzxkEAAABTwzPGQQAAAIjHM8ZBAAAAMFoMzkEAAIDVWAzOQQAAAK5ZDM5BAAAAnFoMzkEAAIACWwzOQQAAALhaDM5BAACANl4MzkEAAIB7WwzOQQAAABRbDM5BAAAAYWcMzkEAAIDscgzOQQAAAL9bDM5BAAAA4W0MzkEAAIAWagzOQQAAgGJfDM5BAAAAdGEMzkEAAACgWQzOQQAAgO6BDM5BAAAA9l0MzkEAAIDHmQzOQQAAgJaiDM5BAAAA3WYMzkEAAIBAoQzOQQAAAOZiDM5BAACAwVoMzkEAAIAqsQzOQQAAgBgxDc5BAAAAkeIMzkEAAIAVbwzOQQAAgANqDM5BAACAQO8MzkEAAADmlAzOQQAAgJxwDM5BAACAx7wMzkEAAIDItgzOQQAAgJykDM5BAAAArQkNzkEAAIALbAzOQQAAAHmRDM5BAACA8X8MzkEAAAAnog3OQQAAgC6DDc5BAAAA0nANzkEAAAC6qA3OQQAAgBoaDc5BAACAHKYNzkEAAABnAQ3OQQAAAFNkDM5BAACAjnQNzkEAAIDjQw3OQQAAgBWhDM5BAACAVyoNzkEAAIA1Dw3OQQAAgAQdDc5BAACABR4NzkEAAACFIA3OQQAAAM/qDM5BAAAAhyANzkEAAIB+5gzOQQAAAJ+oDc5BAACAG6oNzkEAAADdCg3OQQAAAAnUDM5BAACAN9IMzkEAAIDxmAzOQQAAgMl6Dc5BAAAAyn4NzkEAAADtoAzOQQAAAGPhDM5BAAAA8q8MzkEAAIAMggzOQQAAAGw4Dc5BAAAAOegMzkEAAICxywzOQQAAgPXeDM5BAACAeH8NzkEAAICLrwzOQQAAAAqCDM5BAAAAdswMzkEAAICeyQzOQQAAACMpDc5BAACA1SANzkEAAIBteQzOQQAAgFp6DM5BAACAhM8MzkEAAADLeAzOQQAAgBqCDM5BAAAA/nQMzkEAAIC9cgzOQQAAAAHJDM5BAAAAgnYMzkEAAIC/nQzOQQAAAEx3DM5BAACAB5sMzkEAAIDHlgzOQQAAgBNqDM5BAACAGGsMzkEAAIBNhAzOQQAAgAV4DM5BAAAACoAMzkEAAAB1kwzOQQAAgOyBDM5BAAAA/G0MzkEAAADa6AzOQQAAADjhDM5BAAAAbsQMzkEAAACo1QzOQQAAgEzUDM5BAACAYHcMzkEAAIC4jwzOQQAAgMiKDM5BAACA2sMMzkEAAICrWgzOQQAAAOuuDM5BAAAAgLoMzkEAAADZpQzOQQAAAOqGDM5BAACApl8MzkEAAAAidQzOQQAAAIaYDM5BAACAyXUMzkEAAACwpwzOQQAAgBaiDM5BAAAA4GgMzkEAAIAflwzOQQAAAH9vDM5BAAAAqJUMzkEAAAD2ZgzOQQAAgJ6VDM5BAACAIpQMzkEAAABohgzOQQAAANdqDM5BAACAvmEMzkEAAADQXAzOQQAAgJlgDM5BAACAN2UMzkEAAAA3XwzOQQAAgKNbDM5BAABAgPSj0kEAAEB69KPSQQAAQKf0o9JBAADAdvSj0kEAAEAd9aPSQQAAQNz0o9JBAADAZ/Wj0kEAAEBf9aPSQQAAQKH1o9JBAACAz/Sj0kEAAMAt9qPSQQAAQCL4o9JBAABAo/Sj0kEAAID+9KPSQQAAABj1o9JBAABA6/ej0kEAAMAP96PSQQAAwKj2o9JBAADAqNoU1EEAAED72hTUQQAAQK/aFNRBAABAd9sU1EEAAACA3BTUQQAAwHzbFNRBAADAHtwU1EEAAMDk2hTUQQAAACPdFNRBAACA5N0U1EEAAACTCa/hQQAAIKUJr+FBAADgoAmv4UEAAMDGCa/hQQAAgKkJr+FBAABgxAmv4UEAAICsC6/hQQAAoBMOr+FBAAAAdQ6v4UEAAEBaDa/hQQAAACUSr+FBAABAnhKv4UEAAMBhD6/hQQAAIKQJr+FBAAAA/Syv4UEAAIA1G6/hQQAAYN4Kr+FBAADgxi2v4UEAAMD9GK/hQQAAYM8qr+FBAABAmzKv4UEAAECoMq/hQQAAAIAyr+FBAAAg+DOv4UEAAMCCMq/hQQAAQJ4zr+FBAABgCk2v4UEAAOBAha/hQQAA4C7mv+FBAABg9+W/4UEAAAA55r/hQQAAIDXmv+FBAADA1ue/4UEAAEC457/hQQAAILjmv+FBAADA1+a/4UEAAIAN5r/hQQAAYDfmv+FBAADAD+e/4UEAAABc57/hQQAAQCPmv+FB\",\"dtype\":\"float64\",\"shape\":[261]},\"_pval\":{\"__ndarray__\":\"lIMDoc6Dyj8MYQxR5TrZP3TVXnVuz+U//TovDo3y8j9hcsMndyv1P48+tq5+fv0/o+7ZFmE/BEA26i8iizwKQCv+soaCogtAytJt5rSODUD2q7mIhAIQQHtAK0mloxFAx9WqjNgAE0ARbsM5RpW8P8DINlGsjNk/On2kKrYW5D95cBFDOnnvPztu5l2LHfQ/O3N1u9yC+T96FHtbz7X+P59M8G/ZoQFAhypjhdzXC0AW+HUMovgQQKSx1krFnRRAkEUT6oZlF0DxStqOd4geQKnN+1vLiiFA9km5lnjzIkDRz4+BWBstQKARd9dFrTFApbNAwwI9QkD60exLBfZCQHiYs5Y8CkNAhambJ6FTREB63WrmuZ1EQLCKscQwa0dApQW78nO6XUD/ZeSeRDLQPy7hr1gql9g/2LC8I/jF5j9iisSbinHxP00izss37/U/ItObh3uE+D/aV61WIC3+P0+XNavdFwRAUFDJfIXWB0CONP7pHrQIQJahOcCDyQ9AkTKCboodEUC1Y7cltwUTQEB+G66BrzBAo1UqlS/ENEDPtUMfH0w1QPtqbuhgbzVA/ky3LgQawD9KT+C69PjXP6r/OMeUdOQ/HtVvEClG7T+m+K2P3gH4P+L0fHylhfg/MVWAvoVD/T9BW/WhHLUBQG+YAnOnNwRAX3ndztPyBkAtiZ9uPFYJQK/Xhy3KvgpAGaBQWk1EDUC/OeN0f2kQQO38NG/kMhFAahhTsupgEkBiNdYfV1AUQGnKICrbuhRAnmSqwQsWFkC8DCVwEEgXQBDZ5HfGchhAlhqBf0fJGUDnydSi/akaQGw1yOdzthxAnAFeEKNPHUC2bvDQU90eQFOfgxrauh9ApGx5T75OIEDhCO2CVHUhQAdBrRKqpSFAXWTJGPM8IkA6HASlBKojQCqMdwnC7SNAMwYsmPzmJEBOkAj/JFIlQCtxjSYtTiZA3rJHTcv3JkA3vaw/NpUqQF7CAqXVsS1ABth35dtBMEA3Ih6rrBsxQKIWlFYCTjFADaXYJ4qgMUBM6ky4i50yQJtxzv9JxzJAfKOwMc6RNEBBfUwJKwk1QJ/98v9FhjVA1q1epArQNUAZ0nUloCk2QKXinMISezZA8kXq2sOkN0AWFXrUJ903QO3FxznQ0zhAaDaX98MLOUCqrPgCScs5QD8fjh9R7jtA1oVWZ4OaPED8+bsgcMY8QHKBHoQeTz1A1xyGqCaWPUBILjW6kCc+QOF4YbOwGT9A0RFeKauwP0AF6T3H5xtBQMb+FIJncEFAUyoldauIQUABjovBCIZCQLTzSfkWvUJArgiMo/rtQkA4pDQbWkhDQPD25cEdVUNAce3YFeqkQ0D2qTluoshDQIO53tg58kNAbz/EkbcRREBdyaEFTZZEQBV/cwerwERAW08fYmgiRUBf++OBUohFQL6cFRQq4EVAFDRlBiCBRkCeXZCrtfJHQAGMf0qM/kdAHp98euuPSEAqN+goU6ZIQNRbOwsyw0hAHHFydBs8SUAsKXMDMopJQKBChS0w7klAQNfqBgEsSkCYljvWIJJKQBdtj5fCzUpAm7NcdGTUSkAGIj2/Dx9LQJSYqLsXXEtA5m9kDUd1S0D6OaFhMdhLQLM4Sa5c40tA0LVDGMQQTEAi/QO6kThMQPNoERLMfExAX1dazJM3TUA3iyqCwx5OQPlXQWq7Q05Aqt51wqGBTkB/ZeJtxQpPQJ/PBEqFH09ASPV8VTmST0BGbO45IWtQQK9NKjcRl1BA0EwKPojpUEDkybY+C7xRQFBpAHf3m1JAh28afROmUkDUlgGF7OZSQEmeg4w16FNATBG2vEVeVUAMpW8nBTRWQDOE7x7ATFZAQp+BAlyYVkDbImSyTwVXQI+fIhgGEFdA7plnGW47V0ASjEq+U1VXQOGrAexEXFdAI5d2/mxyV0DtBr1P/LtXQGQnUQcT51dAhQ9LPW56WEC+frnaHrJYQM63zCDIVFlAuUUqkaJOW0AlygsuFHNiQIgrdehBh2JANHX7caCWYkDHQOmuFsJiQL6o/25/1mJAewBUjUC9uj+g67nTsM7WP3h6jDaKH+g/LEWHlU2E8j+nuCewFNv2P6Mn+5iHlPg/8Uhym7twAEC5Dflt16QCQLLjZ5jDBwRAPbS/kDC6CECvWfJDQzULQGaoxGJqSxJAbzx2KlluE0BKi2ZkOPgaQA/L20Dqex5AWzi7E8t8MEAn/HJ98CMyQJCOxTBmw0lAUQ05IuJ6uj9KQgbsUhrYP3xy07oiQOo/YErvqjS+8j+x2jmnUJD+P/u98BWO/gJA3dCAqJGRBEBEMzo87+IHQDpYaxjH8QhAI3T1opzWF0AufB+GcGvBP3dlpp9Hjtg/w+/2OXU55j9RGrwuhNjtP7vAgrIcGfQ/51wKfB/l+T+W/G9m5fD+P94oBAHZ+gBAr/noU916A0BThkNwid8GQOMtoiEL/wlAhxZg+AwEC0A/2uHNnvIMQM83H+GRbw9AbTjdt8fvEUAUFr7PRAATQO46tjDjmxNAZiXkW7hiFUC3c9kJX8UWQL6AT/uiABhAtmfyJtWaGEBcgh1irPoZQP9eg98fmRxAPifmZsdhHUCbqdj82kMfQJbNoQzqiR9AbyCi2P33GkAb+8p1oOMhQIy7AUJ7m8I/+kBmBcDa1j8mO38LjaHkP7wN4fsfNvI/vLd1JEzs9D94TkprYw//PwHHixaa+ABAE63O9WKtBUDfhRk4Pf4FQKyhxUWg6glAr8tdO5FXFkDA6vruEb8bQHxPPJlzWx5A\",\"dtype\":\"float64\",\"shape\":[261]},\"index\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260],\"locus\":[\"2:109511398\",\"2:109511527\",\"2:109511454\",\"2:109511463\",\"2:109511467\",\"2:109514464\",\"2:109512428\",\"2:109512364\",\"2:109512234\",\"2:109513786\",\"2:109513601\",\"2:109511765\",\"2:109514985\",\"2:223032700\",\"2:223032030\",\"2:223031834\",\"2:223032148\",\"2:223035136\",\"2:223033725\",\"2:223032680\",\"2:223036256\",\"2:223034770\",\"2:223031835\",\"2:223032002\",\"2:223035359\",\"2:223032504\",\"2:223032943\",\"2:223033006\",\"2:223034758\",\"2:223032399\",\"2:223035313\",\"2:223033978\",\"2:223033030\",\"2:223035940\",\"2:223035211\",\"2:223033642\",\"2:223034082\",\"4:54510121\",\"4:54509667\",\"4:54509738\",\"4:54510166\",\"4:54510555\",\"4:54512391\",\"4:54510360\",\"4:54509910\",\"4:54511042\",\"4:54511203\",\"4:54510021\",\"4:54514026\",\"4:54510427\",\"4:54513819\",\"4:54510874\",\"4:54509759\",\"4:54511913\",\"5:126625301\",\"5:126624608\",\"5:126625041\",\"5:126625517\",\"5:126625722\",\"5:126625573\",\"5:126627362\",\"5:126625964\",\"5:126625757\",\"5:126632055\",\"5:126637966\",\"5:126626099\",\"5:126635383\",\"5:126633442\",\"5:126627962\",\"5:126629021\",\"5:126625013\",\"5:126645650\",\"5:126627233\",\"5:126657860\",\"5:126662370\",\"5:126631791\",\"5:126661686\",\"5:126629761\",\"5:126625592\",\"5:126669834\",\"5:126735334\",\"5:126695127\",\"5:126636000\",\"5:126633404\",\"5:126701622\",\"5:126655361\",\"5:126636782\",\"5:126675780\",\"5:126672710\",\"5:126663406\",\"5:126715151\",\"5:126634444\",\"5:126653607\",\"5:126644632\",\"5:126793219\",\"5:126777362\",\"5:126767961\",\"5:126796585\",\"5:126723562\",\"5:126795246\",\"5:126710915\",\"5:126630491\",\"5:126769874\",\"5:126744956\",\"5:126661600\",\"5:126731876\",\"5:126717984\",\"5:126725054\",\"5:126725568\",\"5:126726847\",\"5:126699347\",\"5:126726851\",\"5:126697138\",\"5:126796531\",\"5:126797292\",\"5:126715759\",\"5:126687687\",\"5:126686756\",\"5:126657432\",\"5:126773064\",\"5:126775113\",\"5:126661519\",\"5:126694523\",\"5:126669209\",\"5:126645710\",\"5:126739085\",\"5:126698023\",\"5:126683416\",\"5:126693280\",\"5:126775462\",\"5:126669004\",\"5:126645705\",\"5:126683809\",\"5:126682354\",\"5:126731259\",\"5:126727008\",\"5:126641296\",\"5:126641770\",\"5:126685374\",\"5:126640971\",\"5:126645738\",\"5:126639025\",\"5:126637872\",\"5:126682039\",\"5:126639801\",\"5:126659892\",\"5:126640205\",\"5:126658500\",\"5:126656324\",\"5:126633436\",\"5:126633958\",\"5:126646864\",\"5:126640576\",\"5:126644681\",\"5:126654623\",\"5:126645646\",\"5:126635437\",\"5:126698345\",\"5:126694437\",\"5:126679697\",\"5:126688517\",\"5:126687822\",\"5:126640246\",\"5:126652710\",\"5:126650182\",\"5:126679402\",\"5:126625548\",\"5:126668683\",\"5:126674613\",\"5:126664039\",\"5:126648201\",\"5:126628098\",\"5:126639097\",\"5:126657217\",\"5:126639432\",\"5:126664981\",\"5:126662114\",\"5:126632821\",\"5:126656500\",\"5:126636211\",\"5:126655749\",\"5:126631841\",\"5:126655730\",\"5:126654970\",\"5:126647941\",\"5:126633827\",\"5:126629170\",\"5:126626645\",\"5:126628584\",\"5:126630948\",\"5:126627875\",\"5:126626044\",\"7:17282367\",\"7:17282343\",\"7:17282523\",\"7:17282329\",\"7:17282995\",\"7:17282735\",\"7:17283293\",\"7:17283259\",\"7:17283523\",\"7:17282684\",\"7:17284085\",\"7:17286087\",\"7:17282507\",\"7:17282872\",\"7:17282974\",\"7:17285867\",\"7:17284989\",\"7:17284577\",\"7:113987041\",\"7:113987371\",\"7:113987067\",\"7:113987867\",\"7:113988926\",\"7:113987889\",\"7:113988537\",\"7:113987281\",\"7:113989578\",\"7:113990352\",\"15:66185666\",\"15:66185811\",\"15:66185777\",\"15:66186080\",\"15:66185846\",\"15:66186061\",\"15:66189966\",\"15:66194887\",\"15:66195666\",\"15:66193404\",\"15:66203218\",\"15:66204188\",\"15:66197560\",\"15:66185803\",\"15:66258194\",\"15:66221782\",\"15:66188317\",\"15:66259809\",\"15:66217240\",\"15:66253733\",\"15:66269700\",\"15:66269804\",\"15:66269482\",\"15:66272491\",\"15:66269504\",\"15:66271772\",\"15:66323837\",\"15:66438961\",\"15:75026081\",\"15:75025637\",\"15:75026162\",\"15:75026131\",\"15:75029472\",\"15:75029228\",\"15:75027179\",\"15:75027432\",\"15:75025814\",\"15:75026149\",\"15:75027880\",\"15:75028490\",\"15:75025988\"],\"p_value\":{\"__ndarray__\":\"jeS+yW7c4z9S8Yky+9HZP+JEnEd7pco/w5v9vRXAsD9AaWo/tlSoP9CrugB5X40/i0konKcfaD8tPNf91zZBP0NLt2dyBTc/HVxajn15Kj8IMW08ABEaP81tOUL1ZwQ/4MvFGnac8j451gLS3L7oP/+PQstyhtk/2s+sExIpzj88n9lDn5a6P1hyA39QUaw/2GlTk3cNmj9YnkOAOqiIP0Gb7u/8mnk/LzhuhFSuNT94jwJ8sPkNP53AaemNat0+5iIpObm+tz4SpJ3Dc/tYProJcUlbGh0+J9U2dpj99j2M72xQ7S/pPIi0ikMoaUM8fzOgvUpjXDhCu0UrrkkQOFBZXe3kpAY45HoI8or2fjc4OpNSjVRgN/uUX8EuQDU2lbbhu7OGPyfb7kMzRd7hP9EMXN/Xa9o/8q0eDMncyD+emldvRMy0P/flLuOmy6U/145OtcQOnj/bSE4VXaCKP5XU3+wxOGk/A4aibokqUT/xkyHayMJKP5HyXkvW3hs/3uAzooyWCz/sVGGWk2jyPuPlyUPlx3c8z7Uy/L4soDsJULmf2gyDOzMChn8Wv3s7cgCvvenz5z+oGbQo6wPbP6OkRGkEYM0/CvBZOM0lvz/YC/LRgSygP1QVNEa8CZ4/nSo49O5cjj8PnESOjQ55P9AwDNqGVWg/cSzvgKUsVj8CsxxmS01GP5Jv23UWvT0/8gmmetfILD9qH1OBpK0UP1eTAgx6Swo/RG/M3XGq+j4IdpVCY4HhPi0ELwnNjds+xxfQVIA+yT7c+D0OFV+5Pr9Vhy/566k+z9hSxRgAmD6Xgswt1/WMPtHmwKdaz3E+aV7i55Y9aT7O4Ucwc6RUPoyZ1dplFkk+AdHfJDYkPj7JaqtjsgYgPpBsqTBSyhk+shU5SUAfCj7EnXeYcTvkPfMW+i+D1t09bUlYdWV0wz2QJGdyyQe4PT2a0k6T8Z49IWLla4LcjD1tc4O40sYsPYgVBAFOmtk8MQ5swBbhjzzgciw9NfphPIzOgxT53FY8uXLUeSLERTyNjwa2YOMRPM7EysLTkwg8adc5yXByqTt5ebxL8GSRO6gnbKsllXY7kBj0PBNDZzt7ZJKX1chUO0kv3BAb+0M7xCENq+r4BTsZQ1xuZXb6Oq8XT+mWBsc65EZtMzrXuzpzuPQJoeOTOmOvVYnOkyI6q9WtntmU/znB3CI1K0b1OZRw1yp649g55TkMhbNGyjlDlxncEmusOVPtjr6qwXk5srwBzRd/Wjmk70Tdih3UOIyVpGDamLE42EsiS96+pjg8F/vXJYc+OOerXB+VrSY4D9Zk3a3SEjif1yk2a6HtN8M2nugvjec3V5sPFslrxjeocPypkpW3N+bAz0E/UqY3Jlbad9FVmTd1f955+aliN/zwJ6tva1E3R5a96qIEKDfSdzLyUrj+NlsVMl82Ttk2kOw1beBgljbnMs79FrP9NQhXIUW7APg1wwjpruwYvDX+S4Mf6sayNfsSrVFSV6Y1DNP6q7NNdDVBWqLqyu5TNaDWeuU4ZCo1QwmkWT5cETXJa70J8R7mNFm1+DewRM40B/WZ2jrdyjRVXM7a8QusNJCYPXUatpI0gVzmpgPKhzQVmisokg5gNB9ZYYW0RFo0Z2tKrbY2RzRO7eKfVrA2NBnMhyz4mBo0biEz/YWQzTPySSK4KJFtMxZZchEQaV4zgydQIUn5QzPh+f5+8xwLM9V0hM++qgIzQjFDOBD40jKpHZQ51I9MMlQtVgKKgycyRMGbZGxc4zFvNO6w+l40MQSgqq2adXowYNlpnj9kcjDDU2sJ5Yo8MJP0k4ZRU2YvHhJJqzm8MC4x3rrgnFh/LTtYg3NiwGktfFyKuZsiKy15puncHzvRLE4u/5SgcMcsxsHaiGWroyxeUTp7Rf2OLOb5CzLoI4gsH4PHvX/BdSyIypu7xK04LD9mvrlv8hQs0y0uLaO5misZ1596qdRsK82QjyZsNeUqOQhPA3HBQSkpxs4jg+tJIV0WcfG6RSghj6Nqxl4QECE1raoucojGIOXsrEPnwKQgM+usT8wo6T9eJwX8+ivcPxTcwu+ij8Y/cGhfzUDSsT8FbVJxyRajP0joHY+qyZ0/Vy1FWsAKgj8dPiD2CSNzPyqK9Yojrmk/jGccvjKUSj8L+B5qqAc6P3eQNTuZ/Ps+dm+oZisZ7T7jD6A280mIPjFZUGOIslk+VB+DSULDgjwZ810m/bMqPHbo/4v0fTw1v4YGptU36T8VnOr6j+PaP1rD4YzhW8M/dSbBOyRAsT8A/pmAsC6JP1qPqHL/THE/wL7Sao7+ZT/I1bbPoe1QPx/LJf3290g/nL4su99psj5h/4GAO2TnP13KP4hLdNo/8ASgjjDdyT9ry0mmb+S9P1DWg05mY6w/omhGEQ2nmD8oueQjAtqHPwTW8pnk5H4/lgQNEJoWbj8pvED2G6lWPxKt5DJWckI/X+bXAL+COz8u+sRpnI0vP8rU0a0Y1h4/BKE00P4xAT+uAI/qpaLyPm0g8/kgROo+0/cedxTk0j4LK8gq+ATBPq/1CbjSwLA+sXAtQmCwpz7FBEjHNnqVPjJxi7srBnM+qGClMUw7aD7l2RszYWRQPsDX6hN8AUw+nahrACZNiD7lxmZynoQTPv4VaOSm5eY/j897ksQf3D+kF4QBkAHNP6uifB46n7I/NTQwYd41qT8H3NAoPHKHPyGdejzj+H4/eBX2mp74Xz/aK8fjbDFdPz/4BHv+30I/7UnE5y7JxT6Ruch8NhB/PgVEnOi2pFs+\",\"dtype\":\"float64\",\"shape\":[261]},\"rs\":[\"rs150055772\",\"rs574502076\",\"rs558429529\",\"rs200762071\",\"rs145115545\",\"rs940928\",\"rs3749096\",\"rs10206737\",\"rs13001699\",\"rs3789738\",\"rs3827760\",\"rs10865025\",\"rs11689836\",\"rs546066562\",\"rs532374240\",\"rs538046270\",\"rs528192892\",\"rs184491207\",\"rs558223447\",\"rs371522534\",\"rs79922615\",\"rs201276449\",\"rs114946697\",\"rs7607981\",\"rs13431945\",\"rs36054640\",\"rs16863471\",\"rs529478087\",\"rs71050391\",\"rs986429\",\"rs66885466\",\"rs2196751\",\"rs16863473\",\"rs11690945\",\"rs5838931\",\"rs2218064\",\"rs2218065\",\"rs574866870\",\"rs571577163\",\"rs191006095\",\"rs562738931\",\"rs144220715\",\"rs566909613\",\"rs149974830\",\"rs139265415\",\"rs2590770\",\"rs2590771\",\"rs75718680\",\"rs79162003\",\"rs2668552\",\"rs6858782\",\"rs6816209\",\"rs6818959\",\"rs4864809\",\"rs541948164\",\"rs547382339\",\"rs565944571\",\"rs115887870\",\"rs75840444\",\"rs563348241\",\"rs146724967\",\"rs10519930\",\"rs116760623\",\"rs150961227\",\"rs76396046\",\"rs144701115\",\"rs79449805\",\"rs75811918\",\"rs62373865\",\"rs74472247\",\"rs78627309\",\"rs78802780\",\"rs79637336\",\"rs59539946\",\"rs76302267\",\"rs17165102\",\"rs114484030\",\"rs17165105\",\"rs183280201\",\"rs4836320\",\"rs10519939\",\"rs35528\",\"rs7702573\",\"rs73785574\",\"rs35524\",\"rs73785580\",\"rs17165082\",\"rs78120546\",\"rs77589749\",\"rs11285616\",\"rs79713470\",\"rs2194080\",\"rs138731838\",\"rs72786459\",\"rs10793809\",\"rs59745564\",\"rs6866678\",\"rs2898043\",\"rs9327438\",\"rs3756722\",\"rs34537147\",\"rs200086613\",\"rs10078629\",\"rs56320297\",\"rs33930493\",\"rs2059084\",\"rs35529\",\"rs10041484\",\"rs4401615\",\"rs2008432\",\"rs35525\",\"rs1318923\",\"rs35527\",\"rs35236935\",\"rs4836323\",\"rs113091845\",\"rs43148\",\"rs185030\",\"rs246889\",\"rs6859304\",\"rs34451603\",\"rs10550881\",\"rs27563\",\"rs145619126\",\"rs541675801\",\"rs6877254\",\"rs35156178\",\"rs187514\",\"rs144085293\",\"rs2408872\",\"rs26944\",\"rs201053818\",\"rs27388\",\"rs246894\",\"rs13171067\",\"rs1019482\",\"rs2585194\",\"rs2585193\",\"rs550745558\",\"rs2546081\",\"rs13153845\",\"rs2546079\",\"rs2546806\",\"rs246895\",\"rs2431724\",\"rs34208116\",\"rs1816058\",\"rs152122\",\"rs3050850\",\"rs970546\",\"rs2585196\",\"rs2161283\",\"rs2546080\",\"rs2254762\",\"rs2439927\",\"rs2546805\",\"rs35796097\",\"rs35526\",\"rs26947\",\"rs246896\",\"rs185033\",\"rs36308\",\"rs1816059\",\"rs246945\",\"rs1345663\",\"rs246897\",\"rs2408868\",\"rs2546078\",\"rs27782\",\"rs36307\",\"rs1422317\",\"rs2194079\",\"rs2546807\",\"rs152121\",\"rs2585195\",\"rs27749\",\"rs26945\",\"rs2585199\",\"rs152120\",\"rs2546809\",\"rs246887\",\"rs2585200\",\"rs246886\",\"rs246885\",\"rs1422316\",\"rs2585197\",\"rs12519784\",\"rs2032834\",\"rs112394041\",\"rs2059083\",\"rs4836316\",\"rs1363387\",\"rs535176587\",\"rs552946856\",\"rs540537374\",\"rs188125151\",\"rs556065339\",\"rs114486984\",\"rs112975519\",\"rs145880637\",\"rs112056574\",\"rs561704396\",\"rs6943079\",\"rs79694830\",\"rs62444547\",\"rs79710531\",\"rs17137451\",\"rs10281571\",\"rs10277582\",\"rs4410790\",\"rs192308926\",\"rs545983423\",\"rs183299685\",\"rs183624347\",\"rs116148093\",\"rs2690825\",\"rs2690826\",\"rs1527146\",\"rs2690827\",\"rs2049604\",\"rs543734954\",\"rs184379270\",\"rs563630446\",\"rs149930722\",\"rs114717896\",\"rs72742821\",\"rs34363188\",\"rs76390544\",\"rs140274890\",\"rs1063697\",\"rs55730328\",\"rs116748454\",\"rs16949086\",\"rs61543049\",\"rs333552\",\"rs77371692\",\"rs72742822\",\"rs333554\",\"rs12903123\",\"rs333567\",\"rs693217\",\"rs511563\",\"rs2437056\",\"rs388813\",\"rs372969314\",\"rs428658\",\"rs333584\",\"rs35259179\",\"rs150782361\",\"rs35042613\",\"rs533126191\",\"rs184871949\",\"rs76255041\",\"rs77021813\",\"rs17861120\",\"rs17861121\",\"rs12441817\",\"rs17861118\",\"rs2472297\",\"rs11072500\",\"rs4886605\"]},\"selected\":{\"id\":\"1085\",\"type\":\"Selection\"},\"selection_policy\":{\"id\":\"1084\",\"type\":\"UnionRenderers\"}},\"id\":\"1038\",\"type\":\"ColumnDataSource\"},{\"attributes\":{\"filters\":[{\"id\":\"1057\",\"type\":\"GroupFilter\"}],\"source\":{\"id\":\"1038\",\"type\":\"ColumnDataSource\"}},\"id\":\"1058\",\"type\":\"CDSView\"},{\"attributes\":{\"data_source\":{\"id\":\"1038\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1054\",\"type\":\"Circle\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1055\",\"type\":\"Circle\"},\"selection_glyph\":null,\"view\":{\"id\":\"1052\",\"type\":\"CDSView\"}},\"id\":\"1056\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"bottom_units\":\"screen\",\"fill_alpha\":{\"value\":0.5},\"fill_color\":{\"value\":\"lightgrey\"},\"left_units\":\"screen\",\"level\":\"overlay\",\"line_alpha\":{\"value\":1.0},\"line_color\":{\"value\":\"black\"},\"line_dash\":[4,4],\"line_width\":{\"value\":2},\"render_mode\":\"css\",\"right_units\":\"screen\",\"top_units\":\"screen\"},\"id\":\"1086\",\"type\":\"BoxAnnotation\"},{\"attributes\":{\"line_color\":{\"value\":\"red\"},\"line_dash\":[6],\"line_width\":{\"value\":1.5},\"location\":7.301029995663981},\"id\":\"1096\",\"type\":\"Span\"},{\"attributes\":{\"fill_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1002\",\"type\":\"CategoricalColorMapper\"}},\"line_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1002\",\"type\":\"CategoricalColorMapper\"}},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1066\",\"type\":\"Circle\"},{\"attributes\":{\"fill_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1002\",\"type\":\"CategoricalColorMapper\"}},\"line_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1002\",\"type\":\"CategoricalColorMapper\"}},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1060\",\"type\":\"Circle\"},{\"attributes\":{},\"id\":\"1028\",\"type\":\"HelpTool\"},{\"attributes\":{},\"id\":\"1084\",\"type\":\"UnionRenderers\"},{\"attributes\":{\"label\":{\"value\":\"4\"},\"renderers\":[{\"id\":\"1056\",\"type\":\"GlyphRenderer\"}]},\"id\":\"1071\",\"type\":\"LegendItem\"},{\"attributes\":{\"color_mapper\":null,\"formatter\":{\"id\":\"1082\",\"type\":\"BasicTickFormatter\"},\"ticker\":{\"id\":\"1083\",\"type\":\"BasicTicker\"},\"visible\":false},\"id\":\"1075\",\"type\":\"ColorBar\"},{\"attributes\":{\"overlay\":{\"id\":\"1086\",\"type\":\"BoxAnnotation\"}},\"id\":\"1025\",\"type\":\"BoxZoomTool\"},{\"attributes\":{\"fill_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1002\",\"type\":\"CategoricalColorMapper\"}},\"line_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1002\",\"type\":\"CategoricalColorMapper\"}},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1054\",\"type\":\"Circle\"},{\"attributes\":{},\"id\":\"1026\",\"type\":\"SaveTool\"},{\"attributes\":{},\"id\":\"1085\",\"type\":\"Selection\"},{\"attributes\":{\"active_drag\":\"auto\",\"active_inspect\":\"auto\",\"active_multi\":null,\"active_scroll\":\"auto\",\"active_tap\":\"auto\",\"tools\":[{\"id\":\"1023\",\"type\":\"PanTool\"},{\"id\":\"1024\",\"type\":\"WheelZoomTool\"},{\"id\":\"1025\",\"type\":\"BoxZoomTool\"},{\"id\":\"1026\",\"type\":\"SaveTool\"},{\"id\":\"1027\",\"type\":\"ResetTool\"},{\"id\":\"1028\",\"type\":\"HelpTool\"},{\"id\":\"1037\",\"type\":\"HoverTool\"}]},\"id\":\"1029\",\"type\":\"Toolbar\"},{\"attributes\":{},\"id\":\"1023\",\"type\":\"PanTool\"},{\"attributes\":{\"dimension\":1,\"ticker\":{\"id\":\"1019\",\"type\":\"BasicTicker\"}},\"id\":\"1022\",\"type\":\"Grid\"},{\"attributes\":{\"filters\":[{\"id\":\"1063\",\"type\":\"GroupFilter\"}],\"source\":{\"id\":\"1038\",\"type\":\"ColumnDataSource\"}},\"id\":\"1064\",\"type\":\"CDSView\"},{\"attributes\":{},\"id\":\"1024\",\"type\":\"WheelZoomTool\"},{\"attributes\":{\"ticker\":{\"id\":\"1014\",\"type\":\"BasicTicker\"}},\"id\":\"1017\",\"type\":\"Grid\"},{\"attributes\":{\"data_source\":{\"id\":\"1038\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1066\",\"type\":\"Circle\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1067\",\"type\":\"Circle\"},\"selection_glyph\":null,\"view\":{\"id\":\"1064\",\"type\":\"CDSView\"}},\"id\":\"1068\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1049\",\"type\":\"Circle\"},{\"attributes\":{},\"id\":\"1082\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{},\"id\":\"1027\",\"type\":\"ResetTool\"},{\"attributes\":{\"column_name\":\"_contig\",\"group\":\"4\"},\"id\":\"1051\",\"type\":\"GroupFilter\"},{\"attributes\":{\"label\":{\"value\":\"5\"},\"renderers\":[{\"id\":\"1062\",\"type\":\"GlyphRenderer\"}]},\"id\":\"1072\",\"type\":\"LegendItem\"},{\"attributes\":{},\"id\":\"1011\",\"type\":\"LinearScale\"},{\"attributes\":{\"filters\":[{\"id\":\"1039\",\"type\":\"GroupFilter\"}],\"source\":{\"id\":\"1038\",\"type\":\"ColumnDataSource\"}},\"id\":\"1040\",\"type\":\"CDSView\"},{\"attributes\":{\"column_name\":\"_contig\",\"group\":\"2\"},\"id\":\"1045\",\"type\":\"GroupFilter\"},{\"attributes\":{\"label\":{\"value\":\"7\"},\"renderers\":[{\"id\":\"1068\",\"type\":\"GlyphRenderer\"}]},\"id\":\"1073\",\"type\":\"LegendItem\"},{\"attributes\":{\"axis_label\":\"Chromosome\",\"formatter\":{\"id\":\"1079\",\"type\":\"BasicTickFormatter\"},\"major_label_overrides\":{\"1313226358\":\"7\",\"2358551415\":\"15\",\"370850307\":\"2\",\"786049562\":\"4\",\"972084330\":\"5\"},\"ticker\":{\"id\":\"1076\",\"type\":\"FixedTicker\"}},\"id\":\"1013\",\"type\":\"LinearAxis\"},{\"attributes\":{\"filters\":[{\"id\":\"1045\",\"type\":\"GroupFilter\"}],\"source\":{\"id\":\"1038\",\"type\":\"ColumnDataSource\"}},\"id\":\"1046\",\"type\":\"CDSView\"},{\"attributes\":{},\"id\":\"1080\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"click_policy\":\"hide\",\"items\":[{\"id\":\"1069\",\"type\":\"LegendItem\"},{\"id\":\"1070\",\"type\":\"LegendItem\"},{\"id\":\"1071\",\"type\":\"LegendItem\"},{\"id\":\"1072\",\"type\":\"LegendItem\"},{\"id\":\"1073\",\"type\":\"LegendItem\"}],\"visible\":false},\"id\":\"1074\",\"type\":\"Legend\"},{\"attributes\":{\"axis_label\":\"P-value (-log10 scale)\",\"formatter\":{\"id\":\"1080\",\"type\":\"BasicTickFormatter\"},\"ticker\":{\"id\":\"1019\",\"type\":\"BasicTicker\"}},\"id\":\"1018\",\"type\":\"LinearAxis\"},{\"attributes\":{\"data_source\":{\"id\":\"1038\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1042\",\"type\":\"Circle\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1043\",\"type\":\"Circle\"},\"selection_glyph\":null,\"view\":{\"id\":\"1040\",\"type\":\"CDSView\"}},\"id\":\"1044\",\"type\":\"GlyphRenderer\"},{\"attributes\":{},\"id\":\"1079\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"label\":{\"value\":\"15\"},\"renderers\":[{\"id\":\"1044\",\"type\":\"GlyphRenderer\"}]},\"id\":\"1069\",\"type\":\"LegendItem\"},{\"attributes\":{},\"id\":\"1014\",\"type\":\"BasicTicker\"},{\"attributes\":{\"callback\":null},\"id\":\"1007\",\"type\":\"DataRange1d\"},{\"attributes\":{\"label\":{\"value\":\"2\"},\"renderers\":[{\"id\":\"1050\",\"type\":\"GlyphRenderer\"}]},\"id\":\"1070\",\"type\":\"LegendItem\"},{\"attributes\":{\"fill_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1002\",\"type\":\"CategoricalColorMapper\"}},\"line_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1002\",\"type\":\"CategoricalColorMapper\"}},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1048\",\"type\":\"Circle\"}],\"root_ids\":[\"1003\"]},\"title\":\"Bokeh Application\",\"version\":\"1.4.0\"}};\n",
-       "  var render_items = [{\"docid\":\"ac18815b-0eb9-4df0-894c-610631249b9f\",\"roots\":{\"1003\":\"0fd03b49-4886-4f4e-9d59-5213c8c2bbb3\"}}];\n",
+       "  var docs_json = {\"1e5fd8a0-a26b-471d-8741-0b96d9e3789d\":{\"roots\":{\"references\":[{\"attributes\":{\"below\":[{\"id\":\"1013\",\"type\":\"LinearAxis\"}],\"center\":[{\"id\":\"1017\",\"type\":\"Grid\"},{\"id\":\"1022\",\"type\":\"Grid\"}],\"left\":[{\"id\":\"1018\",\"type\":\"LinearAxis\"},{\"id\":\"1074\",\"type\":\"Legend\"},{\"id\":\"1075\",\"type\":\"ColorBar\"}],\"plot_width\":1000,\"renderers\":[{\"id\":\"1044\",\"type\":\"GlyphRenderer\"},{\"id\":\"1050\",\"type\":\"GlyphRenderer\"},{\"id\":\"1056\",\"type\":\"GlyphRenderer\"},{\"id\":\"1062\",\"type\":\"GlyphRenderer\"},{\"id\":\"1068\",\"type\":\"GlyphRenderer\"},{\"id\":\"1096\",\"type\":\"Span\"}],\"title\":null,\"toolbar\":{\"id\":\"1029\",\"type\":\"Toolbar\"},\"x_range\":{\"id\":\"1005\",\"type\":\"DataRange1d\"},\"x_scale\":{\"id\":\"1009\",\"type\":\"LinearScale\"},\"y_range\":{\"id\":\"1007\",\"type\":\"DataRange1d\"},\"y_scale\":{\"id\":\"1011\",\"type\":\"LinearScale\"}},\"id\":\"1003\",\"subtype\":\"Figure\",\"type\":\"Plot\"},{\"attributes\":{\"dimension\":1,\"ticker\":{\"id\":\"1019\",\"type\":\"BasicTicker\"}},\"id\":\"1022\",\"type\":\"Grid\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1067\",\"type\":\"Circle\"},{\"attributes\":{},\"id\":\"1009\",\"type\":\"LinearScale\"},{\"attributes\":{\"data_source\":{\"id\":\"1038\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1060\",\"type\":\"Circle\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1061\",\"type\":\"Circle\"},\"selection_glyph\":null,\"view\":{\"id\":\"1058\",\"type\":\"CDSView\"}},\"id\":\"1062\",\"type\":\"GlyphRenderer\"},{\"attributes\":{},\"id\":\"1011\",\"type\":\"LinearScale\"},{\"attributes\":{},\"id\":\"1080\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"color_mapper\":null,\"formatter\":{\"id\":\"1082\",\"type\":\"BasicTickFormatter\"},\"ticker\":{\"id\":\"1081\",\"type\":\"BasicTicker\"},\"visible\":false},\"id\":\"1075\",\"type\":\"ColorBar\"},{\"attributes\":{\"axis_label\":\"Chromosome\",\"formatter\":{\"id\":\"1083\",\"type\":\"BasicTickFormatter\"},\"major_label_overrides\":{\"1313226358\":\"7\",\"2358551415\":\"15\",\"370850307\":\"2\",\"786049562\":\"4\",\"972084330\":\"5\"},\"ticker\":{\"id\":\"1076\",\"type\":\"FixedTicker\"}},\"id\":\"1013\",\"type\":\"LinearAxis\"},{\"attributes\":{},\"id\":\"1019\",\"type\":\"BasicTicker\"},{\"attributes\":{\"fill_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1002\",\"type\":\"CategoricalColorMapper\"}},\"line_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1002\",\"type\":\"CategoricalColorMapper\"}},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1060\",\"type\":\"Circle\"},{\"attributes\":{},\"id\":\"1014\",\"type\":\"BasicTicker\"},{\"attributes\":{\"filters\":[{\"id\":\"1057\",\"type\":\"GroupFilter\"}],\"source\":{\"id\":\"1038\",\"type\":\"ColumnDataSource\"}},\"id\":\"1058\",\"type\":\"CDSView\"},{\"attributes\":{\"ticker\":{\"id\":\"1014\",\"type\":\"BasicTicker\"}},\"id\":\"1017\",\"type\":\"Grid\"},{\"attributes\":{\"column_name\":\"_contig\",\"group\":\"7\"},\"id\":\"1063\",\"type\":\"GroupFilter\"},{\"attributes\":{\"axis_label\":\"P-value (-log10 scale)\",\"formatter\":{\"id\":\"1080\",\"type\":\"BasicTickFormatter\"},\"ticker\":{\"id\":\"1019\",\"type\":\"BasicTicker\"}},\"id\":\"1018\",\"type\":\"LinearAxis\"},{\"attributes\":{\"callback\":null,\"data\":{\"_contig\":[\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\"],\"_global_locus\":{\"__ndarray__\":\"AAAAIkZitUEAAACjRmK1QQAAAFpGYrVBAAAAY0ZitUEAAABnRmK1QQAAABxSYrVBAAAAKEpitUEAAADoSWK1QQAAAGZJYrVBAAAAdk9itUEAAAC9TmK1QQAAAJFHYrVBAAAAJVRitUEAAAC4eCa8QQAAABp2JrxBAAAAVnUmvEEAAACQdia8QQAAADyCJrxBAAAAuXwmvEEAAACkeCa8QQAAAJyGJrxBAAAAzoAmvEEAAABXdSa8QQAAAP51JrxBAAAAG4MmvEEAAAD0dya8QQAAAKt5JrxBAAAA6nkmvEEAAADCgCa8QQAAAIt3JrxBAAAA7YImvEEAAAC2fSa8QQAAAAJ6JrxBAAAAYIUmvEEAAACHgia8QQAAAGZ8JrxBAAAAHn4mvEEAAAAIxDPGQQAAACXDM8ZBAACASMMzxkEAAIAexDPGQQAAAOHEM8ZBAAAAd8gzxkEAAIB/xDPGQQAAgJ7DM8ZBAACA1MUzxkEAAAAlxjPGQQAAANbDM8ZBAACAqMszxkEAAAChxDPGQQAAAEHLM8ZBAACAgMUzxkEAAABTwzPGQQAAAIjHM8ZBAAAAMFoMzkEAAIDVWAzOQQAAAK5ZDM5BAAAAnFoMzkEAAIACWwzOQQAAALhaDM5BAACANl4MzkEAAIB7WwzOQQAAABRbDM5BAAAAYWcMzkEAAIDscgzOQQAAAL9bDM5BAAAA4W0MzkEAAIAWagzOQQAAgGJfDM5BAAAAdGEMzkEAAACgWQzOQQAAgO6BDM5BAAAA9l0MzkEAAIDHmQzOQQAAgJaiDM5BAAAA3WYMzkEAAIBAoQzOQQAAAOZiDM5BAACAwVoMzkEAAIAqsQzOQQAAgBgxDc5BAAAAkeIMzkEAAIAVbwzOQQAAgANqDM5BAACAQO8MzkEAAADmlAzOQQAAgJxwDM5BAACAx7wMzkEAAIDItgzOQQAAgJykDM5BAAAArQkNzkEAAIALbAzOQQAAAHmRDM5BAACA8X8MzkEAAAAnog3OQQAAgC6DDc5BAAAA0nANzkEAAAC6qA3OQQAAgBoaDc5BAACAHKYNzkEAAABnAQ3OQQAAAFNkDM5BAACAjnQNzkEAAIDjQw3OQQAAgBWhDM5BAACAVyoNzkEAAIA1Dw3OQQAAgAQdDc5BAACABR4NzkEAAACFIA3OQQAAAM/qDM5BAAAAhyANzkEAAIB+5gzOQQAAAJ+oDc5BAACAG6oNzkEAAADdCg3OQQAAAAnUDM5BAACAN9IMzkEAAIDxmAzOQQAAgMl6Dc5BAAAAyn4NzkEAAADtoAzOQQAAAGPhDM5BAAAA8q8MzkEAAIAMggzOQQAAAGw4Dc5BAAAAOegMzkEAAICxywzOQQAAgPXeDM5BAACAeH8NzkEAAICLrwzOQQAAAAqCDM5BAAAAdswMzkEAAICeyQzOQQAAACMpDc5BAACA1SANzkEAAIBteQzOQQAAgFp6DM5BAACAhM8MzkEAAADLeAzOQQAAgBqCDM5BAAAA/nQMzkEAAIC9cgzOQQAAAAHJDM5BAAAAgnYMzkEAAIC/nQzOQQAAAEx3DM5BAACAB5sMzkEAAIDHlgzOQQAAgBNqDM5BAACAGGsMzkEAAIBNhAzOQQAAgAV4DM5BAAAACoAMzkEAAAB1kwzOQQAAgOyBDM5BAAAA/G0MzkEAAADa6AzOQQAAADjhDM5BAAAAbsQMzkEAAACo1QzOQQAAgEzUDM5BAACAYHcMzkEAAIC4jwzOQQAAgMiKDM5BAACA2sMMzkEAAICrWgzOQQAAAOuuDM5BAAAAgLoMzkEAAADZpQzOQQAAAOqGDM5BAACApl8MzkEAAAAidQzOQQAAAIaYDM5BAACAyXUMzkEAAACwpwzOQQAAgBaiDM5BAAAA4GgMzkEAAIAflwzOQQAAAH9vDM5BAAAAqJUMzkEAAAD2ZgzOQQAAgJ6VDM5BAACAIpQMzkEAAABohgzOQQAAANdqDM5BAACAvmEMzkEAAADQXAzOQQAAgJlgDM5BAACAN2UMzkEAAAA3XwzOQQAAgKNbDM5BAABAgPSj0kEAAEB69KPSQQAAQKf0o9JBAADAdvSj0kEAAEAd9aPSQQAAQNz0o9JBAADAZ/Wj0kEAAEBf9aPSQQAAQKH1o9JBAACAz/Sj0kEAAMAt9qPSQQAAQCL4o9JBAABAo/Sj0kEAAID+9KPSQQAAABj1o9JBAABA6/ej0kEAAMAP96PSQQAAwKj2o9JBAADAqNoU1EEAAED72hTUQQAAQK/aFNRBAABAd9sU1EEAAACA3BTUQQAAwHzbFNRBAADAHtwU1EEAAMDk2hTUQQAAACPdFNRBAACA5N0U1EEAAACTCa/hQQAAIKUJr+FBAADgoAmv4UEAAMDGCa/hQQAAgKkJr+FBAABgxAmv4UEAAICsC6/hQQAAoBMOr+FBAAAAdQ6v4UEAAEBaDa/hQQAAACUSr+FBAABAnhKv4UEAAMBhD6/hQQAAIKQJr+FBAAAA/Syv4UEAAIA1G6/hQQAAYN4Kr+FBAADgxi2v4UEAAMD9GK/hQQAAYM8qr+FBAABAmzKv4UEAAECoMq/hQQAAAIAyr+FBAAAg+DOv4UEAAMCCMq/hQQAAQJ4zr+FBAABgCk2v4UEAAOBAha/hQQAA4C7mv+FBAABg9+W/4UEAAAA55r/hQQAAIDXmv+FBAADA1ue/4UEAAEC457/hQQAAILjmv+FBAADA1+a/4UEAAIAN5r/hQQAAYDfmv+FBAADAD+e/4UEAAABc57/hQQAAQCPmv+FB\",\"dtype\":\"float64\",\"shape\":[261]},\"_pval\":{\"__ndarray__\":\"lIMDoc6Dyj8MYQxR5TrZP3TVXnVuz+U//TovDo3y8j9hcsMndyv1P48+tq5+fv0/o+7ZFmE/BEA26i8iizwKQCv+soaCogtAytJt5rSODUD2q7mIhAIQQHtAK0mloxFAx9WqjNgAE0ARbsM5RpW8P8DINlGsjNk/On2kKrYW5D95cBFDOnnvPztu5l2LHfQ/O3N1u9yC+T96FHtbz7X+P59M8G/ZoQFAhypjhdzXC0AW+HUMovgQQKSx1krFnRRAkEUT6oZlF0DxStqOd4geQKnN+1vLiiFA9km5lnjzIkDRz4+BWBstQKARd9dFrTFApbNAwwI9QkD60exLBfZCQHiYs5Y8CkNAhambJ6FTREB63WrmuZ1EQLCKscQwa0dApQW78nO6XUD/ZeSeRDLQPy7hr1gql9g/2LC8I/jF5j9iisSbinHxP00izss37/U/ItObh3uE+D/aV61WIC3+P0+XNavdFwRAUFDJfIXWB0CONP7pHrQIQJahOcCDyQ9AkTKCboodEUC1Y7cltwUTQEB+G66BrzBAo1UqlS/ENEDPtUMfH0w1QPtqbuhgbzVA/ky3LgQawD9KT+C69PjXP6r/OMeUdOQ/HtVvEClG7T+m+K2P3gH4P+L0fHylhfg/MVWAvoVD/T9BW/WhHLUBQG+YAnOnNwRAX3ndztPyBkAtiZ9uPFYJQK/Xhy3KvgpAGaBQWk1EDUC/OeN0f2kQQO38NG/kMhFAahhTsupgEkBiNdYfV1AUQGnKICrbuhRAnmSqwQsWFkC8DCVwEEgXQBDZ5HfGchhAlhqBf0fJGUDnydSi/akaQGw1yOdzthxAnAFeEKNPHUC2bvDQU90eQFOfgxrauh9ApGx5T75OIEDhCO2CVHUhQAdBrRKqpSFAXWTJGPM8IkA6HASlBKojQCqMdwnC7SNAMwYsmPzmJEBOkAj/JFIlQCtxjSYtTiZA3rJHTcv3JkA3vaw/NpUqQF7CAqXVsS1ABth35dtBMEA3Ih6rrBsxQKIWlFYCTjFADaXYJ4qgMUBM6ky4i50yQJtxzv9JxzJAfKOwMc6RNEBBfUwJKwk1QJ/98v9FhjVA1q1epArQNUAZ0nUloCk2QKXinMISezZA8kXq2sOkN0AWFXrUJ903QO3FxznQ0zhAaDaX98MLOUCqrPgCScs5QD8fjh9R7jtA1oVWZ4OaPED8+bsgcMY8QHKBHoQeTz1A1xyGqCaWPUBILjW6kCc+QOF4YbOwGT9A0RFeKauwP0AF6T3H5xtBQMb+FIJncEFAUyoldauIQUABjovBCIZCQLTzSfkWvUJArgiMo/rtQkA4pDQbWkhDQPD25cEdVUNAce3YFeqkQ0D2qTluoshDQIO53tg58kNAbz/EkbcRREBdyaEFTZZEQBV/cwerwERAW08fYmgiRUBf++OBUohFQL6cFRQq4EVAFDRlBiCBRkCeXZCrtfJHQAGMf0qM/kdAHp98euuPSEAqN+goU6ZIQNRbOwsyw0hAHHFydBs8SUAsKXMDMopJQKBChS0w7klAQNfqBgEsSkCYljvWIJJKQBdtj5fCzUpAm7NcdGTUSkAGIj2/Dx9LQJSYqLsXXEtA5m9kDUd1S0D6OaFhMdhLQLM4Sa5c40tA0LVDGMQQTEAi/QO6kThMQPNoERLMfExAX1dazJM3TUA3iyqCwx5OQPlXQWq7Q05Aqt51wqGBTkB/ZeJtxQpPQJ/PBEqFH09ASPV8VTmST0BGbO45IWtQQK9NKjcRl1BA0EwKPojpUEDkybY+C7xRQFBpAHf3m1JAh28afROmUkDUlgGF7OZSQEmeg4w16FNATBG2vEVeVUAMpW8nBTRWQDOE7x7ATFZAQp+BAlyYVkDbImSyTwVXQI+fIhgGEFdA7plnGW47V0ASjEq+U1VXQOGrAexEXFdAI5d2/mxyV0DtBr1P/LtXQGQnUQcT51dAhQ9LPW56WEC+frnaHrJYQM63zCDIVFlAuUUqkaJOW0AlygsuFHNiQIgrdehBh2JANHX7caCWYkDHQOmuFsJiQL6o/25/1mJAewBUjUC9uj+g67nTsM7WP3h6jDaKH+g/LEWHlU2E8j+nuCewFNv2P6Mn+5iHlPg/8Uhym7twAEC5Dflt16QCQLLjZ5jDBwRAPbS/kDC6CECvWfJDQzULQGaoxGJqSxJAbzx2KlluE0BKi2ZkOPgaQA/L20Dqex5AWzi7E8t8MEAn/HJ98CMyQJCOxTBmw0lAUQ05IuJ6uj9KQgbsUhrYP3xy07oiQOo/YErvqjS+8j+x2jmnUJD+P/u98BWO/gJA3dCAqJGRBEBEMzo87+IHQDpYaxjH8QhAI3T1opzWF0AufB+GcGvBP3dlpp9Hjtg/w+/2OXU55j9RGrwuhNjtP7vAgrIcGfQ/51wKfB/l+T+W/G9m5fD+P94oBAHZ+gBAr/noU916A0BThkNwid8GQOMtoiEL/wlAhxZg+AwEC0A/2uHNnvIMQM83H+GRbw9AbTjdt8fvEUAUFr7PRAATQO46tjDjmxNAZiXkW7hiFUC3c9kJX8UWQL6AT/uiABhAtmfyJtWaGEBcgh1irPoZQP9eg98fmRxAPifmZsdhHUCbqdj82kMfQJbNoQzqiR9AbyCi2P33GkAb+8p1oOMhQIy7AUJ7m8I/+kBmBcDa1j8mO38LjaHkP7wN4fsfNvI/vLd1JEzs9D94TkprYw//PwHHixaa+ABAE63O9WKtBUDfhRk4Pf4FQKyhxUWg6glAr8tdO5FXFkDA6vruEb8bQHxPPJlzWx5A\",\"dtype\":\"float64\",\"shape\":[261]},\"index\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260],\"locus\":[\"2:109511398\",\"2:109511527\",\"2:109511454\",\"2:109511463\",\"2:109511467\",\"2:109514464\",\"2:109512428\",\"2:109512364\",\"2:109512234\",\"2:109513786\",\"2:109513601\",\"2:109511765\",\"2:109514985\",\"2:223032700\",\"2:223032030\",\"2:223031834\",\"2:223032148\",\"2:223035136\",\"2:223033725\",\"2:223032680\",\"2:223036256\",\"2:223034770\",\"2:223031835\",\"2:223032002\",\"2:223035359\",\"2:223032504\",\"2:223032943\",\"2:223033006\",\"2:223034758\",\"2:223032399\",\"2:223035313\",\"2:223033978\",\"2:223033030\",\"2:223035940\",\"2:223035211\",\"2:223033642\",\"2:223034082\",\"4:54510121\",\"4:54509667\",\"4:54509738\",\"4:54510166\",\"4:54510555\",\"4:54512391\",\"4:54510360\",\"4:54509910\",\"4:54511042\",\"4:54511203\",\"4:54510021\",\"4:54514026\",\"4:54510427\",\"4:54513819\",\"4:54510874\",\"4:54509759\",\"4:54511913\",\"5:126625301\",\"5:126624608\",\"5:126625041\",\"5:126625517\",\"5:126625722\",\"5:126625573\",\"5:126627362\",\"5:126625964\",\"5:126625757\",\"5:126632055\",\"5:126637966\",\"5:126626099\",\"5:126635383\",\"5:126633442\",\"5:126627962\",\"5:126629021\",\"5:126625013\",\"5:126645650\",\"5:126627233\",\"5:126657860\",\"5:126662370\",\"5:126631791\",\"5:126661686\",\"5:126629761\",\"5:126625592\",\"5:126669834\",\"5:126735334\",\"5:126695127\",\"5:126636000\",\"5:126633404\",\"5:126701622\",\"5:126655361\",\"5:126636782\",\"5:126675780\",\"5:126672710\",\"5:126663406\",\"5:126715151\",\"5:126634444\",\"5:126653607\",\"5:126644632\",\"5:126793219\",\"5:126777362\",\"5:126767961\",\"5:126796585\",\"5:126723562\",\"5:126795246\",\"5:126710915\",\"5:126630491\",\"5:126769874\",\"5:126744956\",\"5:126661600\",\"5:126731876\",\"5:126717984\",\"5:126725054\",\"5:126725568\",\"5:126726847\",\"5:126699347\",\"5:126726851\",\"5:126697138\",\"5:126796531\",\"5:126797292\",\"5:126715759\",\"5:126687687\",\"5:126686756\",\"5:126657432\",\"5:126773064\",\"5:126775113\",\"5:126661519\",\"5:126694523\",\"5:126669209\",\"5:126645710\",\"5:126739085\",\"5:126698023\",\"5:126683416\",\"5:126693280\",\"5:126775462\",\"5:126669004\",\"5:126645705\",\"5:126683809\",\"5:126682354\",\"5:126731259\",\"5:126727008\",\"5:126641296\",\"5:126641770\",\"5:126685374\",\"5:126640971\",\"5:126645738\",\"5:126639025\",\"5:126637872\",\"5:126682039\",\"5:126639801\",\"5:126659892\",\"5:126640205\",\"5:126658500\",\"5:126656324\",\"5:126633436\",\"5:126633958\",\"5:126646864\",\"5:126640576\",\"5:126644681\",\"5:126654623\",\"5:126645646\",\"5:126635437\",\"5:126698345\",\"5:126694437\",\"5:126679697\",\"5:126688517\",\"5:126687822\",\"5:126640246\",\"5:126652710\",\"5:126650182\",\"5:126679402\",\"5:126625548\",\"5:126668683\",\"5:126674613\",\"5:126664039\",\"5:126648201\",\"5:126628098\",\"5:126639097\",\"5:126657217\",\"5:126639432\",\"5:126664981\",\"5:126662114\",\"5:126632821\",\"5:126656500\",\"5:126636211\",\"5:126655749\",\"5:126631841\",\"5:126655730\",\"5:126654970\",\"5:126647941\",\"5:126633827\",\"5:126629170\",\"5:126626645\",\"5:126628584\",\"5:126630948\",\"5:126627875\",\"5:126626044\",\"7:17282367\",\"7:17282343\",\"7:17282523\",\"7:17282329\",\"7:17282995\",\"7:17282735\",\"7:17283293\",\"7:17283259\",\"7:17283523\",\"7:17282684\",\"7:17284085\",\"7:17286087\",\"7:17282507\",\"7:17282872\",\"7:17282974\",\"7:17285867\",\"7:17284989\",\"7:17284577\",\"7:113987041\",\"7:113987371\",\"7:113987067\",\"7:113987867\",\"7:113988926\",\"7:113987889\",\"7:113988537\",\"7:113987281\",\"7:113989578\",\"7:113990352\",\"15:66185666\",\"15:66185811\",\"15:66185777\",\"15:66186080\",\"15:66185846\",\"15:66186061\",\"15:66189966\",\"15:66194887\",\"15:66195666\",\"15:66193404\",\"15:66203218\",\"15:66204188\",\"15:66197560\",\"15:66185803\",\"15:66258194\",\"15:66221782\",\"15:66188317\",\"15:66259809\",\"15:66217240\",\"15:66253733\",\"15:66269700\",\"15:66269804\",\"15:66269482\",\"15:66272491\",\"15:66269504\",\"15:66271772\",\"15:66323837\",\"15:66438961\",\"15:75026081\",\"15:75025637\",\"15:75026162\",\"15:75026131\",\"15:75029472\",\"15:75029228\",\"15:75027179\",\"15:75027432\",\"15:75025814\",\"15:75026149\",\"15:75027880\",\"15:75028490\",\"15:75025988\"],\"p_value\":{\"__ndarray__\":\"jeS+yW7c4z9S8Yky+9HZP+JEnEd7pco/w5v9vRXAsD9AaWo/tlSoP9CrugB5X40/i0konKcfaD8tPNf91zZBP0NLt2dyBTc/HVxajn15Kj8IMW08ABEaP81tOUL1ZwQ/4MvFGnac8j451gLS3L7oP/+PQstyhtk/2s+sExIpzj88n9lDn5a6P1hyA39QUaw/2GlTk3cNmj9YnkOAOqiIP0Gb7u/8mnk/LzhuhFSuNT94jwJ8sPkNP53AaemNat0+5iIpObm+tz4SpJ3Dc/tYProJcUlbGh0+J9U2dpj99j2M72xQ7S/pPIi0ikMoaUM8fzOgvUpjXDhCu0UrrkkQOFBZXe3kpAY45HoI8or2fjc4OpNSjVRgN/uUX8EuQDU2lbbhu7OGPyfb7kMzRd7hP9EMXN/Xa9o/8q0eDMncyD+emldvRMy0P/flLuOmy6U/145OtcQOnj/bSE4VXaCKP5XU3+wxOGk/A4aibokqUT/xkyHayMJKP5HyXkvW3hs/3uAzooyWCz/sVGGWk2jyPuPlyUPlx3c8z7Uy/L4soDsJULmf2gyDOzMChn8Wv3s7cgCvvenz5z+oGbQo6wPbP6OkRGkEYM0/CvBZOM0lvz/YC/LRgSygP1QVNEa8CZ4/nSo49O5cjj8PnESOjQ55P9AwDNqGVWg/cSzvgKUsVj8CsxxmS01GP5Jv23UWvT0/8gmmetfILD9qH1OBpK0UP1eTAgx6Swo/RG/M3XGq+j4IdpVCY4HhPi0ELwnNjds+xxfQVIA+yT7c+D0OFV+5Pr9Vhy/566k+z9hSxRgAmD6Xgswt1/WMPtHmwKdaz3E+aV7i55Y9aT7O4Ucwc6RUPoyZ1dplFkk+AdHfJDYkPj7JaqtjsgYgPpBsqTBSyhk+shU5SUAfCj7EnXeYcTvkPfMW+i+D1t09bUlYdWV0wz2QJGdyyQe4PT2a0k6T8Z49IWLla4LcjD1tc4O40sYsPYgVBAFOmtk8MQ5swBbhjzzgciw9NfphPIzOgxT53FY8uXLUeSLERTyNjwa2YOMRPM7EysLTkwg8adc5yXByqTt5ebxL8GSRO6gnbKsllXY7kBj0PBNDZzt7ZJKX1chUO0kv3BAb+0M7xCENq+r4BTsZQ1xuZXb6Oq8XT+mWBsc65EZtMzrXuzpzuPQJoeOTOmOvVYnOkyI6q9WtntmU/znB3CI1K0b1OZRw1yp649g55TkMhbNGyjlDlxncEmusOVPtjr6qwXk5srwBzRd/Wjmk70Tdih3UOIyVpGDamLE42EsiS96+pjg8F/vXJYc+OOerXB+VrSY4D9Zk3a3SEjif1yk2a6HtN8M2nugvjec3V5sPFslrxjeocPypkpW3N+bAz0E/UqY3Jlbad9FVmTd1f955+aliN/zwJ6tva1E3R5a96qIEKDfSdzLyUrj+NlsVMl82Ttk2kOw1beBgljbnMs79FrP9NQhXIUW7APg1wwjpruwYvDX+S4Mf6sayNfsSrVFSV6Y1DNP6q7NNdDVBWqLqyu5TNaDWeuU4ZCo1QwmkWT5cETXJa70J8R7mNFm1+DewRM40B/WZ2jrdyjRVXM7a8QusNJCYPXUatpI0gVzmpgPKhzQVmisokg5gNB9ZYYW0RFo0Z2tKrbY2RzRO7eKfVrA2NBnMhyz4mBo0biEz/YWQzTPySSK4KJFtMxZZchEQaV4zgydQIUn5QzPh+f5+8xwLM9V0hM++qgIzQjFDOBD40jKpHZQ51I9MMlQtVgKKgycyRMGbZGxc4zFvNO6w+l40MQSgqq2adXowYNlpnj9kcjDDU2sJ5Yo8MJP0k4ZRU2YvHhJJqzm8MC4x3rrgnFh/LTtYg3NiwGktfFyKuZsiKy15puncHzvRLE4u/5SgcMcsxsHaiGWroyxeUTp7Rf2OLOb5CzLoI4gsH4PHvX/BdSyIypu7xK04LD9mvrlv8hQs0y0uLaO5misZ1596qdRsK82QjyZsNeUqOQhPA3HBQSkpxs4jg+tJIV0WcfG6RSghj6Nqxl4QECE1raoucojGIOXsrEPnwKQgM+usT8wo6T9eJwX8+ivcPxTcwu+ij8Y/cGhfzUDSsT8FbVJxyRajP0joHY+qyZ0/Vy1FWsAKgj8dPiD2CSNzPyqK9Yojrmk/jGccvjKUSj8L+B5qqAc6P3eQNTuZ/Ps+dm+oZisZ7T7jD6A280mIPjFZUGOIslk+VB+DSULDgjwZ810m/bMqPHbo/4v0fTw1v4YGptU36T8VnOr6j+PaP1rD4YzhW8M/dSbBOyRAsT8A/pmAsC6JP1qPqHL/THE/wL7Sao7+ZT/I1bbPoe1QPx/LJf3290g/nL4su99psj5h/4GAO2TnP13KP4hLdNo/8ASgjjDdyT9ry0mmb+S9P1DWg05mY6w/omhGEQ2nmD8oueQjAtqHPwTW8pnk5H4/lgQNEJoWbj8pvED2G6lWPxKt5DJWckI/X+bXAL+COz8u+sRpnI0vP8rU0a0Y1h4/BKE00P4xAT+uAI/qpaLyPm0g8/kgROo+0/cedxTk0j4LK8gq+ATBPq/1CbjSwLA+sXAtQmCwpz7FBEjHNnqVPjJxi7srBnM+qGClMUw7aD7l2RszYWRQPsDX6hN8AUw+nahrACZNiD7lxmZynoQTPv4VaOSm5eY/j897ksQf3D+kF4QBkAHNP6uifB46n7I/NTQwYd41qT8H3NAoPHKHPyGdejzj+H4/eBX2mp74Xz/aK8fjbDFdPz/4BHv+30I/7UnE5y7JxT6Ruch8NhB/PgVEnOi2pFs+\",\"dtype\":\"float64\",\"shape\":[261]},\"rs\":[\"rs150055772\",\"rs574502076\",\"rs558429529\",\"rs200762071\",\"rs145115545\",\"rs940928\",\"rs3749096\",\"rs10206737\",\"rs13001699\",\"rs3789738\",\"rs3827760\",\"rs10865025\",\"rs11689836\",\"rs546066562\",\"rs532374240\",\"rs538046270\",\"rs528192892\",\"rs184491207\",\"rs558223447\",\"rs371522534\",\"rs79922615\",\"rs201276449\",\"rs114946697\",\"rs7607981\",\"rs13431945\",\"rs36054640\",\"rs16863471\",\"rs529478087\",\"rs71050391\",\"rs986429\",\"rs66885466\",\"rs2196751\",\"rs16863473\",\"rs11690945\",\"rs5838931\",\"rs2218064\",\"rs2218065\",\"rs574866870\",\"rs571577163\",\"rs191006095\",\"rs562738931\",\"rs144220715\",\"rs566909613\",\"rs149974830\",\"rs139265415\",\"rs2590770\",\"rs2590771\",\"rs75718680\",\"rs79162003\",\"rs2668552\",\"rs6858782\",\"rs6816209\",\"rs6818959\",\"rs4864809\",\"rs541948164\",\"rs547382339\",\"rs565944571\",\"rs115887870\",\"rs75840444\",\"rs563348241\",\"rs146724967\",\"rs10519930\",\"rs116760623\",\"rs150961227\",\"rs76396046\",\"rs144701115\",\"rs79449805\",\"rs75811918\",\"rs62373865\",\"rs74472247\",\"rs78627309\",\"rs78802780\",\"rs79637336\",\"rs59539946\",\"rs76302267\",\"rs17165102\",\"rs114484030\",\"rs17165105\",\"rs183280201\",\"rs4836320\",\"rs10519939\",\"rs35528\",\"rs7702573\",\"rs73785574\",\"rs35524\",\"rs73785580\",\"rs17165082\",\"rs78120546\",\"rs77589749\",\"rs11285616\",\"rs79713470\",\"rs2194080\",\"rs138731838\",\"rs72786459\",\"rs10793809\",\"rs59745564\",\"rs6866678\",\"rs2898043\",\"rs9327438\",\"rs3756722\",\"rs34537147\",\"rs200086613\",\"rs10078629\",\"rs56320297\",\"rs33930493\",\"rs2059084\",\"rs35529\",\"rs10041484\",\"rs4401615\",\"rs2008432\",\"rs35525\",\"rs1318923\",\"rs35527\",\"rs35236935\",\"rs4836323\",\"rs113091845\",\"rs43148\",\"rs185030\",\"rs246889\",\"rs6859304\",\"rs34451603\",\"rs10550881\",\"rs27563\",\"rs145619126\",\"rs541675801\",\"rs6877254\",\"rs35156178\",\"rs187514\",\"rs144085293\",\"rs2408872\",\"rs26944\",\"rs201053818\",\"rs27388\",\"rs246894\",\"rs13171067\",\"rs1019482\",\"rs2585194\",\"rs2585193\",\"rs550745558\",\"rs2546081\",\"rs13153845\",\"rs2546079\",\"rs2546806\",\"rs246895\",\"rs2431724\",\"rs34208116\",\"rs1816058\",\"rs152122\",\"rs3050850\",\"rs970546\",\"rs2585196\",\"rs2161283\",\"rs2546080\",\"rs2254762\",\"rs2439927\",\"rs2546805\",\"rs35796097\",\"rs35526\",\"rs26947\",\"rs246896\",\"rs185033\",\"rs36308\",\"rs1816059\",\"rs246945\",\"rs1345663\",\"rs246897\",\"rs2408868\",\"rs2546078\",\"rs27782\",\"rs36307\",\"rs1422317\",\"rs2194079\",\"rs2546807\",\"rs152121\",\"rs2585195\",\"rs27749\",\"rs26945\",\"rs2585199\",\"rs152120\",\"rs2546809\",\"rs246887\",\"rs2585200\",\"rs246886\",\"rs246885\",\"rs1422316\",\"rs2585197\",\"rs12519784\",\"rs2032834\",\"rs112394041\",\"rs2059083\",\"rs4836316\",\"rs1363387\",\"rs535176587\",\"rs552946856\",\"rs540537374\",\"rs188125151\",\"rs556065339\",\"rs114486984\",\"rs112975519\",\"rs145880637\",\"rs112056574\",\"rs561704396\",\"rs6943079\",\"rs79694830\",\"rs62444547\",\"rs79710531\",\"rs17137451\",\"rs10281571\",\"rs10277582\",\"rs4410790\",\"rs192308926\",\"rs545983423\",\"rs183299685\",\"rs183624347\",\"rs116148093\",\"rs2690825\",\"rs2690826\",\"rs1527146\",\"rs2690827\",\"rs2049604\",\"rs543734954\",\"rs184379270\",\"rs563630446\",\"rs149930722\",\"rs114717896\",\"rs72742821\",\"rs34363188\",\"rs76390544\",\"rs140274890\",\"rs1063697\",\"rs55730328\",\"rs116748454\",\"rs16949086\",\"rs61543049\",\"rs333552\",\"rs77371692\",\"rs72742822\",\"rs333554\",\"rs12903123\",\"rs333567\",\"rs693217\",\"rs511563\",\"rs2437056\",\"rs388813\",\"rs372969314\",\"rs428658\",\"rs333584\",\"rs35259179\",\"rs150782361\",\"rs35042613\",\"rs533126191\",\"rs184871949\",\"rs76255041\",\"rs77021813\",\"rs17861120\",\"rs17861121\",\"rs12441817\",\"rs17861118\",\"rs2472297\",\"rs11072500\",\"rs4886605\"]},\"selected\":{\"id\":\"1085\",\"type\":\"Selection\"},\"selection_policy\":{\"id\":\"1086\",\"type\":\"UnionRenderers\"}},\"id\":\"1038\",\"type\":\"ColumnDataSource\"},{\"attributes\":{},\"id\":\"1083\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"data_source\":{\"id\":\"1038\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1066\",\"type\":\"Circle\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1067\",\"type\":\"Circle\"},\"selection_glyph\":null,\"view\":{\"id\":\"1064\",\"type\":\"CDSView\"}},\"id\":\"1068\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"click_policy\":\"hide\",\"items\":[{\"id\":\"1069\",\"type\":\"LegendItem\"},{\"id\":\"1070\",\"type\":\"LegendItem\"},{\"id\":\"1071\",\"type\":\"LegendItem\"},{\"id\":\"1072\",\"type\":\"LegendItem\"},{\"id\":\"1073\",\"type\":\"LegendItem\"}],\"visible\":false},\"id\":\"1074\",\"type\":\"Legend\"},{\"attributes\":{},\"id\":\"1024\",\"type\":\"WheelZoomTool\"},{\"attributes\":{\"label\":{\"value\":\"7\"},\"renderers\":[{\"id\":\"1068\",\"type\":\"GlyphRenderer\"}]},\"id\":\"1073\",\"type\":\"LegendItem\"},{\"attributes\":{\"line_color\":{\"value\":\"red\"},\"line_dash\":[6],\"line_width\":{\"value\":1.5},\"location\":7.301029995663981},\"id\":\"1096\",\"type\":\"Span\"},{\"attributes\":{},\"id\":\"1082\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"column_name\":\"_contig\",\"group\":\"15\"},\"id\":\"1039\",\"type\":\"GroupFilter\"},{\"attributes\":{},\"id\":\"1028\",\"type\":\"HelpTool\"},{\"attributes\":{\"ticks\":[370850307,786049562,972084330,1313226358,2358551415]},\"id\":\"1076\",\"type\":\"FixedTicker\"},{\"attributes\":{\"data_source\":{\"id\":\"1038\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1042\",\"type\":\"Circle\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1043\",\"type\":\"Circle\"},\"selection_glyph\":null,\"view\":{\"id\":\"1040\",\"type\":\"CDSView\"}},\"id\":\"1044\",\"type\":\"GlyphRenderer\"},{\"attributes\":{},\"id\":\"1081\",\"type\":\"BasicTicker\"},{\"attributes\":{\"column_name\":\"_contig\",\"group\":\"4\"},\"id\":\"1051\",\"type\":\"GroupFilter\"},{\"attributes\":{},\"id\":\"1027\",\"type\":\"ResetTool\"},{\"attributes\":{\"fill_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1002\",\"type\":\"CategoricalColorMapper\"}},\"line_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1002\",\"type\":\"CategoricalColorMapper\"}},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1042\",\"type\":\"Circle\"},{\"attributes\":{},\"id\":\"1023\",\"type\":\"PanTool\"},{\"attributes\":{\"filters\":[{\"id\":\"1039\",\"type\":\"GroupFilter\"}],\"source\":{\"id\":\"1038\",\"type\":\"ColumnDataSource\"}},\"id\":\"1040\",\"type\":\"CDSView\"},{\"attributes\":{\"factors\":[\"1\",\"2\",\"3\",\"4\",\"5\",\"6\",\"7\",\"8\",\"9\",\"10\",\"11\",\"12\",\"13\",\"14\",\"15\",\"16\",\"17\",\"18\",\"19\",\"20\",\"21\",\"22\",\"X\",\"Y\",\"MT\",\"GL000207.1\",\"GL000226.1\",\"GL000229.1\",\"GL000231.1\",\"GL000210.1\",\"GL000239.1\",\"GL000235.1\",\"GL000201.1\",\"GL000247.1\",\"GL000245.1\",\"GL000197.1\",\"GL000203.1\",\"GL000246.1\",\"GL000249.1\",\"GL000196.1\",\"GL000248.1\",\"GL000244.1\",\"GL000238.1\",\"GL000202.1\",\"GL000234.1\",\"GL000232.1\",\"GL000206.1\",\"GL000240.1\",\"GL000236.1\",\"GL000241.1\",\"GL000243.1\",\"GL000242.1\",\"GL000230.1\",\"GL000237.1\",\"GL000233.1\",\"GL000204.1\",\"GL000198.1\",\"GL000208.1\",\"GL000191.1\",\"GL000227.1\",\"GL000228.1\",\"GL000214.1\",\"GL000221.1\",\"GL000209.1\",\"GL000218.1\",\"GL000220.1\",\"GL000213.1\",\"GL000211.1\",\"GL000199.1\",\"GL000217.1\",\"GL000216.1\",\"GL000215.1\",\"GL000205.1\",\"GL000219.1\",\"GL000224.1\",\"GL000223.1\",\"GL000195.1\",\"GL000212.1\",\"GL000222.1\",\"GL000200.1\",\"GL000193.1\",\"GL000194.1\",\"GL000225.1\",\"GL000192.1\"],\"palette\":[\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\"]},\"id\":\"1002\",\"type\":\"CategoricalColorMapper\"},{\"attributes\":{\"filters\":[{\"id\":\"1045\",\"type\":\"GroupFilter\"}],\"source\":{\"id\":\"1038\",\"type\":\"ColumnDataSource\"}},\"id\":\"1046\",\"type\":\"CDSView\"},{\"attributes\":{},\"id\":\"1026\",\"type\":\"SaveTool\"},{\"attributes\":{\"label\":{\"value\":\"4\"},\"renderers\":[{\"id\":\"1056\",\"type\":\"GlyphRenderer\"}]},\"id\":\"1071\",\"type\":\"LegendItem\"},{\"attributes\":{\"overlay\":{\"id\":\"1084\",\"type\":\"BoxAnnotation\"}},\"id\":\"1025\",\"type\":\"BoxZoomTool\"},{\"attributes\":{\"fill_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1002\",\"type\":\"CategoricalColorMapper\"}},\"line_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1002\",\"type\":\"CategoricalColorMapper\"}},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1048\",\"type\":\"Circle\"},{\"attributes\":{},\"id\":\"1086\",\"type\":\"UnionRenderers\"},{\"attributes\":{\"active_drag\":\"auto\",\"active_inspect\":\"auto\",\"active_multi\":null,\"active_scroll\":\"auto\",\"active_tap\":\"auto\",\"tools\":[{\"id\":\"1023\",\"type\":\"PanTool\"},{\"id\":\"1024\",\"type\":\"WheelZoomTool\"},{\"id\":\"1025\",\"type\":\"BoxZoomTool\"},{\"id\":\"1026\",\"type\":\"SaveTool\"},{\"id\":\"1027\",\"type\":\"ResetTool\"},{\"id\":\"1028\",\"type\":\"HelpTool\"},{\"id\":\"1037\",\"type\":\"HoverTool\"}]},\"id\":\"1029\",\"type\":\"Toolbar\"},{\"attributes\":{\"callback\":null},\"id\":\"1007\",\"type\":\"DataRange1d\"},{\"attributes\":{\"data_source\":{\"id\":\"1038\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1048\",\"type\":\"Circle\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1049\",\"type\":\"Circle\"},\"selection_glyph\":null,\"view\":{\"id\":\"1046\",\"type\":\"CDSView\"}},\"id\":\"1050\",\"type\":\"GlyphRenderer\"},{\"attributes\":{},\"id\":\"1085\",\"type\":\"Selection\"},{\"attributes\":{\"filters\":[{\"id\":\"1063\",\"type\":\"GroupFilter\"}],\"source\":{\"id\":\"1038\",\"type\":\"ColumnDataSource\"}},\"id\":\"1064\",\"type\":\"CDSView\"},{\"attributes\":{\"callback\":null},\"id\":\"1005\",\"type\":\"DataRange1d\"},{\"attributes\":{\"fill_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1002\",\"type\":\"CategoricalColorMapper\"}},\"line_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1002\",\"type\":\"CategoricalColorMapper\"}},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1066\",\"type\":\"Circle\"},{\"attributes\":{\"column_name\":\"_contig\",\"group\":\"2\"},\"id\":\"1045\",\"type\":\"GroupFilter\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1043\",\"type\":\"Circle\"},{\"attributes\":{\"filters\":[{\"id\":\"1051\",\"type\":\"GroupFilter\"}],\"source\":{\"id\":\"1038\",\"type\":\"ColumnDataSource\"}},\"id\":\"1052\",\"type\":\"CDSView\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1055\",\"type\":\"Circle\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1049\",\"type\":\"Circle\"},{\"attributes\":{\"fill_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1002\",\"type\":\"CategoricalColorMapper\"}},\"line_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1002\",\"type\":\"CategoricalColorMapper\"}},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1054\",\"type\":\"Circle\"},{\"attributes\":{\"column_name\":\"_contig\",\"group\":\"5\"},\"id\":\"1057\",\"type\":\"GroupFilter\"},{\"attributes\":{\"label\":{\"value\":\"2\"},\"renderers\":[{\"id\":\"1050\",\"type\":\"GlyphRenderer\"}]},\"id\":\"1070\",\"type\":\"LegendItem\"},{\"attributes\":{\"data_source\":{\"id\":\"1038\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1054\",\"type\":\"Circle\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1055\",\"type\":\"Circle\"},\"selection_glyph\":null,\"view\":{\"id\":\"1052\",\"type\":\"CDSView\"}},\"id\":\"1056\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"bottom_units\":\"screen\",\"fill_alpha\":{\"value\":0.5},\"fill_color\":{\"value\":\"lightgrey\"},\"left_units\":\"screen\",\"level\":\"overlay\",\"line_alpha\":{\"value\":1.0},\"line_color\":{\"value\":\"black\"},\"line_dash\":[4,4],\"line_width\":{\"value\":2},\"render_mode\":\"css\",\"right_units\":\"screen\",\"top_units\":\"screen\"},\"id\":\"1084\",\"type\":\"BoxAnnotation\"},{\"attributes\":{\"label\":{\"value\":\"15\"},\"renderers\":[{\"id\":\"1044\",\"type\":\"GlyphRenderer\"}]},\"id\":\"1069\",\"type\":\"LegendItem\"},{\"attributes\":{\"callback\":null,\"tooltips\":[[\"rs\",\"@rs\"],[\"locus\",\"@locus\"],[\"p_value\",\"@p_value\"]]},\"id\":\"1037\",\"type\":\"HoverTool\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1061\",\"type\":\"Circle\"},{\"attributes\":{\"label\":{\"value\":\"5\"},\"renderers\":[{\"id\":\"1062\",\"type\":\"GlyphRenderer\"}]},\"id\":\"1072\",\"type\":\"LegendItem\"}],\"root_ids\":[\"1003\"]},\"title\":\"Bokeh Application\",\"version\":\"1.4.0\"}};\n",
+       "  var render_items = [{\"docid\":\"1e5fd8a0-a26b-471d-8741-0b96d9e3789d\",\"roots\":{\"1003\":\"bff7ed2c-a225-4e4d-83de-1b8dedb75e2c\"}}];\n",
        "  root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n",
        "\n",
        "  }\n",
@@ -681,8 +676,8 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "2022-05-09 14:35:04 Hail: INFO: Coerced almost-sorted dataset\n",
-      "[Stage 696:>                                                        (0 + 8) / 9]\r"
+      "2023-01-24 10:37:29 Hail: INFO: Coerced almost-sorted dataset\n",
+      "[Stage 634:==================================================>      (8 + 1) / 9]\r"
      ]
     }
    ],
@@ -709,23 +704,23 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "0.18130990415335463\n"
+      "0.1869009584664537\n"
      ]
     },
     {
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "2022-05-09 14:38:43 Hail: INFO: Coerced sorted dataset\n"
+      "2023-01-24 10:42:05 Hail: INFO: Coerced sorted dataset\n"
      ]
     },
     {
      "data": {
       "text/html": [
        "<table><thead><tr><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \" colspan=\"1\"><div style=\"text-align: left;\"></div></td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \" colspan=\"1\"><div style=\"text-align: left;\"></div></td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \" colspan=\"1\"><div style=\"text-align: left;\"></div></td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \" colspan=\"1\"><div style=\"text-align: left;\"></div></td></tr><tr><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \" colspan=\"1\"><div style=\"text-align: left;border-bottom: solid 2px #000; padding-bottom: 5px\">locus</div></td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \" colspan=\"1\"><div style=\"text-align: left;border-bottom: solid 2px #000; padding-bottom: 5px\">alleles</div></td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \" colspan=\"1\"><div style=\"text-align: left;border-bottom: solid 2px #000; padding-bottom: 5px\">importance</div></td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \" colspan=\"1\"><div style=\"text-align: left;border-bottom: solid 2px #000; padding-bottom: 5px\">splitCount</div></td></tr><tr><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; text-align: left;\">locus&lt;GRCh37&gt;</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; text-align: left;\">array&lt;str&gt;</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; text-align: left;\">float64</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; text-align: left;\">int64</td></tr>\n",
-       "</thead><tbody><tr><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">2:109511398</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">[&quot;G&quot;,&quot;A&quot;]</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">0.00e+00</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">0</td></tr>\n",
-       "<tr><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">2:109511454</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">[&quot;C&quot;,&quot;A&quot;]</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">1.84e-02</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">4</td></tr>\n",
-       "<tr><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">2:109511463</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">[&quot;G&quot;,&quot;A&quot;]</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">1.13e-01</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">24</td></tr>\n",
+       "</thead><tbody><tr><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">2:109511398</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">[&quot;G&quot;,&quot;A&quot;]</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">5.62e-03</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">1</td></tr>\n",
+       "<tr><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">2:109511454</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">[&quot;C&quot;,&quot;A&quot;]</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">0.00e+00</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">0</td></tr>\n",
+       "<tr><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">2:109511463</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">[&quot;G&quot;,&quot;A&quot;]</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">6.66e-02</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">18</td></tr>\n",
        "</tbody></table><p style=\"background: #fdd; padding: 0.4em;\">showing top 3 rows</p>\n"
       ],
       "text/plain": [
@@ -734,9 +729,9 @@
        "+---------------+------------+------------+------------+\n",
        "| locus<GRCh37> | array<str> |    float64 |      int64 |\n",
        "+---------------+------------+------------+------------+\n",
-       "| 2:109511398   | [\"G\",\"A\"]  |   0.00e+00 |          0 |\n",
-       "| 2:109511454   | [\"C\",\"A\"]  |   1.84e-02 |          4 |\n",
-       "| 2:109511463   | [\"G\",\"A\"]  |   1.13e-01 |         24 |\n",
+       "| 2:109511398   | [\"G\",\"A\"]  |   5.62e-03 |          1 |\n",
+       "| 2:109511454   | [\"C\",\"A\"]  |   0.00e+00 |          0 |\n",
+       "| 2:109511463   | [\"G\",\"A\"]  |   6.66e-02 |         18 |\n",
        "+---------------+------------+------------+------------+\n",
        "showing top 3 rows"
       ]
@@ -767,18 +762,18 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "2022-05-09 14:38:44 Hail: INFO: Coerced sorted dataset\n",
-      "2022-05-09 14:38:44 Hail: INFO: Coerced dataset with out-of-order partitions.\n"
+      "2023-01-24 10:42:06 Hail: INFO: Coerced sorted dataset\n",
+      "2023-01-24 10:42:06 Hail: INFO: Coerced dataset with out-of-order partitions.\n"
      ]
     },
     {
      "data": {
       "text/html": [
        "<table><thead><tr><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \" colspan=\"1\"><div style=\"text-align: left;\"></div></td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \" colspan=\"1\"><div style=\"text-align: left;\"></div></td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \" colspan=\"1\"><div style=\"text-align: left;\"></div></td></tr><tr><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \" colspan=\"1\"><div style=\"text-align: left;border-bottom: solid 2px #000; padding-bottom: 5px\">covariate</div></td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \" colspan=\"1\"><div style=\"text-align: left;border-bottom: solid 2px #000; padding-bottom: 5px\">importance</div></td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \" colspan=\"1\"><div style=\"text-align: left;border-bottom: solid 2px #000; padding-bottom: 5px\">splitCount</div></td></tr><tr><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; text-align: left;\">str</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; text-align: left;\">float64</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; text-align: left;\">int64</td></tr>\n",
-       "</thead><tbody><tr><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">&quot;PC0&quot;</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">2.53e+00</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">471</td></tr>\n",
-       "<tr><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">&quot;PC1&quot;</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">2.52e+00</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">479</td></tr>\n",
-       "<tr><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">&quot;PC2&quot;</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">2.57e+00</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">464</td></tr>\n",
-       "<tr><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">&quot;age&quot;</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">2.55e+00</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">473</td></tr>\n",
+       "</thead><tbody><tr><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">&quot;PC0&quot;</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">2.53e+00</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">486</td></tr>\n",
+       "<tr><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">&quot;PC1&quot;</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">2.11e+00</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">433</td></tr>\n",
+       "<tr><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">&quot;PC2&quot;</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">3.09e+00</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">548</td></tr>\n",
+       "<tr><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">&quot;age&quot;</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">2.48e+00</td><td style=\"white-space: nowrap; max-width: 500px; overflow: hidden; text-overflow: ellipsis; \">473</td></tr>\n",
        "</tbody></table>"
       ],
       "text/plain": [
@@ -787,10 +782,10 @@
        "+-----------+------------+------------+\n",
        "| str       |    float64 |      int64 |\n",
        "+-----------+------------+------------+\n",
-       "| \"PC0\"     |   2.53e+00 |        471 |\n",
-       "| \"PC1\"     |   2.52e+00 |        479 |\n",
-       "| \"PC2\"     |   2.57e+00 |        464 |\n",
-       "| \"age\"     |   2.55e+00 |        473 |\n",
+       "| \"PC0\"     |   2.53e+00 |        486 |\n",
+       "| \"PC1\"     |   2.11e+00 |        433 |\n",
+       "| \"PC2\"     |   3.09e+00 |        548 |\n",
+       "| \"age\"     |   2.48e+00 |        473 |\n",
        "+-----------+------------+------------+"
       ]
      },
@@ -819,9 +814,9 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "2022-05-09 14:38:44 Hail: INFO: Table.join: renamed the following fields on the right to avoid name conflicts:\n",
-      "    'alleles' -> 'alleles_1'\n",
-      "    'locus' -> 'locus_1'\n"
+      "2023-01-24 10:42:06 Hail: INFO: Table.join: renamed the following fields on the right to avoid name conflicts:\n",
+      "    'locus' -> 'locus_1'\n",
+      "    'alleles' -> 'alleles_1'\n"
      ]
     }
    ],
@@ -839,7 +834,7 @@
      "output_type": "stream",
      "text": [
       "\r",
-      "[Stage 746:>                                                        (0 + 1) / 1]\r"
+      "[Stage 760:>                                                        (0 + 1) / 1]\r"
      ]
     },
     {
@@ -851,7 +846,7 @@
        "\n",
        "\n",
        "\n",
-       "  <div class=\"bk-root\" id=\"8b3cb01c-4499-4681-9d01-af20d9f8f6df\" data-root-id=\"1161\"></div>\n"
+       "  <div class=\"bk-root\" id=\"23eab958-44f7-4c01-85e1-2e5542853a6a\" data-root-id=\"1161\"></div>\n"
       ]
      },
      "metadata": {},
@@ -863,8 +858,8 @@
        "(function(root) {\n",
        "  function embed_document(root) {\n",
        "    \n",
-       "  var docs_json = {\"1d065151-5af3-4dc1-8b2f-7168f3b3fba0\":{\"roots\":{\"references\":[{\"attributes\":{\"below\":[{\"id\":\"1171\",\"type\":\"LinearAxis\"}],\"center\":[{\"id\":\"1175\",\"type\":\"Grid\"},{\"id\":\"1180\",\"type\":\"Grid\"}],\"left\":[{\"id\":\"1176\",\"type\":\"LinearAxis\"},{\"id\":\"1232\",\"type\":\"Legend\"},{\"id\":\"1233\",\"type\":\"ColorBar\"}],\"plot_width\":1000,\"renderers\":[{\"id\":\"1202\",\"type\":\"GlyphRenderer\"},{\"id\":\"1208\",\"type\":\"GlyphRenderer\"},{\"id\":\"1214\",\"type\":\"GlyphRenderer\"},{\"id\":\"1220\",\"type\":\"GlyphRenderer\"},{\"id\":\"1226\",\"type\":\"GlyphRenderer\"}],\"title\":null,\"toolbar\":{\"id\":\"1187\",\"type\":\"Toolbar\"},\"x_range\":{\"id\":\"1163\",\"type\":\"DataRange1d\"},\"x_scale\":{\"id\":\"1167\",\"type\":\"LinearScale\"},\"y_range\":{\"id\":\"1165\",\"type\":\"DataRange1d\"},\"y_scale\":{\"id\":\"1169\",\"type\":\"LinearScale\"}},\"id\":\"1161\",\"subtype\":\"Figure\",\"type\":\"Plot\"},{\"attributes\":{},\"id\":\"1181\",\"type\":\"PanTool\"},{\"attributes\":{\"filters\":[{\"id\":\"1203\",\"type\":\"GroupFilter\"}],\"source\":{\"id\":\"1196\",\"type\":\"ColumnDataSource\"}},\"id\":\"1204\",\"type\":\"CDSView\"},{\"attributes\":{},\"id\":\"1240\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"column_name\":\"_contig\",\"group\":\"2\"},\"id\":\"1203\",\"type\":\"GroupFilter\"},{\"attributes\":{\"filters\":[{\"id\":\"1215\",\"type\":\"GroupFilter\"}],\"source\":{\"id\":\"1196\",\"type\":\"ColumnDataSource\"}},\"id\":\"1216\",\"type\":\"CDSView\"},{\"attributes\":{},\"id\":\"1186\",\"type\":\"HelpTool\"},{\"attributes\":{\"fill_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1160\",\"type\":\"CategoricalColorMapper\"}},\"line_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1160\",\"type\":\"CategoricalColorMapper\"}},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1218\",\"type\":\"Circle\"},{\"attributes\":{\"callback\":null},\"id\":\"1163\",\"type\":\"DataRange1d\"},{\"attributes\":{\"axis_label\":\"Importance (gini)\",\"formatter\":{\"id\":\"1238\",\"type\":\"BasicTickFormatter\"},\"ticker\":{\"id\":\"1177\",\"type\":\"BasicTicker\"}},\"id\":\"1176\",\"type\":\"LinearAxis\"},{\"attributes\":{},\"id\":\"1167\",\"type\":\"LinearScale\"},{\"attributes\":{\"ticks\":[370850306,786049561,972084329,1313226357,2358551414]},\"id\":\"1234\",\"type\":\"FixedTicker\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1207\",\"type\":\"Circle\"},{\"attributes\":{\"data_source\":{\"id\":\"1196\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1206\",\"type\":\"Circle\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1207\",\"type\":\"Circle\"},\"selection_glyph\":null,\"view\":{\"id\":\"1204\",\"type\":\"CDSView\"}},\"id\":\"1208\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"active_drag\":\"auto\",\"active_inspect\":\"auto\",\"active_multi\":null,\"active_scroll\":\"auto\",\"active_tap\":\"auto\",\"tools\":[{\"id\":\"1181\",\"type\":\"PanTool\"},{\"id\":\"1182\",\"type\":\"WheelZoomTool\"},{\"id\":\"1183\",\"type\":\"BoxZoomTool\"},{\"id\":\"1184\",\"type\":\"SaveTool\"},{\"id\":\"1185\",\"type\":\"ResetTool\"},{\"id\":\"1186\",\"type\":\"HelpTool\"},{\"id\":\"1195\",\"type\":\"HoverTool\"}]},\"id\":\"1187\",\"type\":\"Toolbar\"},{\"attributes\":{\"filters\":[{\"id\":\"1197\",\"type\":\"GroupFilter\"}],\"source\":{\"id\":\"1196\",\"type\":\"ColumnDataSource\"}},\"id\":\"1198\",\"type\":\"CDSView\"},{\"attributes\":{\"fill_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1160\",\"type\":\"CategoricalColorMapper\"}},\"line_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1160\",\"type\":\"CategoricalColorMapper\"}},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1206\",\"type\":\"Circle\"},{\"attributes\":{},\"id\":\"1182\",\"type\":\"WheelZoomTool\"},{\"attributes\":{\"click_policy\":\"hide\",\"items\":[{\"id\":\"1227\",\"type\":\"LegendItem\"},{\"id\":\"1228\",\"type\":\"LegendItem\"},{\"id\":\"1229\",\"type\":\"LegendItem\"},{\"id\":\"1230\",\"type\":\"LegendItem\"},{\"id\":\"1231\",\"type\":\"LegendItem\"}],\"visible\":false},\"id\":\"1232\",\"type\":\"Legend\"},{\"attributes\":{},\"id\":\"1238\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{},\"id\":\"1177\",\"type\":\"BasicTicker\"},{\"attributes\":{\"callback\":null},\"id\":\"1165\",\"type\":\"DataRange1d\"},{\"attributes\":{\"overlay\":{\"id\":\"1244\",\"type\":\"BoxAnnotation\"}},\"id\":\"1183\",\"type\":\"BoxZoomTool\"},{\"attributes\":{\"data_source\":{\"id\":\"1196\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1212\",\"type\":\"Circle\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1213\",\"type\":\"Circle\"},\"selection_glyph\":null,\"view\":{\"id\":\"1210\",\"type\":\"CDSView\"}},\"id\":\"1214\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"factors\":[\"1\",\"2\",\"3\",\"4\",\"5\",\"6\",\"7\",\"8\",\"9\",\"10\",\"11\",\"12\",\"13\",\"14\",\"15\",\"16\",\"17\",\"18\",\"19\",\"20\",\"21\",\"22\",\"X\",\"Y\",\"MT\",\"GL000207.1\",\"GL000226.1\",\"GL000229.1\",\"GL000231.1\",\"GL000210.1\",\"GL000239.1\",\"GL000235.1\",\"GL000201.1\",\"GL000247.1\",\"GL000245.1\",\"GL000197.1\",\"GL000203.1\",\"GL000246.1\",\"GL000249.1\",\"GL000196.1\",\"GL000248.1\",\"GL000244.1\",\"GL000238.1\",\"GL000202.1\",\"GL000234.1\",\"GL000232.1\",\"GL000206.1\",\"GL000240.1\",\"GL000236.1\",\"GL000241.1\",\"GL000243.1\",\"GL000242.1\",\"GL000230.1\",\"GL000237.1\",\"GL000233.1\",\"GL000204.1\",\"GL000198.1\",\"GL000208.1\",\"GL000191.1\",\"GL000227.1\",\"GL000228.1\",\"GL000214.1\",\"GL000221.1\",\"GL000209.1\",\"GL000218.1\",\"GL000220.1\",\"GL000213.1\",\"GL000211.1\",\"GL000199.1\",\"GL000217.1\",\"GL000216.1\",\"GL000215.1\",\"GL000205.1\",\"GL000219.1\",\"GL000224.1\",\"GL000223.1\",\"GL000195.1\",\"GL000212.1\",\"GL000222.1\",\"GL000200.1\",\"GL000193.1\",\"GL000194.1\",\"GL000225.1\",\"GL000192.1\"],\"palette\":[\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\"]},\"id\":\"1160\",\"type\":\"CategoricalColorMapper\"},{\"attributes\":{\"label\":{\"value\":\"2\"},\"renderers\":[{\"id\":\"1208\",\"type\":\"GlyphRenderer\"}]},\"id\":\"1228\",\"type\":\"LegendItem\"},{\"attributes\":{\"column_name\":\"_contig\",\"group\":\"5\"},\"id\":\"1215\",\"type\":\"GroupFilter\"},{\"attributes\":{\"label\":{\"value\":\"7\"},\"renderers\":[{\"id\":\"1226\",\"type\":\"GlyphRenderer\"}]},\"id\":\"1231\",\"type\":\"LegendItem\"},{\"attributes\":{},\"id\":\"1237\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"label\":{\"value\":\"15\"},\"renderers\":[{\"id\":\"1202\",\"type\":\"GlyphRenderer\"}]},\"id\":\"1227\",\"type\":\"LegendItem\"},{\"attributes\":{},\"id\":\"1241\",\"type\":\"BasicTicker\"},{\"attributes\":{\"label\":{\"value\":\"4\"},\"renderers\":[{\"id\":\"1214\",\"type\":\"GlyphRenderer\"}]},\"id\":\"1229\",\"type\":\"LegendItem\"},{\"attributes\":{},\"id\":\"1185\",\"type\":\"ResetTool\"},{\"attributes\":{\"fill_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1160\",\"type\":\"CategoricalColorMapper\"}},\"line_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1160\",\"type\":\"CategoricalColorMapper\"}},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1212\",\"type\":\"Circle\"},{\"attributes\":{\"dimension\":1,\"ticker\":{\"id\":\"1177\",\"type\":\"BasicTicker\"}},\"id\":\"1180\",\"type\":\"Grid\"},{\"attributes\":{\"bottom_units\":\"screen\",\"fill_alpha\":{\"value\":0.5},\"fill_color\":{\"value\":\"lightgrey\"},\"left_units\":\"screen\",\"level\":\"overlay\",\"line_alpha\":{\"value\":1.0},\"line_color\":{\"value\":\"black\"},\"line_dash\":[4,4],\"line_width\":{\"value\":2},\"render_mode\":\"css\",\"right_units\":\"screen\",\"top_units\":\"screen\"},\"id\":\"1244\",\"type\":\"BoxAnnotation\"},{\"attributes\":{},\"id\":\"1243\",\"type\":\"Selection\"},{\"attributes\":{\"callback\":null,\"data\":{\"_contig\":[\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\"],\"_global_locus\":{\"__ndarray__\":\"AAAAIkZitUEAAABWR2K1QQAAAFBKYrVBAAAAY0ZitUEAAAAZVWK1QQAAAE1UYrVBAAAAfElitUEAAAA3U2K1QQAAAO9IYrVBAAAA2kpitUEAAAAoSmK1QQAAAGdGYrVBAAAAtVBitUEAAABmSWK1QQAAAJFHYrVBAAAAdk9itUEAAAAcUmK1QQAAAL1OYrVBAAAAVnUmvEEAAACRdia8QQAAAAR8JrxBAAAAV3UmvEEAAAA5fSa8QQAAAJV1JrxBAAAAXH4mvEEAAACsfia8QQAAABuDJrxBAAAAq3kmvEEAAACoeia8QQAAAEd9JrxBAAAA/nUmvEEAAADqeSa8QQAAAPR3JrxBAAAAfngmvEEAAABweya8QQAAAMKAJrxBAAAAi3cmvEEAAACHgia8QQAAAO2CJrxBAAAAtn0mvEEAAAACeia8QQAAAGZ8JrxBAAAAYIAmvEEAAAAefia8QQAAACXDM8ZBAAAAX8MzxkEAAAA9xjPGQQAAgGjFM8ZBAAAA7sozxkEAAAAhyzPGQQAAANbDM8ZBAAAAHMkzxkEAAIAIyDPGQQAAAOHEM8ZBAACAqMszxkEAAAAlxjPGQQAAgDrGM8ZBAACA1MUzxkEAAAChxDPGQQAAAEHLM8ZBAACAgMUzxkEAAABTwzPGQQAAAIjHM8ZBAACA1VgMzkEAAIAeWgzOQQAAAKBaDM5BAAAA9l0MzkEAAAAbWgzOQQAAAKBZDM5BAAAAAl4MzkEAAID6YQzOQQAAgI9vDM5BAACAwWYMzkEAAIALbAzOQQAAgANqDM5BAAAA5mIMzkEAAIDBWgzOQQAAAMJaDM5BAACAFFsMzkEAAIAaggzOQQAAgBoaDc5BAACAmXwMzkEAAIAFHg3OQQAAgBhrDM5BAACAFaEMzkEAAIBteQzOQQAAgMl/DM5BAAAATHcMzkEAAIDxfwzOQQAAADnoDM5BAACAUIEMzkEAAABTZAzOQQAAgMiPDM5BAAAAdswMzkEAAIB4fw3OQQAAgCB6DM5BAAAA53sMzkEAAAAffAzOQQAAgL1yDM5BAACATNQMzkEAAAD8bQzOQQAAgBiYDM5BAACAXJIMzkEAAAD+dAzOQQAAgFp6DM5BAACAe38MzkEAAIDsgQzOQQAAAMt4DM5BAACAyXUMzkEAAAAjKQ3OQQAAAH5/DM5BAACAx5YMzkEAAICYmQzOQQAAgBNqDM5BAAAAqNUMzkEAAAA1dQzOQQAAAIyeDM5BAAAAbsQMzkEAAADqhgzOQQAAgB+XDM5BAAAAgnYMzkEAAIBsoQzOQQAAAOuuDM5BAACAyIoMzkEAAADgaAzOQQAAgO1oDM5BAACAp6AMzkEAAAAZdgzOQQAAAD1tDM5BAAAAaIYMzkEAAAAidQzOQQAAAH9vDM5BAACAq1oMzkEAAADXagzOQQAAAG9uDM5BAAAAS20MzkEAAAColQzOQQAAgCKUDM5BAAAA9mYMzkEAAICmXwzOQQAAALCnDM5BAACAnpUMzkEAAIC+YQzOQQAAADdfDM5BAACAZWMMzkEAAADQXAzOQQAAAPdgDM5BAACAo1sMzkEAAIA3ZQzOQQAAgKFhDM5BAACAmWAMzkEAAMB29KPSQQAAQH70o9JBAACAAvWj0kEAAECG9KPSQQAAwKr1o9JBAACA/vSj0kEAAECj9KPSQQAAQCL4o9JBAADALfaj0kEAAEDr96PSQQAAwA/3o9JBAADAqPaj0kEAAMCo2hTUQQAAgETbFNRBAAAAENsU1EEAAMCs3BTUQQAAAMXcFNRBAADAIN0U1EEAAMB82xTUQQAAwB7cFNRBAADA5NoU1EEAAACTCa/hQQAAgKkJr+FBAADgDQqv4UEAAABXCq/hQQAAoOcJr+FBAABgxAmv4UEAACC3D6/hQQAAAMkKr+FBAABAWg2v4UEAAIA1G6/hQQAAAEITr+FBAACgJCav4UEAAGDeCq/hQQAAoFMQr+FBAABgsByv4UEAAAAlEq/hQQAAIKQJr+FBAABAI0Gv4UEAAIByXq/hQQAAoM8+r+FBAADgVHOv4UEAAEC3ca/hQQAAYDJdr+FBAABg9+W/4UEAAMBH5r/hQQAAoBHnv+FBAADA1+a/4UEAAGA35r/hQQAAIHPmv+FBAADAYee/4UEAAMAP57/hQQAAoM3nv+FBAAAguOa/4UEAAOA757/hQQAAQLjnv+FBAACADea/4UEAAABc57/hQQAAQCPmv+FBAADABOi/4UE=\",\"dtype\":\"float64\",\"shape\":[211]},\"_pval\":{\"__ndarray__\":\"AAAAAAAAAADEE/55d0KmPxIqxNsMXLc/0sNZppMNvT9GCCQ98sLEPwJ/OHbK9sU/7k0EQjhjyz/TKxyI6EPOP2hgcr95LdI/ecPnY/ED1D+C9GWIq6LVP58Nt0cEttc/GTNS01yX2j/8wRTZsujdP324YQxJNOA/w6MxavZZ4T8sO4Vygn/iP5ezHCg+ZuQ/AAAAAAAAAABiN0oXk/qkP2XDy2pJK7I/H8gFf3nduT+qrNK45TjCPy82QTDwbcY/aK+T066syj8rNrzfnBbRPzU0LXM2b9Q/2ta3Rb9O4T+WENURacPkP5+adNMc3OU/hKGX9o3d5j/lDYYDUaDyP15wTQrD2fQ/0S4DQBOpBkDX6Plx5nUHQH3JOMMaPAhAigpTYxKgCkDD3fwRilgTQA37zvOW8xRAN6zLaZ0eGEDu9cTOMXcZQHMwRt5qcBpAMb1yopPFG0CyDaNyZKcwQAAAAAAAAAAAnv3k2BkkrD9cEoVYp1yyP5hITJ9KCMA/oRiI8/n9wz8dz4wL1FnHP8fGloHFvNE/5RjdF9+d2z+3FCHBOA3eP6sv+QhR5uA/j+vrI15V4z83zdY0jyflPzQPDFNNdeg/7yHp9yzt6T9kheGeUnHuP7YmOzkW0Q1AbN6V6LLCEUD8xV1Px9ETQFP3DRQhVBRAAAAAAAAAAACI8VYd9oSlPzOKrnfFbrE/LRmNH0Lhuj9K0yEBLovBPwvKjjUwCsg/kDOgoxM2zT/lm4/IELTPP6PWoP3wANM/p3db+qsd1T/yQ6pRnvvWP2VQt7fZ8Nc/1Iqd8ibI2T+Qwpahkb/dP3M4QEN+6N0/XkV6wVb24D8GKGNNGZnhPwp91BSMueI/2CmD8+zL4z837WhBp1/kP0PSw/JLNuY/F0k2tGDa5j+jcDxG0pPpP4+Qk99m5ek/4Rtfa5Su6j8A8u91mF/sPxETWcwsme0/wr3/nv/37j+UEb9RQkLwP7Qf76sMDfE/33giQPki8T+FOaSYVxDyP+MMmB7Ck/I/LnWPRhf+8j+mYkr9w6nzP4Ixe4RCJPQ/qf1OgH5g9D+5XB8NX/f0PxalQkhl4/U/9IB8bhnK9j86hzpbRgL3P0qKMo2uzfc/SpS2qyhO+D/Xl9Go9Kv4P6ycCnD2F/k/d0jwXWHp+T/6fn7I1Sr6P8reqT2P/fo/0APWKnu1+z+qafqzFD38P92+XLZ/i/w/1gutU33I/T9lWJ7F7Vj/P9kzvPzM3f8/EnZ4ASM/AECiZS6NGBkBQNYdGaXEdQFAHiJTFIrAAUAiSAjwrEsDQCvYdUL5KQRABi9Opj3+BEBSwjmeMFIGQGBblQkfdwdAjUKEchVUCECNdsSQkr8JQC66xGVxDgtAFE0S+2i7DEDBulrBVAENQC+GaIx+NA1Aw3GB2NNADkBVDH/P28YOQJBOMvg+LA9At23UHV8KEUCAxHmXwSYRQFKnrD16axFAHISNVzyZEUARgZSDxjASQM2t9Csr2BNArNIN7B0FFEAe1A4iwXEXQHEwpTPsIiBAjf2ectcDIUCSYSX9D9EhQMPOtXEvYSRAoRkHZpflJEBnVmYpyQclQKHeGMqfRSdAFHCCo/BCKEAAAAAAAAAAAD/vy5Pd0aM/exnfUSu1tj8E0n9p+K26P9oRG/81UcQ/nK5cqtWVxT+loz58zrDOPxQF+tLuTeE/rcTJECXB7T/Rk1XE6ED2P+DtjSPD/v0/AMRzvOu1IEBtYBuDKOl7P2YivAYnyKE/kvbuatP1sT8DFwZegM/APy6UOgfNTMU/bpdYAhzp1z+XSbDldGDjPweQSvrL/uQ/O3e4ffjA5T9FIIY/uBhwPyL/zef6KqI/xx0lIn80sj+b46eMW8K9P4m99DRuAsI/5eFCsLWOxT+5k+AkDn3NP53xRt4Mz84/XE/84j6m0T+Jd6TS5uTTPylI+GtRR9c/9HxMgyEI2T+3QqHeRizaP9YVowtoEt0/09uE3QOy3z9UjNpn1ujgPwpw8+P/KuE/lgT7orC54j/Uax2jRYfjP2e9oz5WeOQ/rIxpfGaz5T9oTQP4ehrnP2CCyOOlhuc/AAAAAAAAAABkzXpdLN2sPyMOenq7Drk/vji9lS+/wD/HuPSL/KvHP1cmmFy/XMs/adlkFZzX0T88iocNQRDZP18NrtE90d8//hb5jTqt4D8W5CmCEJbhP3oM21UJTuI/CvUqYy1H4z8BmvUKXBTlPw6QhjNkJ+o/RGL40zME0T8=\",\"dtype\":\"float64\",\"shape\":[211]},\"index\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210],\"locus\":[\"2:109511398\",\"2:109511706\",\"2:109512468\",\"2:109511463\",\"2:109515229\",\"2:109515025\",\"2:109512256\",\"2:109514747\",\"2:109512115\",\"2:109512606\",\"2:109512428\",\"2:109511467\",\"2:109514105\",\"2:109512234\",\"2:109511765\",\"2:109513786\",\"2:109514464\",\"2:109513601\",\"2:223031834\",\"2:223032149\",\"2:223033544\",\"2:223031835\",\"2:223033853\",\"2:223031897\",\"2:223034144\",\"2:223034224\",\"2:223035359\",\"2:223032943\",\"2:223033196\",\"2:223033867\",\"2:223032002\",\"2:223033006\",\"2:223032504\",\"2:223032642\",\"2:223033396\",\"2:223034758\",\"2:223032399\",\"2:223035211\",\"2:223035313\",\"2:223033978\",\"2:223033030\",\"2:223033642\",\"2:223034660\",\"2:223034082\",\"4:54509667\",\"4:54509783\",\"4:54511251\",\"4:54510826\",\"4:54513653\",\"4:54513755\",\"4:54510021\",\"4:54512721\",\"4:54512170\",\"4:54510555\",\"4:54514026\",\"4:54511203\",\"4:54511246\",\"4:54511042\",\"4:54510427\",\"4:54513819\",\"4:54510874\",\"4:54509759\",\"4:54511913\",\"5:126624608\",\"5:126625266\",\"5:126625525\",\"5:126627233\",\"5:126625259\",\"5:126625013\",\"5:126627257\",\"5:126629290\",\"5:126636244\",\"5:126631736\",\"5:126634444\",\"5:126633404\",\"5:126629761\",\"5:126625592\",\"5:126625593\",\"5:126625758\",\"5:126645738\",\"5:126723562\",\"5:126642920\",\"5:126725568\",\"5:126633958\",\"5:126661600\",\"5:126641296\",\"5:126644552\",\"5:126640205\",\"5:126644632\",\"5:126698023\",\"5:126645334\",\"5:126630491\",\"5:126652742\",\"5:126683809\",\"5:126775462\",\"5:126641654\",\"5:126642563\",\"5:126642675\",\"5:126637872\",\"5:126687822\",\"5:126635437\",\"5:126656998\",\"5:126654062\",\"5:126639025\",\"5:126641770\",\"5:126644396\",\"5:126645646\",\"5:126640971\",\"5:126639432\",\"5:126731259\",\"5:126644401\",\"5:126656324\",\"5:126657766\",\"5:126633436\",\"5:126688517\",\"5:126639135\",\"5:126660301\",\"5:126679697\",\"5:126648201\",\"5:126656500\",\"5:126639801\",\"5:126661774\",\"5:126668683\",\"5:126650182\",\"5:126632821\",\"5:126632848\",\"5:126661380\",\"5:126639591\",\"5:126635055\",\"5:126647941\",\"5:126639097\",\"5:126636211\",\"5:126625548\",\"5:126633827\",\"5:126635667\",\"5:126635083\",\"5:126655749\",\"5:126654970\",\"5:126631841\",\"5:126628098\",\"5:126664981\",\"5:126655730\",\"5:126629170\",\"5:126627875\",\"5:126630016\",\"5:126626645\",\"5:126628771\",\"5:126626044\",\"5:126630948\",\"5:126629112\",\"5:126628584\",\"7:17282329\",\"7:17282359\",\"7:17282888\",\"7:17282391\",\"7:17283561\",\"7:17282872\",\"7:17282507\",\"7:17286087\",\"7:17284085\",\"7:17285867\",\"7:17284989\",\"7:17284577\",\"7:113987041\",\"7:113987664\",\"7:113987454\",\"7:113989105\",\"7:113989202\",\"7:113989569\",\"7:113987889\",\"7:113988537\",\"7:113987281\",\"15:66185666\",\"15:66185846\",\"15:66186649\",\"15:66187234\",\"15:66186343\",\"15:66186061\",\"15:66198243\",\"15:66188146\",\"15:66193404\",\"15:66221782\",\"15:66205498\",\"15:66244175\",\"15:66188317\",\"15:66199495\",\"15:66224813\",\"15:66203218\",\"15:66185803\",\"15:66299460\",\"15:66359486\",\"15:66294695\",\"15:66402257\",\"15:66398948\",\"15:66356925\",\"15:75025637\",\"15:75026280\",\"15:75027895\",\"15:75027432\",\"15:75026149\",\"15:75026627\",\"15:75028536\",\"15:75027880\",\"15:75029399\",\"15:75027179\",\"15:75028233\",\"15:75029228\",\"15:75025814\",\"15:75028490\",\"15:75025988\",\"15:75029840\"],\"p_value\":{\"__ndarray__\":\"AAAAAAAAAADEE/55d0KmPxIqxNsMXLc/0sNZppMNvT9GCCQ98sLEPwJ/OHbK9sU/7k0EQjhjyz/TKxyI6EPOP2hgcr95LdI/ecPnY/ED1D+C9GWIq6LVP58Nt0cEttc/GTNS01yX2j/8wRTZsujdP324YQxJNOA/w6MxavZZ4T8sO4Vygn/iP5ezHCg+ZuQ/AAAAAAAAAABiN0oXk/qkP2XDy2pJK7I/H8gFf3nduT+qrNK45TjCPy82QTDwbcY/aK+T066syj8rNrzfnBbRPzU0LXM2b9Q/2ta3Rb9O4T+WENURacPkP5+adNMc3OU/hKGX9o3d5j/lDYYDUaDyP15wTQrD2fQ/0S4DQBOpBkDX6Plx5nUHQH3JOMMaPAhAigpTYxKgCkDD3fwRilgTQA37zvOW8xRAN6zLaZ0eGEDu9cTOMXcZQHMwRt5qcBpAMb1yopPFG0CyDaNyZKcwQAAAAAAAAAAAnv3k2BkkrD9cEoVYp1yyP5hITJ9KCMA/oRiI8/n9wz8dz4wL1FnHP8fGloHFvNE/5RjdF9+d2z+3FCHBOA3eP6sv+QhR5uA/j+vrI15V4z83zdY0jyflPzQPDFNNdeg/7yHp9yzt6T9kheGeUnHuP7YmOzkW0Q1AbN6V6LLCEUD8xV1Px9ETQFP3DRQhVBRAAAAAAAAAAACI8VYd9oSlPzOKrnfFbrE/LRmNH0Lhuj9K0yEBLovBPwvKjjUwCsg/kDOgoxM2zT/lm4/IELTPP6PWoP3wANM/p3db+qsd1T/yQ6pRnvvWP2VQt7fZ8Nc/1Iqd8ibI2T+Qwpahkb/dP3M4QEN+6N0/XkV6wVb24D8GKGNNGZnhPwp91BSMueI/2CmD8+zL4z837WhBp1/kP0PSw/JLNuY/F0k2tGDa5j+jcDxG0pPpP4+Qk99m5ek/4Rtfa5Su6j8A8u91mF/sPxETWcwsme0/wr3/nv/37j+UEb9RQkLwP7Qf76sMDfE/33giQPki8T+FOaSYVxDyP+MMmB7Ck/I/LnWPRhf+8j+mYkr9w6nzP4Ixe4RCJPQ/qf1OgH5g9D+5XB8NX/f0PxalQkhl4/U/9IB8bhnK9j86hzpbRgL3P0qKMo2uzfc/SpS2qyhO+D/Xl9Go9Kv4P6ycCnD2F/k/d0jwXWHp+T/6fn7I1Sr6P8reqT2P/fo/0APWKnu1+z+qafqzFD38P92+XLZ/i/w/1gutU33I/T9lWJ7F7Vj/P9kzvPzM3f8/EnZ4ASM/AECiZS6NGBkBQNYdGaXEdQFAHiJTFIrAAUAiSAjwrEsDQCvYdUL5KQRABi9Opj3+BEBSwjmeMFIGQGBblQkfdwdAjUKEchVUCECNdsSQkr8JQC66xGVxDgtAFE0S+2i7DEDBulrBVAENQC+GaIx+NA1Aw3GB2NNADkBVDH/P28YOQJBOMvg+LA9At23UHV8KEUCAxHmXwSYRQFKnrD16axFAHISNVzyZEUARgZSDxjASQM2t9Csr2BNArNIN7B0FFEAe1A4iwXEXQHEwpTPsIiBAjf2ectcDIUCSYSX9D9EhQMPOtXEvYSRAoRkHZpflJEBnVmYpyQclQKHeGMqfRSdAFHCCo/BCKEAAAAAAAAAAAD/vy5Pd0aM/exnfUSu1tj8E0n9p+K26P9oRG/81UcQ/nK5cqtWVxT+loz58zrDOPxQF+tLuTeE/rcTJECXB7T/Rk1XE6ED2P+DtjSPD/v0/AMRzvOu1IEBtYBuDKOl7P2YivAYnyKE/kvbuatP1sT8DFwZegM/APy6UOgfNTMU/bpdYAhzp1z+XSbDldGDjPweQSvrL/uQ/O3e4ffjA5T9FIIY/uBhwPyL/zef6KqI/xx0lIn80sj+b46eMW8K9P4m99DRuAsI/5eFCsLWOxT+5k+AkDn3NP53xRt4Mz84/XE/84j6m0T+Jd6TS5uTTPylI+GtRR9c/9HxMgyEI2T+3QqHeRizaP9YVowtoEt0/09uE3QOy3z9UjNpn1ujgPwpw8+P/KuE/lgT7orC54j/Uax2jRYfjP2e9oz5WeOQ/rIxpfGaz5T9oTQP4ehrnP2CCyOOlhuc/AAAAAAAAAABkzXpdLN2sPyMOenq7Drk/vji9lS+/wD/HuPSL/KvHP1cmmFy/XMs/adlkFZzX0T88iocNQRDZP18NrtE90d8//hb5jTqt4D8W5CmCEJbhP3oM21UJTuI/CvUqYy1H4z8BmvUKXBTlPw6QhjNkJ+o/RGL40zME0T8=\",\"dtype\":\"float64\",\"shape\":[211]},\"ri\":[\"rs150055772\",\"rs200168149\",\"rs115259025\",\"rs200762071\",\"rs79444434\",\"rs60288156\",\"rs73952545\",\"rs4676218\",\"rs75155869\",\"rs3749097\",\"rs3749096\",\"rs145115545\",\"rs6542783\",\"rs13001699\",\"rs10865025\",\"rs3789738\",\"rs940928\",\"rs3827760\",\"rs538046270\",\"rs575749090\",\"rs145659469\",\"rs114946697\",\"rs79534778\",\"rs111488274\",\"rs116514046\",\"rs78277770\",\"rs13431945\",\"rs16863471\",\"rs13411329\",\"rs80199364\",\"rs7607981\",\"rs529478087\",\"rs36054640\",\"rs986430\",\"rs11895863\",\"rs71050391\",\"rs986429\",\"rs5838931\",\"rs66885466\",\"rs2196751\",\"rs16863473\",\"rs2218064\",\"rs985473\",\"rs2218065\",\"rs571577163\",\"rs567344945\",\"rs551809147\",\"rs1477873\",\"rs539249144;rs200448899\",\"rs77629803\",\"rs75718680\",\"rs73250977\",\"rs79625021\",\"rs144220715\",\"rs79162003\",\"rs2590771\",\"rs2616389\",\"rs2590770\",\"rs2668552\",\"rs6858782\",\"rs6816209\",\"rs6818959\",\"rs4864809\",\"rs547382339\",\"rs556210684\",\"rs140823799\",\"rs79637336\",\"rs3812059\",\"rs78627309\",\"rs74830027\",\"rs148348633\",\"rs73785576\",\"rs17165103\",\"rs2194080\",\"rs73785574\",\"rs17165105\",\"rs183280201\",\"rs187467669\",\"rs10519929\",\"rs13153845\",\"rs9327438\",\"rs2546085\",\"rs4401615\",\"rs2585196\",\"rs33930493\",\"rs2585194\",\"rs2546804\",\"rs1816058\",\"rs72786459\",\"rs35156178\",\"rs2585190\",\"rs200086613\",\"rs246946\",\"rs27388\",\"rs2408872\",\"rs2546082\",\"rs2546083\",\"rs2546084\",\"rs2546806\",\"rs36308\",\"rs35796097\",\"rs246888\",\"rs185032\",\"rs2546079\",\"rs2585193\",\"rs2546802\",\"rs2546805\",\"rs2546081\",\"rs2585195\",\"rs13171067\",\"rs2546803\",\"rs3050850\",\"rs559620165\",\"rs970546\",\"rs185033\",\"rs2546808\",\"rs31472\",\"rs246896\",\"rs1422317\",\"rs152120\",\"rs2431724\",\"rs31470\",\"rs2546078\",\"rs1345663\",\"rs2585199\",\"rs2585198\",\"rs31471\",\"rs2431496\",\"rs1808378\",\"rs1422316\",\"rs2546807\",\"rs2546809\",\"rs2408868\",\"rs2585197\",\"rs1345662\",\"rs2018571\",\"rs246887\",\"rs246885\",\"rs2585200\",\"rs2194079\",\"rs27749\",\"rs246886\",\"rs12519784\",\"rs4836316\",\"rs1422313\",\"rs2032834\",\"rs4836317\",\"rs1363387\",\"rs2059083\",\"rs4836318\",\"rs112394041\",\"rs188125151\",\"rs116664686\",\"rs11976418\",\"rs184627304\",\"rs568478767\",\"rs79710531\",\"rs62444547\",\"rs79694830\",\"rs6943079\",\"rs10281571\",\"rs10277582\",\"rs4410790\",\"rs192308926\",\"rs191698807\",\"rs368002927\",\"rs79448181\",\"rs117717824\",\"rs1916976\",\"rs2690825\",\"rs2690826\",\"rs1527146\",\"rs543734954\",\"rs114717896\",\"rs111418766\",\"rs148817332\",\"rs201844249\",\"rs72742821\",\"rs3217276\",\"rs75774952\",\"rs1063697\",\"rs77371692\",\"rs16949091\",\"rs55812611\",\"rs72742822\",\"rs16949087\",\"rs78767632\",\"rs55730328\",\"rs61543049\",\"rs2552176\",\"rs9783681\",\"rs333544\",\"rs4776731\",\"rs6494553\",\"rs11856955\",\"rs35042613\",\"rs7496533\",\"rs141323436\",\"rs17861121\",\"rs17861118\",\"rs11631784\",\"rs112697364\",\"rs2472297\",\"rs8030076\",\"rs17861120\",\"rs145741270\",\"rs77021813\",\"rs12441817\",\"rs11072500\",\"rs4886605\",\"rs116979601\"]},\"selected\":{\"id\":\"1243\",\"type\":\"Selection\"},\"selection_policy\":{\"id\":\"1242\",\"type\":\"UnionRenderers\"}},\"id\":\"1196\",\"type\":\"ColumnDataSource\"},{\"attributes\":{\"column_name\":\"_contig\",\"group\":\"4\"},\"id\":\"1209\",\"type\":\"GroupFilter\"},{\"attributes\":{\"column_name\":\"_contig\",\"group\":\"15\"},\"id\":\"1197\",\"type\":\"GroupFilter\"},{\"attributes\":{\"color_mapper\":null,\"formatter\":{\"id\":\"1240\",\"type\":\"BasicTickFormatter\"},\"ticker\":{\"id\":\"1241\",\"type\":\"BasicTicker\"},\"visible\":false},\"id\":\"1233\",\"type\":\"ColorBar\"},{\"attributes\":{\"filters\":[{\"id\":\"1221\",\"type\":\"GroupFilter\"}],\"source\":{\"id\":\"1196\",\"type\":\"ColumnDataSource\"}},\"id\":\"1222\",\"type\":\"CDSView\"},{\"attributes\":{},\"id\":\"1172\",\"type\":\"BasicTicker\"},{\"attributes\":{},\"id\":\"1242\",\"type\":\"UnionRenderers\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1213\",\"type\":\"Circle\"},{\"attributes\":{\"axis_label\":\"Chromosome\",\"formatter\":{\"id\":\"1237\",\"type\":\"BasicTickFormatter\"},\"major_label_overrides\":{\"1313226357\":\"7\",\"2358551414\":\"15\",\"370850306\":\"2\",\"786049561\":\"4\",\"972084329\":\"5\"},\"ticker\":{\"id\":\"1234\",\"type\":\"FixedTicker\"}},\"id\":\"1171\",\"type\":\"LinearAxis\"},{\"attributes\":{\"fill_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1160\",\"type\":\"CategoricalColorMapper\"}},\"line_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1160\",\"type\":\"CategoricalColorMapper\"}},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1224\",\"type\":\"Circle\"},{\"attributes\":{\"callback\":null,\"tooltips\":[[\"ri\",\"@ri\"],[\"locus\",\"@locus\"],[\"p_value\",\"@p_value\"]]},\"id\":\"1195\",\"type\":\"HoverTool\"},{\"attributes\":{},\"id\":\"1184\",\"type\":\"SaveTool\"},{\"attributes\":{\"column_name\":\"_contig\",\"group\":\"7\"},\"id\":\"1221\",\"type\":\"GroupFilter\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1201\",\"type\":\"Circle\"},{\"attributes\":{\"data_source\":{\"id\":\"1196\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1200\",\"type\":\"Circle\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1201\",\"type\":\"Circle\"},\"selection_glyph\":null,\"view\":{\"id\":\"1198\",\"type\":\"CDSView\"}},\"id\":\"1202\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"filters\":[{\"id\":\"1209\",\"type\":\"GroupFilter\"}],\"source\":{\"id\":\"1196\",\"type\":\"ColumnDataSource\"}},\"id\":\"1210\",\"type\":\"CDSView\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1225\",\"type\":\"Circle\"},{\"attributes\":{\"label\":{\"value\":\"5\"},\"renderers\":[{\"id\":\"1220\",\"type\":\"GlyphRenderer\"}]},\"id\":\"1230\",\"type\":\"LegendItem\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1219\",\"type\":\"Circle\"},{\"attributes\":{\"ticker\":{\"id\":\"1172\",\"type\":\"BasicTicker\"}},\"id\":\"1175\",\"type\":\"Grid\"},{\"attributes\":{\"data_source\":{\"id\":\"1196\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1224\",\"type\":\"Circle\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1225\",\"type\":\"Circle\"},\"selection_glyph\":null,\"view\":{\"id\":\"1222\",\"type\":\"CDSView\"}},\"id\":\"1226\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"fill_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1160\",\"type\":\"CategoricalColorMapper\"}},\"line_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1160\",\"type\":\"CategoricalColorMapper\"}},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1200\",\"type\":\"Circle\"},{\"attributes\":{\"data_source\":{\"id\":\"1196\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1218\",\"type\":\"Circle\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1219\",\"type\":\"Circle\"},\"selection_glyph\":null,\"view\":{\"id\":\"1216\",\"type\":\"CDSView\"}},\"id\":\"1220\",\"type\":\"GlyphRenderer\"},{\"attributes\":{},\"id\":\"1169\",\"type\":\"LinearScale\"}],\"root_ids\":[\"1161\"]},\"title\":\"Bokeh Application\",\"version\":\"1.4.0\"}};\n",
-       "  var render_items = [{\"docid\":\"1d065151-5af3-4dc1-8b2f-7168f3b3fba0\",\"roots\":{\"1161\":\"8b3cb01c-4499-4681-9d01-af20d9f8f6df\"}}];\n",
+       "  var docs_json = {\"9c15035c-fd2c-440f-8940-2bd81f477efd\":{\"roots\":{\"references\":[{\"attributes\":{\"below\":[{\"id\":\"1171\",\"type\":\"LinearAxis\"}],\"center\":[{\"id\":\"1175\",\"type\":\"Grid\"},{\"id\":\"1180\",\"type\":\"Grid\"}],\"left\":[{\"id\":\"1176\",\"type\":\"LinearAxis\"},{\"id\":\"1232\",\"type\":\"Legend\"},{\"id\":\"1233\",\"type\":\"ColorBar\"}],\"plot_width\":1000,\"renderers\":[{\"id\":\"1202\",\"type\":\"GlyphRenderer\"},{\"id\":\"1208\",\"type\":\"GlyphRenderer\"},{\"id\":\"1214\",\"type\":\"GlyphRenderer\"},{\"id\":\"1220\",\"type\":\"GlyphRenderer\"},{\"id\":\"1226\",\"type\":\"GlyphRenderer\"}],\"title\":null,\"toolbar\":{\"id\":\"1187\",\"type\":\"Toolbar\"},\"x_range\":{\"id\":\"1163\",\"type\":\"DataRange1d\"},\"x_scale\":{\"id\":\"1167\",\"type\":\"LinearScale\"},\"y_range\":{\"id\":\"1165\",\"type\":\"DataRange1d\"},\"y_scale\":{\"id\":\"1169\",\"type\":\"LinearScale\"}},\"id\":\"1161\",\"subtype\":\"Figure\",\"type\":\"Plot\"},{\"attributes\":{\"axis_label\":\"Chromosome\",\"formatter\":{\"id\":\"1241\",\"type\":\"BasicTickFormatter\"},\"major_label_overrides\":{\"1313226357\":\"7\",\"2358551414\":\"15\",\"370850306\":\"2\",\"786049561\":\"4\",\"972084329\":\"5\"},\"ticker\":{\"id\":\"1234\",\"type\":\"FixedTicker\"}},\"id\":\"1171\",\"type\":\"LinearAxis\"},{\"attributes\":{\"axis_label\":\"Importance (gini)\",\"formatter\":{\"id\":\"1238\",\"type\":\"BasicTickFormatter\"},\"ticker\":{\"id\":\"1177\",\"type\":\"BasicTicker\"}},\"id\":\"1176\",\"type\":\"LinearAxis\"},{\"attributes\":{},\"id\":\"1181\",\"type\":\"PanTool\"},{\"attributes\":{\"fill_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1160\",\"type\":\"CategoricalColorMapper\"}},\"line_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1160\",\"type\":\"CategoricalColorMapper\"}},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1218\",\"type\":\"Circle\"},{\"attributes\":{\"data_source\":{\"id\":\"1196\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1200\",\"type\":\"Circle\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1201\",\"type\":\"Circle\"},\"selection_glyph\":null,\"view\":{\"id\":\"1198\",\"type\":\"CDSView\"}},\"id\":\"1202\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1219\",\"type\":\"Circle\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1201\",\"type\":\"Circle\"},{\"attributes\":{},\"id\":\"1243\",\"type\":\"Selection\"},{\"attributes\":{\"filters\":[{\"id\":\"1209\",\"type\":\"GroupFilter\"}],\"source\":{\"id\":\"1196\",\"type\":\"ColumnDataSource\"}},\"id\":\"1210\",\"type\":\"CDSView\"},{\"attributes\":{},\"id\":\"1244\",\"type\":\"UnionRenderers\"},{\"attributes\":{\"data_source\":{\"id\":\"1196\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1218\",\"type\":\"Circle\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1219\",\"type\":\"Circle\"},\"selection_glyph\":null,\"view\":{\"id\":\"1216\",\"type\":\"CDSView\"}},\"id\":\"1220\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"active_drag\":\"auto\",\"active_inspect\":\"auto\",\"active_multi\":null,\"active_scroll\":\"auto\",\"active_tap\":\"auto\",\"tools\":[{\"id\":\"1181\",\"type\":\"PanTool\"},{\"id\":\"1182\",\"type\":\"WheelZoomTool\"},{\"id\":\"1183\",\"type\":\"BoxZoomTool\"},{\"id\":\"1184\",\"type\":\"SaveTool\"},{\"id\":\"1185\",\"type\":\"ResetTool\"},{\"id\":\"1186\",\"type\":\"HelpTool\"},{\"id\":\"1195\",\"type\":\"HoverTool\"}]},\"id\":\"1187\",\"type\":\"Toolbar\"},{\"attributes\":{\"fill_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1160\",\"type\":\"CategoricalColorMapper\"}},\"line_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1160\",\"type\":\"CategoricalColorMapper\"}},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1224\",\"type\":\"Circle\"},{\"attributes\":{\"label\":{\"value\":\"5\"},\"renderers\":[{\"id\":\"1220\",\"type\":\"GlyphRenderer\"}]},\"id\":\"1230\",\"type\":\"LegendItem\"},{\"attributes\":{\"overlay\":{\"id\":\"1242\",\"type\":\"BoxAnnotation\"}},\"id\":\"1183\",\"type\":\"BoxZoomTool\"},{\"attributes\":{\"column_name\":\"_contig\",\"group\":\"7\"},\"id\":\"1221\",\"type\":\"GroupFilter\"},{\"attributes\":{\"filters\":[{\"id\":\"1221\",\"type\":\"GroupFilter\"}],\"source\":{\"id\":\"1196\",\"type\":\"ColumnDataSource\"}},\"id\":\"1222\",\"type\":\"CDSView\"},{\"attributes\":{\"data_source\":{\"id\":\"1196\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1224\",\"type\":\"Circle\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1225\",\"type\":\"Circle\"},\"selection_glyph\":null,\"view\":{\"id\":\"1222\",\"type\":\"CDSView\"}},\"id\":\"1226\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"bottom_units\":\"screen\",\"fill_alpha\":{\"value\":0.5},\"fill_color\":{\"value\":\"lightgrey\"},\"left_units\":\"screen\",\"level\":\"overlay\",\"line_alpha\":{\"value\":1.0},\"line_color\":{\"value\":\"black\"},\"line_dash\":[4,4],\"line_width\":{\"value\":2},\"render_mode\":\"css\",\"right_units\":\"screen\",\"top_units\":\"screen\"},\"id\":\"1242\",\"type\":\"BoxAnnotation\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1213\",\"type\":\"Circle\"},{\"attributes\":{\"column_name\":\"_contig\",\"group\":\"5\"},\"id\":\"1215\",\"type\":\"GroupFilter\"},{\"attributes\":{\"data_source\":{\"id\":\"1196\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1206\",\"type\":\"Circle\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1207\",\"type\":\"Circle\"},\"selection_glyph\":null,\"view\":{\"id\":\"1204\",\"type\":\"CDSView\"}},\"id\":\"1208\",\"type\":\"GlyphRenderer\"},{\"attributes\":{},\"id\":\"1169\",\"type\":\"LinearScale\"},{\"attributes\":{\"label\":{\"value\":\"15\"},\"renderers\":[{\"id\":\"1202\",\"type\":\"GlyphRenderer\"}]},\"id\":\"1227\",\"type\":\"LegendItem\"},{\"attributes\":{\"callback\":null},\"id\":\"1163\",\"type\":\"DataRange1d\"},{\"attributes\":{},\"id\":\"1186\",\"type\":\"HelpTool\"},{\"attributes\":{\"ticks\":[370850306,786049561,972084329,1313226357,2358551414]},\"id\":\"1234\",\"type\":\"FixedTicker\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1225\",\"type\":\"Circle\"},{\"attributes\":{\"callback\":null,\"tooltips\":[[\"ri\",\"@ri\"],[\"locus\",\"@locus\"],[\"p_value\",\"@p_value\"]]},\"id\":\"1195\",\"type\":\"HoverTool\"},{\"attributes\":{\"factors\":[\"1\",\"2\",\"3\",\"4\",\"5\",\"6\",\"7\",\"8\",\"9\",\"10\",\"11\",\"12\",\"13\",\"14\",\"15\",\"16\",\"17\",\"18\",\"19\",\"20\",\"21\",\"22\",\"X\",\"Y\",\"MT\",\"GL000207.1\",\"GL000226.1\",\"GL000229.1\",\"GL000231.1\",\"GL000210.1\",\"GL000239.1\",\"GL000235.1\",\"GL000201.1\",\"GL000247.1\",\"GL000245.1\",\"GL000197.1\",\"GL000203.1\",\"GL000246.1\",\"GL000249.1\",\"GL000196.1\",\"GL000248.1\",\"GL000244.1\",\"GL000238.1\",\"GL000202.1\",\"GL000234.1\",\"GL000232.1\",\"GL000206.1\",\"GL000240.1\",\"GL000236.1\",\"GL000241.1\",\"GL000243.1\",\"GL000242.1\",\"GL000230.1\",\"GL000237.1\",\"GL000233.1\",\"GL000204.1\",\"GL000198.1\",\"GL000208.1\",\"GL000191.1\",\"GL000227.1\",\"GL000228.1\",\"GL000214.1\",\"GL000221.1\",\"GL000209.1\",\"GL000218.1\",\"GL000220.1\",\"GL000213.1\",\"GL000211.1\",\"GL000199.1\",\"GL000217.1\",\"GL000216.1\",\"GL000215.1\",\"GL000205.1\",\"GL000219.1\",\"GL000224.1\",\"GL000223.1\",\"GL000195.1\",\"GL000212.1\",\"GL000222.1\",\"GL000200.1\",\"GL000193.1\",\"GL000194.1\",\"GL000225.1\",\"GL000192.1\"],\"palette\":[\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\",\"#1f77b4\",\"#ff7f0e\"]},\"id\":\"1160\",\"type\":\"CategoricalColorMapper\"},{\"attributes\":{\"fill_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1160\",\"type\":\"CategoricalColorMapper\"}},\"line_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1160\",\"type\":\"CategoricalColorMapper\"}},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1212\",\"type\":\"Circle\"},{\"attributes\":{\"color_mapper\":null,\"formatter\":{\"id\":\"1240\",\"type\":\"BasicTickFormatter\"},\"ticker\":{\"id\":\"1239\",\"type\":\"BasicTicker\"},\"visible\":false},\"id\":\"1233\",\"type\":\"ColorBar\"},{\"attributes\":{\"filters\":[{\"id\":\"1197\",\"type\":\"GroupFilter\"}],\"source\":{\"id\":\"1196\",\"type\":\"ColumnDataSource\"}},\"id\":\"1198\",\"type\":\"CDSView\"},{\"attributes\":{\"filters\":[{\"id\":\"1215\",\"type\":\"GroupFilter\"}],\"source\":{\"id\":\"1196\",\"type\":\"ColumnDataSource\"}},\"id\":\"1216\",\"type\":\"CDSView\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1207\",\"type\":\"Circle\"},{\"attributes\":{},\"id\":\"1182\",\"type\":\"WheelZoomTool\"},{\"attributes\":{\"column_name\":\"_contig\",\"group\":\"2\"},\"id\":\"1203\",\"type\":\"GroupFilter\"},{\"attributes\":{\"click_policy\":\"hide\",\"items\":[{\"id\":\"1227\",\"type\":\"LegendItem\"},{\"id\":\"1228\",\"type\":\"LegendItem\"},{\"id\":\"1229\",\"type\":\"LegendItem\"},{\"id\":\"1230\",\"type\":\"LegendItem\"},{\"id\":\"1231\",\"type\":\"LegendItem\"}],\"visible\":false},\"id\":\"1232\",\"type\":\"Legend\"},{\"attributes\":{\"data_source\":{\"id\":\"1196\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1212\",\"type\":\"Circle\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1213\",\"type\":\"Circle\"},\"selection_glyph\":null,\"view\":{\"id\":\"1210\",\"type\":\"CDSView\"}},\"id\":\"1214\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"column_name\":\"_contig\",\"group\":\"4\"},\"id\":\"1209\",\"type\":\"GroupFilter\"},{\"attributes\":{\"ticker\":{\"id\":\"1172\",\"type\":\"BasicTicker\"}},\"id\":\"1175\",\"type\":\"Grid\"},{\"attributes\":{},\"id\":\"1238\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"column_name\":\"_contig\",\"group\":\"15\"},\"id\":\"1197\",\"type\":\"GroupFilter\"},{\"attributes\":{\"callback\":null},\"id\":\"1165\",\"type\":\"DataRange1d\"},{\"attributes\":{\"label\":{\"value\":\"4\"},\"renderers\":[{\"id\":\"1214\",\"type\":\"GlyphRenderer\"}]},\"id\":\"1229\",\"type\":\"LegendItem\"},{\"attributes\":{},\"id\":\"1241\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"dimension\":1,\"ticker\":{\"id\":\"1177\",\"type\":\"BasicTicker\"}},\"id\":\"1180\",\"type\":\"Grid\"},{\"attributes\":{\"fill_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1160\",\"type\":\"CategoricalColorMapper\"}},\"line_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1160\",\"type\":\"CategoricalColorMapper\"}},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1200\",\"type\":\"Circle\"},{\"attributes\":{\"label\":{\"value\":\"2\"},\"renderers\":[{\"id\":\"1208\",\"type\":\"GlyphRenderer\"}]},\"id\":\"1228\",\"type\":\"LegendItem\"},{\"attributes\":{\"fill_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1160\",\"type\":\"CategoricalColorMapper\"}},\"line_color\":{\"field\":\"_contig\",\"transform\":{\"id\":\"1160\",\"type\":\"CategoricalColorMapper\"}},\"x\":{\"field\":\"_global_locus\"},\"y\":{\"field\":\"_pval\"}},\"id\":\"1206\",\"type\":\"Circle\"},{\"attributes\":{},\"id\":\"1177\",\"type\":\"BasicTicker\"},{\"attributes\":{},\"id\":\"1167\",\"type\":\"LinearScale\"},{\"attributes\":{\"label\":{\"value\":\"7\"},\"renderers\":[{\"id\":\"1226\",\"type\":\"GlyphRenderer\"}]},\"id\":\"1231\",\"type\":\"LegendItem\"},{\"attributes\":{},\"id\":\"1239\",\"type\":\"BasicTicker\"},{\"attributes\":{},\"id\":\"1184\",\"type\":\"SaveTool\"},{\"attributes\":{},\"id\":\"1240\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"callback\":null,\"data\":{\"_contig\":[\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"2\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"4\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"5\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"7\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\",\"15\"],\"_global_locus\":{\"__ndarray__\":\"AAAAIkZitUEAAABjRmK1QQAAAOhJYrVBAAAATVRitUEAAAAsUWK1QQAAAHxJYrVBAAAAYklitUEAAACEUGK1QQAAAGdGYrVBAAAArFZitUEAAAC1UGK1QQAAABxSYrVBAAAAZklitUEAAAC9TmK1QQAAAPJOYrVBAAAAkUditUEAAABWdSa8QQAAAJF2JrxBAAAAuXUmvEEAAABXdSa8QQAAADl9JrxBAAAAUHsmvEEAAAAbgya8QQAAAKh6JrxBAAAAq3kmvEEAAAD+dSa8QQAAAEd9JrxBAAAA6nkmvEEAAAD0dya8QQAAAMKAJrxBAAAAfngmvEEAAACLdya8QQAAAHB7JrxBAAAAh4ImvEEAAAC2fSa8QQAAAGCFJrxBAAAA7YImvEEAAABmfCa8QQAAAAJ6JrxBAAAAYIAmvEEAAAAefia8QQAAACXDM8ZBAAAAnsUzxkEAAAAYxjPGQQAAgGjFM8ZBAAAA1sMzxkEAAADhxDPGQQAAgAjIM8ZBAACA1MUzxkEAAIDxyjPGQQAAgCvJM8ZBAAAAJcYzxkEAAIDcyTPGQQAAAKHEM8ZBAACAOsYzxkEAAABByzPGQQAAAFPDM8ZBAACAgMUzxkEAAACIxzPGQQAAgNVYDM5BAACAHloMzkEAAIBiXwzOQQAAAKBZDM5BAACAAlsMzkEAAIBKXQzOQQAAgMFmDM5BAACAU3UMzkEAAAABZAzOQQAAgBVvDM5BAAAAwloMzkEAAIDBWgzOQQAAgBRbDM5BAACAnHAMzkEAAAATZQzOQQAAgPF/DM5BAAAA7t4MzkEAAIAVoQzOQQAAAHmRDM5BAACAvXIMzkEAAIB+5gzOQQAAgJl8DM5BAAAAgnYMzkEAAIBaegzOQQAAAFNkDM5BAAAANoAMzkEAAIATagzOQQAAAMt4DM5BAACAyX8MzkEAAAAjKQ3OQQAAAPxtDM5BAACA6H0MzkEAAIDsgQzOQQAAgBqCDM5BAACAv50MzkEAAAB+fwzOQQAAAN6RDM5BAAAATHcMzkEAAAA7iwzOQQAAgMeWDM5BAAAANXUMzkEAAIAYawzOQQAAACGPDM5BAACAmJkMzkEAAIBNhAzOQQAAgCSSDM5BAACAIHoMzkEAAIDIigzOQQAAgGB3DM5BAAAAbsQMzkEAAICDjAzOQQAAAOBoDM5BAAAAdZMMzkEAAIC4jwzOQQAAgHTXDM5BAAAAInUMzkEAAIAilAzOQQAAgGyhDM5BAAAAgLoMzkEAAICnoAzOQQAAAOuuDM5BAACA7WgMzkEAAABvbgzOQQAAgKtaDM5BAAAAS20MzkEAAADqhgzOQQAAgBaiDM5BAAAAhpgMzkEAAICelQzOQQAAAGiGDM5BAAAA12oMzkEAAAB/bwzOQQAAgB+XDM5BAACApl8MzkEAAAD2ZgzOQQAAAD1tDM5BAAAA0FwMzkEAAIC+YQzOQQAAAPdgDM5BAACAoWEMzkEAAIBlYwzOQQAAADdfDM5BAACAo1sMzkEAAICZYAzOQQAAwHb0o9JBAADAZ/Wj0kEAAEB+9KPSQQAAQIb0o9JBAABAofWj0kEAAAAY9aPSQQAAQKP0o9JBAABAIvij0kEAAMAt9qPSQQAAQOv3o9JBAADAD/ej0kEAAMCo9qPSQQAAwKjaFNRBAAAAENsU1EEAAICF3hTUQQAAwKzcFNRBAAAAxdwU1EEAAMAg3RTUQQAAwHzbFNRBAACA5N0U1EEAAAAj3RTUQQAAwB7cFNRBAADA5NoU1EEAAACTCa/hQQAAwBwKr+FBAACAqQmv4UEAAKDnCa/hQQAAgCUKr+FBAABgxAmv4UEAAGAbD6/hQQAA4GUQr+FBAABg3gqv4UEAAEBaDa/hQQAAAEITr+FBAAAgpAmv4UEAAAAlEq/hQQAAwBQur+FBAABAFB6v4UEAAMDQIa/hQQAAwIIyr+FBAACAcl6v4UEAAADicK/hQQAAYPBir+FBAABg9+W/4UEAAMBH5r/hQQAAoBHnv+FBAADgO+e/4UEAACBz5r/hQQAAYDfmv+FBAADAD+e/4UEAAOA757/hQQAAILjmv+FBAACADea/4UEAAABc57/hQQAAQCPmv+FBAADAYee/4UE=\",\"dtype\":\"float64\",\"shape\":[199]},\"_pval\":{\"__ndarray__\":\"EPj1P6UBdz+0g9uLlgyxPzoMBANj5rM/x2rqlXXlvT/23CyOtQ3HPyMSAG+vc8w/XIKojiCi0D/bHhYBMefSP4iDVd1OUtY/CQe6My6e1j+A0Nh/BdnYP9nD09EV1t8/qFg2wAlW4T8bBvkA3BfiPzKM8wIMcOM/KpFNXY314z8AAAAAAAAAALeqPnr4nKg/+WHpzna5vT/l3Tr0odLBP4EPmu+9vMg/LRVuUZQ5yj/hFiy4mW/SP91eTsGvoto/WL87gQW24D+dF2tLVSbnP42sg5lkf+g/3fh6uV3y7z+g4AzBANryP33QD6HmawRAVKgfc9tZB0ARx8YwSAoKQHlZdK26UgxAod7fEuG/EkAA4W/mI/cTQHSJcANUOBRAeqVHk4gMF0CMz7zwkAMYQHUlscqILhhA5flBBJj2G0BDvnKUy2czQAAAAAAAAAAA2R98CuLWrT/Ix+a7VQ27PzWNTqlxq74/rDybDCdHzz+BMGoOycreP3PlrADituA/eyWjM6qR4j9LRsQWTkbjP+AWhdEsmuQ/P9KpPby/5T9or8gJe0DnP3c+/13Seuw/mDiYm9fM7D/dxP2AwiUMQDPS1ecqMRBAchTfZymlEECODbtkScgRQAAAAAAAAAAATqi7wf61rD8OzjjJMma5P6TjK8UiHsM/k+cA+Yk4xT811DGzHbXLPy8E2R6rr88/9Fvd8p+v0j8pwd8C3QHVP33hcbFLGNg/ja80enSe2j9SKKsrvBHcPxJJnT0Rs94/frVvMRYv4T+diXxjjZHhPx9GR5yBD+M/UnIXnhT25D8qzoNC3VjmPwzjnsopJ+c/otNdwu+g6D9Sf7pmpX/pP3fBWG5YMeo/IZaca/J77D/fS0c22Z/tP7IUXYeqle4/xdA3bfgg7z/9Uo0C5D/wP25QcHwjDPE/KBGi+U2w8T+sS+rBI0/yP/hO7uD5y/I/5P+tIBfc8z87e5B41ezzP2DHLhSg+PQ/zdFjFNlZ9T+Gqi337iP2PzTaAAYl0fY/jul1zGpK9z/MD+ieVOX3P8X/JW9LuPg/mrQ9NLcC+T9CQwe3/Zj5P0vj/ZhIs/o/VARV6Za3+j/h1ldauqb7PxfqOFjTJfw/Kngyfamg/D8LzufMbjj+P+lTjCfagv4/u+n7ZhNk/z9FOcgp+BsAQGKR1YF5ZQBA4jnwpE0AAUDD1arZBzUBQDROyvDnUAJACUNmE56kA0Ck8zs4oEkEQAR2sWUX/ARAiTWSOF2zBUBYoxbeA6MGQKqd49XTEQdAWV2+PEd7CEAbugh0EkEJQOp3g82vBwtAXQQq1KPdC0CzdsJQehAMQE/SOgqLAg1AZ8aAJT19DUB8HiH+J6YNQJPllp72/g1AAIxi7mE4DkB0er8Y9DwPQO8JR655wg9A0JvNacbkEUDN42bjnkwTQF7He86sNBdAToz5XQBpGkAp1wpyj10fQPbQylXP7CFA7z+YOuZeI0A7T92h0D4kQKz8msjq6yRAF66tx+YOJkBeoD92toknQAAAAAAAAAAAojJfhnyHpz8ff4ne1Se1P9vfqKqXiMM/rRK7g5JIyD/5rhz2KsPSP3vZ2OVIUtQ/xrzTQCu22z9AsYieLFrwP+R9kVojUf0/HNt1znog/z8JvqWBB6ogQGJVv0OgtJA/6sYuxmAorT/kPD9wsLq0P2zRSfWyob8/TRXIoMlJxT9hjab5/0HUPywJRy4x+eE/4QwndY8M5T8/XGyT2KvlPw6U/E/DZeY/aktFPd716D8AAAAAAAAAAPHA31XA/60/aHXfMk+AtD/7YTV6mmjBP5yCirvc58U/DZQbyDlJyz/OjydE3CDRP1Vk/MQ0ZNM/b13ifCTf1D9oQ4CgPJbWP2jKaa/AbNk/IriWRwmy3D/2WWizfdHeP8k0dEC6O+A/qxN0mXOb4T8SzvpEbaLjP7NoCKa/+uQ/dWmoyVTe5T+uaz/DEQLnPx29aAQCkOk/AAAAAAAAAABSRZ+pvAKnP6LRQIMf6rU/XAc2WDQPwT99pOIUJfDHP9CjbiRPc8o/rLyC3lyB1T9GCiClMv/cP7EhlZaXoOA/whuzC+iA4j/1M7b5HyPkP0LkGf+3geU/OaNDIVvI0j8=\",\"dtype\":\"float64\",\"shape\":[199]},\"index\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198],\"locus\":[\"2:109511398\",\"2:109511463\",\"2:109512364\",\"2:109515025\",\"2:109514224\",\"2:109512256\",\"2:109512230\",\"2:109514056\",\"2:109511467\",\"2:109515632\",\"2:109514105\",\"2:109514464\",\"2:109512234\",\"2:109513601\",\"2:109513654\",\"2:109511765\",\"2:223031834\",\"2:223032149\",\"2:223031933\",\"2:223031835\",\"2:223033853\",\"2:223033364\",\"2:223035359\",\"2:223033196\",\"2:223032943\",\"2:223032002\",\"2:223033867\",\"2:223033006\",\"2:223032504\",\"2:223034758\",\"2:223032642\",\"2:223032399\",\"2:223033396\",\"2:223035211\",\"2:223033978\",\"2:223035940\",\"2:223035313\",\"2:223033642\",\"2:223033030\",\"2:223034660\",\"2:223034082\",\"4:54509667\",\"4:54510933\",\"4:54511177\",\"4:54510826\",\"4:54510021\",\"4:54510555\",\"4:54512170\",\"4:54511042\",\"4:54513660\",\"4:54512752\",\"4:54511203\",\"4:54513106\",\"4:54510427\",\"4:54511246\",\"4:54513819\",\"4:54509759\",\"4:54510874\",\"4:54511913\",\"5:126624608\",\"5:126625266\",\"5:126627962\",\"5:126625013\",\"5:126625722\",\"5:126626890\",\"5:126631736\",\"5:126639196\",\"5:126630327\",\"5:126636000\",\"5:126625593\",\"5:126625592\",\"5:126625758\",\"5:126636782\",\"5:126630875\",\"5:126644632\",\"5:126693265\",\"5:126661600\",\"5:126653607\",\"5:126637872\",\"5:126697138\",\"5:126642920\",\"5:126639801\",\"5:126641770\",\"5:126630491\",\"5:126644769\",\"5:126633436\",\"5:126640971\",\"5:126644552\",\"5:126731259\",\"5:126635437\",\"5:126643590\",\"5:126645646\",\"5:126645738\",\"5:126659892\",\"5:126644401\",\"5:126653809\",\"5:126640205\",\"5:126650411\",\"5:126656324\",\"5:126639135\",\"5:126633958\",\"5:126652407\",\"5:126657766\",\"5:126646864\",\"5:126653950\",\"5:126641654\",\"5:126650182\",\"5:126640246\",\"5:126679697\",\"5:126651068\",\"5:126632821\",\"5:126654623\",\"5:126652710\",\"5:126689438\",\"5:126639097\",\"5:126654970\",\"5:126661774\",\"5:126674613\",\"5:126661380\",\"5:126668683\",\"5:126632848\",\"5:126635667\",\"5:126625548\",\"5:126635083\",\"5:126648201\",\"5:126662114\",\"5:126657217\",\"5:126655730\",\"5:126647941\",\"5:126633827\",\"5:126636211\",\"5:126656500\",\"5:126628098\",\"5:126631841\",\"5:126635055\",\"5:126626645\",\"5:126629170\",\"5:126628771\",\"5:126629112\",\"5:126630016\",\"5:126627875\",\"5:126626044\",\"5:126628584\",\"7:17282329\",\"7:17283293\",\"7:17282359\",\"7:17282391\",\"7:17283523\",\"7:17282974\",\"7:17282507\",\"7:17286087\",\"7:17284085\",\"7:17285867\",\"7:17284989\",\"7:17284577\",\"7:113987041\",\"7:113987454\",\"7:113990996\",\"7:113989105\",\"7:113989202\",\"7:113989569\",\"7:113987889\",\"7:113990352\",\"7:113989578\",\"7:113988537\",\"7:113987281\",\"15:66185666\",\"15:66186768\",\"15:66185846\",\"15:66186343\",\"15:66186838\",\"15:66186061\",\"15:66196997\",\"15:66199641\",\"15:66188317\",\"15:66193404\",\"15:66205498\",\"15:66185803\",\"15:66203218\",\"15:66260432\",\"15:66227660\",\"15:66235312\",\"15:66269504\",\"15:66359486\",\"15:66397242\",\"15:66368685\",\"15:75025637\",\"15:75026280\",\"15:75027895\",\"15:75028233\",\"15:75026627\",\"15:75026149\",\"15:75027880\",\"15:75028233\",\"15:75027179\",\"15:75025814\",\"15:75028490\",\"15:75025988\",\"15:75028536\"],\"p_value\":{\"__ndarray__\":\"EPj1P6UBdz+0g9uLlgyxPzoMBANj5rM/x2rqlXXlvT/23CyOtQ3HPyMSAG+vc8w/XIKojiCi0D/bHhYBMefSP4iDVd1OUtY/CQe6My6e1j+A0Nh/BdnYP9nD09EV1t8/qFg2wAlW4T8bBvkA3BfiPzKM8wIMcOM/KpFNXY314z8AAAAAAAAAALeqPnr4nKg/+WHpzna5vT/l3Tr0odLBP4EPmu+9vMg/LRVuUZQ5yj/hFiy4mW/SP91eTsGvoto/WL87gQW24D+dF2tLVSbnP42sg5lkf+g/3fh6uV3y7z+g4AzBANryP33QD6HmawRAVKgfc9tZB0ARx8YwSAoKQHlZdK26UgxAod7fEuG/EkAA4W/mI/cTQHSJcANUOBRAeqVHk4gMF0CMz7zwkAMYQHUlscqILhhA5flBBJj2G0BDvnKUy2czQAAAAAAAAAAA2R98CuLWrT/Ix+a7VQ27PzWNTqlxq74/rDybDCdHzz+BMGoOycreP3PlrADituA/eyWjM6qR4j9LRsQWTkbjP+AWhdEsmuQ/P9KpPby/5T9or8gJe0DnP3c+/13Seuw/mDiYm9fM7D/dxP2AwiUMQDPS1ecqMRBAchTfZymlEECODbtkScgRQAAAAAAAAAAATqi7wf61rD8OzjjJMma5P6TjK8UiHsM/k+cA+Yk4xT811DGzHbXLPy8E2R6rr88/9Fvd8p+v0j8pwd8C3QHVP33hcbFLGNg/ja80enSe2j9SKKsrvBHcPxJJnT0Rs94/frVvMRYv4T+diXxjjZHhPx9GR5yBD+M/UnIXnhT25D8qzoNC3VjmPwzjnsopJ+c/otNdwu+g6D9Sf7pmpX/pP3fBWG5YMeo/IZaca/J77D/fS0c22Z/tP7IUXYeqle4/xdA3bfgg7z/9Uo0C5D/wP25QcHwjDPE/KBGi+U2w8T+sS+rBI0/yP/hO7uD5y/I/5P+tIBfc8z87e5B41ezzP2DHLhSg+PQ/zdFjFNlZ9T+Gqi337iP2PzTaAAYl0fY/jul1zGpK9z/MD+ieVOX3P8X/JW9LuPg/mrQ9NLcC+T9CQwe3/Zj5P0vj/ZhIs/o/VARV6Za3+j/h1ldauqb7PxfqOFjTJfw/Kngyfamg/D8LzufMbjj+P+lTjCfagv4/u+n7ZhNk/z9FOcgp+BsAQGKR1YF5ZQBA4jnwpE0AAUDD1arZBzUBQDROyvDnUAJACUNmE56kA0Ck8zs4oEkEQAR2sWUX/ARAiTWSOF2zBUBYoxbeA6MGQKqd49XTEQdAWV2+PEd7CEAbugh0EkEJQOp3g82vBwtAXQQq1KPdC0CzdsJQehAMQE/SOgqLAg1AZ8aAJT19DUB8HiH+J6YNQJPllp72/g1AAIxi7mE4DkB0er8Y9DwPQO8JR655wg9A0JvNacbkEUDN42bjnkwTQF7He86sNBdAToz5XQBpGkAp1wpyj10fQPbQylXP7CFA7z+YOuZeI0A7T92h0D4kQKz8msjq6yRAF66tx+YOJkBeoD92toknQAAAAAAAAAAAojJfhnyHpz8ff4ne1Se1P9vfqKqXiMM/rRK7g5JIyD/5rhz2KsPSP3vZ2OVIUtQ/xrzTQCu22z9AsYieLFrwP+R9kVojUf0/HNt1znog/z8JvqWBB6ogQGJVv0OgtJA/6sYuxmAorT/kPD9wsLq0P2zRSfWyob8/TRXIoMlJxT9hjab5/0HUPywJRy4x+eE/4QwndY8M5T8/XGyT2KvlPw6U/E/DZeY/aktFPd716D8AAAAAAAAAAPHA31XA/60/aHXfMk+AtD/7YTV6mmjBP5yCirvc58U/DZQbyDlJyz/OjydE3CDRP1Vk/MQ0ZNM/b13ifCTf1D9oQ4CgPJbWP2jKaa/AbNk/IriWRwmy3D/2WWizfdHeP8k0dEC6O+A/qxN0mXOb4T8SzvpEbaLjP7NoCKa/+uQ/dWmoyVTe5T+uaz/DEQLnPx29aAQCkOk/AAAAAAAAAABSRZ+pvAKnP6LRQIMf6rU/XAc2WDQPwT99pOIUJfDHP9CjbiRPc8o/rLyC3lyB1T9GCiClMv/cP7EhlZaXoOA/whuzC+iA4j/1M7b5HyPkP0LkGf+3geU/OaNDIVvI0j8=\",\"dtype\":\"float64\",\"shape\":[199]},\"ri\":[\"rs150055772\",\"rs200762071\",\"rs10206737\",\"rs60288156\",\"rs78249499\",\"rs73952545\",\"rs114097029\",\"rs2169812\",\"rs145115545\",\"rs137965476\",\"rs6542783\",\"rs940928\",\"rs13001699\",\"rs3827760\",\"rs12623957\",\"rs10865025\",\"rs538046270\",\"rs575749090\",\"rs115498426\",\"rs114946697\",\"rs79534778\",\"rs113868707\",\"rs13431945\",\"rs13411329\",\"rs16863471\",\"rs7607981\",\"rs80199364\",\"rs529478087\",\"rs36054640\",\"rs71050391\",\"rs986430\",\"rs986429\",\"rs11895863\",\"rs5838931\",\"rs2196751\",\"rs11690945\",\"rs66885466\",\"rs2218064\",\"rs16863473\",\"rs985473\",\"rs2218065\",\"rs571577163\",\"rs116218900\",\"rs114395204\",\"rs1477873\",\"rs75718680\",\"rs144220715\",\"rs79625021\",\"rs2590770\",\"rs17663341\",\"rs2590773\",\"rs2590771\",\"rs2668550\",\"rs2668552\",\"rs2616389\",\"rs6858782\",\"rs6818959\",\"rs6816209\",\"rs4864809\",\"rs547382339\",\"rs556210684\",\"rs62373865\",\"rs78627309\",\"rs75840444\",\"rs113558663\",\"rs17165103\",\"rs56169866\",\"rs111412119\",\"rs7702573\",\"rs187467669\",\"rs183280201\",\"rs10519929\",\"rs17165082\",\"rs146140674\",\"rs72786459\",\"rs246892\",\"rs33930493\",\"rs138731838\",\"rs2546806\",\"rs35527\",\"rs2546085\",\"rs2431724\",\"rs2585193\",\"rs200086613\",\"rs1422315\",\"rs970546\",\"rs2546081\",\"rs2546804\",\"rs13171067\",\"rs35796097\",\"rs2585191\",\"rs2546805\",\"rs13153845\",\"rs34208116\",\"rs2546803\",\"rs246947\",\"rs1816058\",\"rs1345664\",\"rs3050850\",\"rs2546808\",\"rs2585196\",\"rs246944\",\"rs559620165\",\"rs2161283\",\"rs246948\",\"rs2546082\",\"rs1345663\",\"rs1816059\",\"rs246896\",\"rs246943\",\"rs2585199\",\"rs2439927\",\"rs246945\",\"rs1160960\",\"rs2546807\",\"rs246885\",\"rs31470\",\"rs27782\",\"rs31471\",\"rs2546078\",\"rs2585198\",\"rs1345662\",\"rs2408868\",\"rs2018571\",\"rs1422317\",\"rs26945\",\"rs152121\",\"rs246886\",\"rs1422316\",\"rs2585197\",\"rs2546809\",\"rs152120\",\"rs2194079\",\"rs2585200\",\"rs1808378\",\"rs2032834\",\"rs12519784\",\"rs4836317\",\"rs4836318\",\"rs1422313\",\"rs4836316\",\"rs1363387\",\"rs112394041\",\"rs188125151\",\"rs112975519\",\"rs116664686\",\"rs184627304\",\"rs112056574\",\"rs17137451\",\"rs62444547\",\"rs79694830\",\"rs6943079\",\"rs10281571\",\"rs10277582\",\"rs4410790\",\"rs192308926\",\"rs368002927\",\"rs79307074\",\"rs79448181\",\"rs117717824\",\"rs1916976\",\"rs2690825\",\"rs2049604\",\"rs2690827\",\"rs2690826\",\"rs1527146\",\"rs543734954\",\"rs143445391\",\"rs114717896\",\"rs201844249\",\"rs76198889\",\"rs72742821\",\"rs77535266\",\"rs141964256\",\"rs72742822\",\"rs1063697\",\"rs16949091\",\"rs61543049\",\"rs55730328\",\"rs72625765\",\"rs539661160\",\"rs563322196\",\"rs372969314\",\"rs9783681\",\"rs35478778\",\"rs11412871\",\"rs35042613\",\"rs7496533\",\"rs141323436\",\"rs145741270\",\"rs11631784\",\"rs17861118\",\"rs2472297\",\"rs145741270\",\"rs17861120\",\"rs12441817\",\"rs11072500\",\"rs4886605\",\"rs112697364\"]},\"selected\":{\"id\":\"1243\",\"type\":\"Selection\"},\"selection_policy\":{\"id\":\"1244\",\"type\":\"UnionRenderers\"}},\"id\":\"1196\",\"type\":\"ColumnDataSource\"},{\"attributes\":{},\"id\":\"1172\",\"type\":\"BasicTicker\"},{\"attributes\":{\"filters\":[{\"id\":\"1203\",\"type\":\"GroupFilter\"}],\"source\":{\"id\":\"1196\",\"type\":\"ColumnDataSource\"}},\"id\":\"1204\",\"type\":\"CDSView\"},{\"attributes\":{},\"id\":\"1185\",\"type\":\"ResetTool\"}],\"root_ids\":[\"1161\"]},\"title\":\"Bokeh Application\",\"version\":\"1.4.0\"}};\n",
+       "  var render_items = [{\"docid\":\"9c15035c-fd2c-440f-8940-2bd81f477efd\",\"roots\":{\"1161\":\"23eab958-44f7-4c01-85e1-2e5542853a6a\"}}];\n",
        "  root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n",
        "\n",
        "  }\n",
@@ -933,7 +928,7 @@
        "\n",
        "\n",
        "\n",
-       "  <div class=\"bk-root\" id=\"28a45c93-2f53-4c0d-a6d2-4156b2d77c12\" data-root-id=\"1326\"></div>\n"
+       "  <div class=\"bk-root\" id=\"9e4e5efe-13de-405c-9257-5fac9b77d3d0\" data-root-id=\"1326\"></div>\n"
       ]
      },
      "metadata": {},
@@ -945,8 +940,8 @@
        "(function(root) {\n",
        "  function embed_document(root) {\n",
        "    \n",
-       "  var docs_json = {\"a7e48548-75db-40d9-b01b-b5a7df3b244e\":{\"roots\":{\"references\":[{\"attributes\":{\"below\":[{\"id\":\"1336\",\"type\":\"LinearAxis\"}],\"center\":[{\"id\":\"1340\",\"type\":\"Grid\"},{\"id\":\"1345\",\"type\":\"Grid\"}],\"left\":[{\"id\":\"1341\",\"type\":\"LinearAxis\"}],\"plot_height\":800,\"plot_width\":800,\"renderers\":[{\"id\":\"1365\",\"type\":\"GlyphRenderer\"}],\"title\":null,\"toolbar\":{\"id\":\"1352\",\"type\":\"Toolbar\"},\"x_range\":{\"id\":\"1328\",\"type\":\"DataRange1d\"},\"x_scale\":{\"id\":\"1332\",\"type\":\"LinearScale\"},\"y_range\":{\"id\":\"1330\",\"type\":\"DataRange1d\"},\"y_scale\":{\"id\":\"1334\",\"type\":\"LinearScale\"}},\"id\":\"1326\",\"subtype\":\"Figure\",\"type\":\"Plot\"},{\"attributes\":{},\"id\":\"1346\",\"type\":\"PanTool\"},{\"attributes\":{\"callback\":null,\"tooltips\":[[\"x\",\"@x\"],[\"y\",\"@y\"],[\"rs\",\"@rs\"],[\"loc\",\"@loc\"]]},\"id\":\"1360\",\"type\":\"HoverTool\"},{\"attributes\":{\"axis_label\":\"-log10(p-value)\",\"formatter\":{\"id\":\"1386\",\"type\":\"BasicTickFormatter\"},\"ticker\":{\"id\":\"1337\",\"type\":\"BasicTicker\"}},\"id\":\"1336\",\"type\":\"LinearAxis\"},{\"attributes\":{},\"id\":\"1388\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{},\"id\":\"1337\",\"type\":\"BasicTicker\"},{\"attributes\":{},\"id\":\"1351\",\"type\":\"HelpTool\"},{\"attributes\":{\"bottom_units\":\"screen\",\"fill_alpha\":{\"value\":0.5},\"fill_color\":{\"value\":\"lightgrey\"},\"left_units\":\"screen\",\"level\":\"overlay\",\"line_alpha\":{\"value\":1.0},\"line_color\":{\"value\":\"black\"},\"line_dash\":[4,4],\"line_width\":{\"value\":2},\"render_mode\":\"css\",\"right_units\":\"screen\",\"top_units\":\"screen\"},\"id\":\"1392\",\"type\":\"BoxAnnotation\"},{\"attributes\":{\"callback\":null,\"data\":{\"index\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560],\"loc\":[\"2:109511398\",\"2:109513785\",\"2:109514038\",\"5:126664182\",\"2:109515229\",\"5:126694095\",\"2:109514754\",\"2:109514747\",\"2:109512115\",\"15:66232790\",\"15:66300749\",\"7:113989569\",\"15:66293576\",\"15:66368339\",\"15:66365917\",\"15:66367576\",\"15:66361521\",\"15:66394721\",\"15:66420236\",\"15:66509012\",\"2:109511527\",\"2:109511758\",\"4:54511380\",\"4:54511177\",\"5:126703618\",\"4:54513755\",\"2:109514224\",\"15:66231421\",\"5:126664084\",\"15:66409961\",\"15:66303484\",\"15:66354857\",\"15:66272733\",\"15:66282840\",\"15:66372912\",\"15:66402099\",\"15:66402257\",\"15:66398948\",\"2:109511454\",\"2:109511802\",\"2:109512468\",\"2:223034118\",\"5:126681105\",\"2:223031897\",\"5:126770609\",\"2:109512230\",\"15:66338497\",\"15:66408628\",\"15:66282660\",\"5:126709432\",\"15:66298281\",\"15:66372477\",\"15:66386853\",\"15:66448897\",\"15:66376088\",\"15:66371850\",\"15:66420174\",\"15:66360224\",\"2:109511525\",\"2:109515037\",\"2:109514579\",\"2:109511463\",\"5:126681254\",\"5:126700140\",\"5:126672538\",\"5:126694200\",\"2:109514056\",\"15:66287532\",\"2:109513321\",\"15:66324425\",\"15:66283700\",\"15:66227660\",\"15:66284913\",\"15:66284969\",\"5:126715206\",\"15:66430645\",\"15:66359486\",\"15:66359605\",\"4:54510894\",\"2:109511706\",\"2:223035136\",\"5:126626890\",\"5:126753050\",\"2:109512256\",\"15:66188146\",\"15:66327347\",\"2:109512606\",\"15:66276691\",\"2:109511467\",\"15:66407882\",\"15:66244025\",\"15:66322018\",\"4:54510555\",\"15:66291385\",\"15:66301584\",\"15:66397161\",\"15:66396429\",\"2:223033124\",\"2:109513109\",\"2:223033725\",\"5:126683016\",\"2:109515567\",\"5:126685019\",\"15:66275967\",\"5:126712588\",\"15:66271179\",\"15:66278816\",\"15:66205498\",\"15:66251595\",\"15:66258416\",\"15:66403942\",\"15:66234474\",\"15:66327311\",\"15:66359710\",\"15:66397544\",\"15:66423068\",\"15:66420177\",\"2:223032680\",\"5:126653594\",\"5:126631450\",\"5:126659404\",\"5:126686583\",\"5:126686145\",\"15:66381722\",\"2:223034224\",\"15:66275951\",\"15:66535743\",\"15:66258023\",\"15:66319633\",\"15:66303141\",\"15:66296764\",\"15:66384263\",\"15:66375414\",\"2:109514464\",\"5:126631824\",\"5:126643088\",\"5:126654829\",\"5:126636995\",\"5:126661859\",\"5:126625964\",\"5:126746434\",\"5:126629290\",\"15:66374847\",\"15:66532657\",\"15:66358474\",\"15:66280111\",\"15:66487222\",\"15:66330946\",\"15:66454686\",\"15:66448125\",\"15:66427055\",\"5:126641102\",\"4:54509910\",\"5:126752788\",\"5:126636166\",\"5:126644306\",\"2:109515025\",\"5:126729502\",\"15:66288914\",\"15:66256849\",\"2:109512428\",\"15:66280141\",\"2:109514105\",\"15:66199495\",\"15:66304916\",\"15:66332865\",\"7:113988537\",\"5:126632055\",\"5:126657543\",\"5:126651982\",\"4:54513653\",\"5:126638066\",\"5:126719845\",\"5:126652756\",\"15:66193404\",\"15:66277267\",\"15:66267583\",\"15:66377102\",\"15:66523769\",\"15:66332864\",\"15:66469990\",\"15:75025814\",\"7:113987281\",\"4:54511042\",\"5:126665815\",\"5:126637966\",\"15:66329001\",\"5:126692229\",\"5:126663103\",\"5:126768694\",\"5:126746147\",\"5:126676528\",\"15:66260480\",\"5:126726669\",\"15:66260430\",\"5:126707850\",\"15:66447591\",\"15:66300745\",\"15:66203218\",\"2:109514192\",\"15:66528988\",\"15:66416823\",\"4:54511203\",\"15:66452847\",\"15:66204188\",\"5:126626099\",\"5:126693752\",\"2:223034770\",\"5:126694195\",\"15:66251953\",\"15:66251290\",\"5:126717551\",\"15:66245880\",\"5:126675888\",\"5:126716060\",\"15:66353695\",\"15:66288836\",\"15:66300341\",\"2:109512234\",\"15:66475264\",\"15:66291268\",\"7:17284085\",\"5:126649405\",\"5:126653312\",\"5:126642369\",\"5:126635383\",\"5:126659508\",\"5:126737550\",\"5:126673159\",\"5:126737186\",\"15:66363938\",\"5:126734267\",\"5:126736832\",\"5:126710204\",\"15:66301813\",\"2:109513786\",\"5:126713994\",\"4:54513107\",\"5:126644161\",\"5:126641760\",\"5:126783557\",\"5:126724213\",\"4:54510021\",\"15:66339400\",\"15:66515534\",\"15:66185803\",\"2:109513601\",\"5:126641982\",\"5:126667976\",\"2:223034162\",\"2:223031835\",\"5:126735430\",\"5:126665426\",\"15:66348983\",\"15:66264965\",\"15:66341925\",\"5:126736145\",\"15:66260432\",\"15:66471172\",\"15:66272862\",\"15:66491652\",\"2:109511765\",\"15:66516240\",\"4:54514026\",\"15:66294695\",\"15:66331150\",\"4:54510826\",\"5:126713824\",\"5:126629021\",\"5:126695040\",\"5:126724209\",\"5:126631736\",\"15:66253117\",\"4:54512721\",\"15:66482259\",\"2:109514985\",\"7:17286087\",\"4:54511246\",\"4:54510427\",\"15:66337176\",\"5:126644814\",\"15:66242505\",\"7:17284687\",\"5:126720536\",\"2:223034476\",\"5:126798031\",\"5:126785310\",\"5:126781446\",\"15:66326736\",\"15:66260006\",\"15:66489681\",\"15:66332982\",\"15:66465816\",\"15:66465825\",\"5:126645650\",\"15:66272490\",\"15:66269052\",\"15:66301377\",\"15:66327646\",\"15:66545710\",\"5:126798856\",\"15:66259809\",\"15:66263893\",\"15:66282617\",\"15:66512166\",\"15:66335837\",\"2:223033867\",\"2:223032002\",\"5:126653091\",\"15:66294398\",\"5:126627233\",\"15:66340274\",\"5:126667746\",\"5:126705920\",\"5:126655009\",\"5:126798558\",\"15:75027880\",\"15:66478368\",\"5:126795159\",\"15:66480216\",\"15:66317465\",\"5:126729450\",\"5:126657860\",\"15:66362242\",\"15:66366950\",\"2:223035359\",\"15:66253733\",\"15:66267191\",\"5:126764698\",\"15:66301934\",\"15:66333100\",\"7:113990352\",\"5:126681193\",\"5:126668770\",\"5:126713978\",\"5:126662370\",\"5:126680343\",\"5:126722859\",\"15:66479252\",\"5:126745230\",\"15:66356925\",\"5:126670855\",\"5:126677978\",\"5:126684179\",\"5:126642357\",\"5:126706883\",\"5:126631791\",\"5:126645727\",\"5:126667268\",\"5:126661686\",\"5:126664014\",\"5:126662820\",\"15:66400117\",\"5:126776307\",\"5:126667126\",\"5:126689935\",\"15:66272042\",\"5:126629761\",\"15:66271429\",\"15:75028490\",\"5:126697604\",\"5:126666529\",\"15:66272491\",\"5:126625592\",\"5:126625593\",\"5:126625758\",\"5:126698070\",\"5:126689790\",\"5:126669834\",\"5:126683321\",\"5:126689269\",\"5:126683373\",\"15:66269504\",\"15:75025988\",\"2:223032504\",\"5:126735334\",\"15:66271772\",\"5:126695127\",\"5:126697755\",\"5:126678028\",\"5:126636000\",\"5:126794160\",\"5:126636244\",\"5:126639196\",\"5:126633404\",\"5:126637782\",\"2:223032943\",\"2:223033196\",\"5:126701622\",\"2:223033006\",\"5:126655361\",\"5:126683590\",\"5:126636782\",\"5:126675780\",\"5:126672710\",\"5:126675068\",\"5:126663406\",\"5:126715151\",\"5:126634444\",\"2:223034758\",\"5:126653607\",\"5:126644632\",\"7:17285867\",\"4:54513819\",\"5:126793219\",\"5:126777362\",\"5:126767961\",\"2:223032642\",\"2:223033396\",\"2:223032399\",\"7:17284989\",\"5:126796585\",\"5:126723562\",\"5:126795246\",\"4:54510874\",\"5:126710915\",\"4:54509759\",\"5:126773180\",\"5:126630491\",\"4:54511913\",\"5:126769874\",\"5:126744956\",\"5:126661600\",\"5:126731876\",\"5:126751728\",\"5:126727418\",\"5:126717984\",\"5:126725054\",\"5:126797404\",\"5:126725568\",\"5:126726847\",\"5:126699347\",\"5:126726851\",\"5:126697138\",\"5:126796531\",\"5:126797292\",\"5:126715759\",\"5:126687687\",\"5:126686756\",\"5:126657432\",\"5:126780212\",\"5:126773064\",\"5:126775113\",\"2:223035313\",\"5:126661519\",\"5:126694523\",\"5:126693265\",\"5:126669209\",\"2:223033978\",\"2:223033030\",\"5:126645710\",\"5:126739085\",\"5:126698023\",\"5:126683416\",\"5:126780344\",\"5:126693280\",\"5:126792974\",\"5:126772748\",\"5:126775462\",\"2:223035940\",\"5:126669004\",\"2:223035211\",\"5:126645705\",\"5:126667551\",\"5:126683809\",\"5:126682354\",\"5:126731259\",\"5:126727008\",\"2:223033642\",\"2:223034660\",\"5:126641296\",\"5:126645334\",\"5:126652742\",\"5:126642563\",\"5:126642675\",\"5:126644396\",\"5:126642920\",\"5:126643590\",\"5:126644552\",\"5:126641770\",\"5:126685374\",\"5:126645343\",\"5:126653950\",\"5:126640971\",\"5:126645738\",\"5:126639025\",\"5:126637872\",\"5:126639135\",\"7:17284577\",\"5:126683883\",\"5:126682039\",\"5:126639801\",\"5:126659892\",\"5:126640205\",\"5:126658500\",\"5:126656324\",\"5:126656998\",\"5:126633436\",\"5:126633958\",\"5:126652407\",\"5:126646864\",\"5:126657766\",\"5:126660301\",\"5:126653809\",\"5:126641654\",\"5:126640576\",\"5:126654062\",\"5:126650805\",\"5:126644401\",\"5:126644681\",\"5:126654623\",\"5:126645646\",\"5:126635437\",\"5:126698345\",\"5:126694437\",\"5:126679697\",\"5:126689438\",\"5:126689489\",\"5:126688517\",\"5:126687822\",\"5:126640246\",\"5:126652710\",\"5:126650182\",\"5:126679402\",\"5:126661774\",\"5:126625548\",\"5:126668683\",\"5:126674613\",\"5:126664039\",\"5:126648201\",\"5:126661380\",\"5:126628098\",\"5:126639097\",\"5:126657217\",\"5:126639432\",\"5:126639591\",\"5:126664981\",\"5:126662114\",\"5:126632821\",\"5:126632848\",\"5:126635055\",\"5:126635667\",\"5:126635083\",\"5:126656500\",\"5:126636211\",\"5:126655749\",\"5:126631841\",\"5:126655730\",\"5:126654970\",\"5:126647941\",\"5:126633827\",\"5:126629170\",\"2:223034082\",\"5:126626645\",\"5:126630016\",\"5:126628771\",\"5:126629112\",\"5:126628584\",\"5:126630948\",\"5:126627875\",\"5:126626044\"],\"rs\":[\"rs150055772\",\"rs189753082\",\"rs77709682\",\"rs80219238\",\"rs79444434\",\"rs144734591\",\"rs4676219\",\"rs4676218\",\"rs75155869\",\"rs28582399\",\"rs12906908\",\"rs1916976\",\"rs75687954\",\"rs144078416\",\"rs57916002\",\"rs1550030\",\"rs34142195\",\"rs36178748\",\"rs8039023\",\"rs11854038\",\"rs574502076\",\"rs548040744\",\"rs112839755\",\"rs114395204\",\"rs76946570\",\"rs77629803\",\"rs78249499\",\"rs10519311\",\"rs2585205\",\"rs57645838\",\"rs3931067\",\"rs12593044\",\"rs535038974\",\"rs2004127\",\"rs11634212\",\"rs4776730\",\"rs4776731\",\"rs6494553\",\"rs558429529\",\"rs530251560\",\"rs115259025\",\"rs77212399\",\"rs112942140\",\"rs111488274\",\"rs112237031\",\"rs114097029\",\"rs34967625\",\"rs72744440\",\"rs333574\",\"rs35087652\",\"rs72742875\",\"rs8035662\",\"rs7168565\",\"rs4776284\",\"rs2899711\",\"rs8034323\",\"rs7179044\",\"rs8027897\",\"rs147877575\",\"rs149267190\",\"rs7591765\",\"rs200762071\",\"rs76722411\",\"rs76676895\",\"rs184769214\",\"rs34817464\",\"rs2169812\",\"rs75746958\",\"rs7607563\",\"rs333587\",\"rs16949216\",\"rs539661160\",\"rs28607847\",\"rs16949217\",\"rs11960775\",\"rs16949548\",\"rs9783681\",\"rs55781516\",\"rs148731887\",\"rs200168149\",\"rs184491207\",\"rs113558663\",\"rs79655685\",\"rs73952545\",\"rs75774952\",\"rs76595892\",\"rs3749097\",\"rs8024980\",\"rs145115545\",\"rs72475945\",\"rs557763197;rs565732226\",\"rs333582\",\"rs144220715\",\"rs200415490\",\"rs530957259\",\"rs34890708\",\"rs7170679\",\"rs114196416\",\"rs148961371\",\"rs558223447\",\"rs76388836\",\"rs76935644\",\"rs58043513\",\"rs11638943\",\"rs73783770\",\"rs55749436\",\"rs8035444\",\"rs16949091\",\"rs333565\",\"rs333553\",\"rs7164202\",\"rs59177152\",\"rs333589\",\"rs11633172\",\"rs2035183\",\"rs137881134\",\"rs60198907\",\"rs371522534\",\"rs576470770\",\"rs113788625\",\"rs75801243\",\"rs72786500\",\"rs55900385\",\"rs16949428\",\"rs78277770\",\"rs11071854\",\"rs11630800\",\"rs66856851\",\"rs558606\",\"rs425030\",\"rs150027980\",\"rs1477793\",\"rs62011839\",\"rs940928\",\"rs545921569\",\"rs116775263\",\"rs145100364\",\"rs139181012\",\"rs7705580\",\"rs10519930\",\"rs3851469\",\"rs148348633\",\"rs577885306\",\"rs28690215\",\"rs8036078\",\"rs72742861\",\"rs12904629\",\"rs1465485\",\"rs1542528\",\"rs12903880\",\"rs4776742\",\"rs114169586\",\"rs139265415\",\"rs138881254\",\"rs146073831\",\"rs144120128\",\"rs60288156\",\"rs572172688\",\"rs333571\",\"rs75329153\",\"rs3749096\",\"rs72742862\",\"rs6542783\",\"rs16949087\",\"rs441949\",\"rs58571730\",\"rs2690826\",\"rs150961227\",\"rs59394800\",\"rs192993949\",\"rs539249144;rs200448899\",\"rs80026451\",\"rs10519936\",\"rs114085353\",\"rs1063697\",\"rs11635708\",\"rs432396\",\"rs6494548\",\"rs11631331\",\"rs59651556\",\"rs1382052\",\"rs12441817\",\"rs1527146\",\"rs2590770\",\"rs371234883\",\"rs76396046\",\"rs74023656\",\"rs56217196\",\"rs2032833\",\"rs529654685\",\"rs35550094\",\"rs17839697\",\"rs11855269\",\"rs6874521\",\"rs72465999\",\"rs3909351\",\"rs11432917\",\"rs1991144\",\"rs55730328\",\"rs2378217\",\"rs62011685\",\"rs4776736\",\"rs2590771\",\"rs7163737\",\"rs116748454\",\"rs144701115\",\"rs75200056\",\"rs201276449\",\"rs34618477\",\"rs72742833\",\"rs72742832\",\"rs73346907\",\"rs77976268\",\"rs147858479\",\"rs6886487\",\"rs1871004\",\"rs544223366\",\"rs432170\",\"rs13001699\",\"rs8030058\",\"rs333547\",\"rs6943079\",\"rs115859035\",\"rs151077897\",\"rs151097298\",\"rs79449805\",\"rs80036597\",\"rs12234066\",\"rs17165043\",\"rs56006993\",\"rs62011774\",\"rs6595767\",\"rs1363631\",\"rs112609571\",\"rs2552181\",\"rs3789738\",\"rs200918920\",\"rs77894545\",\"rs74290649\",\"rs79135446\",\"rs58718502\",\"rs557256293\",\"rs75718680\",\"rs333603\",\"rs11856933\",\"rs61543049\",\"rs3827760\",\"rs114403661\",\"rs150201589\",\"rs73990988\",\"rs114946697\",\"rs251031\",\"rs78707134\",\"rs17240756\",\"rs183481\",\"rs333608\",\"rs12109001\",\"rs72625765\",\"rs1871002\",\"rs371936\",\"rs10400920\",\"rs10865025\",\"rs4291865\",\"rs79162003\",\"rs333544\",\"rs333595\",\"rs1477873\",\"rs35530\",\"rs74472247\",\"rs564744176\",\"rs368047649\",\"rs17165103\",\"rs12592034\",\"rs73250977\",\"rs7181353\",\"rs11689836\",\"rs79694830\",\"rs2616389\",\"rs2668552\",\"rs179691\",\"rs60337565\",\"rs333549\",\"rs77000981\",\"rs17165013\",\"rs10194919\",\"rs17164923\",\"rs41298320\",\"rs2270933\",\"rs58298192\",\"rs186729\",\"rs11071869\",\"rs1434733\",\"rs11071863\",\"rs11071864\",\"rs78802780\",\"rs412708\",\"rs377422\",\"rs434416\",\"rs333591\",\"rs112753173\",\"rs73348777\",\"rs333554\",\"rs333558\",\"rs2414897\",\"rs7170633\",\"rs471751\",\"rs80199364\",\"rs7607981\",\"rs146195344\",\"rs333545\",\"rs79637336\",\"rs333606\",\"rs111923517\",\"rs1422318\",\"rs143156276\",\"rs17164922\",\"rs2472297\",\"rs11636260\",\"rs3756721\",\"rs899079\",\"rs621616\",\"rs143954261\",\"rs59539946\",\"rs892655\",\"rs4776714\",\"rs13431945\",\"rs333567\",\"rs11453003\",\"rs17164951\",\"rs147698593\",\"rs170781\",\"rs2049604\",\"rs114244425\",\"rs142732871\",\"rs113289788\",\"rs76302267\",\"rs76290412\",\"rs6881894\",\"rs1351030\",\"rs3844184\",\"rs11856955\",\"rs74867990\",\"rs17684525\",\"rs79699136\",\"rs116194529\",\"rs12657844\",\"rs17165102\",\"rs140948654\",\"rs17684438\",\"rs114484030\",\"rs77262632\",\"rs17762857\",\"rs1993832\",\"rs60681812\",\"rs10519949\",\"rs55918025\",\"rs11854757\",\"rs17165105\",\"rs368614\",\"rs11072500\",\"rs72788513\",\"rs551009886;rs6862045\",\"rs388813\",\"rs183280201\",\"rs187467669\",\"rs10519929\",\"rs77198001\",\"rs73344964\",\"rs4836320\",\"rs56096254\",\"rs73344963\",\"rs56144110\",\"rs372969314\",\"rs4886605\",\"rs36054640\",\"rs10519939\",\"rs428658\",\"rs35528\",\"rs78259230\",\"rs17839696\",\"rs7702573\",\"rs75528418\",\"rs73785576\",\"rs56169866\",\"rs73785574\",\"rs57623356\",\"rs16863471\",\"rs13411329\",\"rs35524\",\"rs529478087\",\"rs73785580\",\"rs72786494\",\"rs17165082\",\"rs78120546\",\"rs77589749\",\"rs17673170\",\"rs11285616\",\"rs79713470\",\"rs2194080\",\"rs71050391\",\"rs138731838\",\"rs72786459\",\"rs10281571\",\"rs6858782\",\"rs10793809\",\"rs59745564\",\"rs6866678\",\"rs986430\",\"rs11895863\",\"rs986429\",\"rs10277582\",\"rs2898043\",\"rs9327438\",\"rs3756722\",\"rs6816209\",\"rs34537147\",\"rs6818959\",\"rs6859181\",\"rs200086613\",\"rs4864809\",\"rs10078629\",\"rs56320297\",\"rs33930493\",\"rs2059084\",\"rs6595770\",\"rs1153432\",\"rs35529\",\"rs10041484\",\"rs4836324\",\"rs4401615\",\"rs2008432\",\"rs35525\",\"rs1318923\",\"rs35527\",\"rs35236935\",\"rs4836323\",\"rs113091845\",\"rs43148\",\"rs185030\",\"rs246889\",\"rs12516897\",\"rs6859304\",\"rs34451603\",\"rs66885466\",\"rs10550881\",\"rs27563\",\"rs246892\",\"rs145619126\",\"rs2196751\",\"rs16863473\",\"rs541675801\",\"rs6877254\",\"rs35156178\",\"rs187514\",\"rs10519941\",\"rs144085293\",\"rs3812052\",\"rs12514969\",\"rs2408872\",\"rs11690945\",\"rs26944\",\"rs5838931\",\"rs201053818\",\"rs27562\",\"rs27388\",\"rs246894\",\"rs13171067\",\"rs1019482\",\"rs2218064\",\"rs985473\",\"rs2585194\",\"rs2585190\",\"rs246946\",\"rs2546083\",\"rs2546084\",\"rs2546802\",\"rs2546085\",\"rs2585191\",\"rs2546804\",\"rs2585193\",\"rs550745558\",\"rs2546086\",\"rs246948\",\"rs2546081\",\"rs13153845\",\"rs2546079\",\"rs2546806\",\"rs2546808\",\"rs4410790\",\"rs27652\",\"rs246895\",\"rs2431724\",\"rs34208116\",\"rs1816058\",\"rs152122\",\"rs3050850\",\"rs246888\",\"rs970546\",\"rs2585196\",\"rs246944\",\"rs2161283\",\"rs559620165\",\"rs31472\",\"rs246947\",\"rs2546082\",\"rs2546080\",\"rs185032\",\"rs2546087\",\"rs2546803\",\"rs2254762\",\"rs2439927\",\"rs2546805\",\"rs35796097\",\"rs35526\",\"rs26947\",\"rs246896\",\"rs1160960\",\"rs26946\",\"rs185033\",\"rs36308\",\"rs1816059\",\"rs246945\",\"rs1345663\",\"rs246897\",\"rs31470\",\"rs2408868\",\"rs2546078\",\"rs27782\",\"rs36307\",\"rs1422317\",\"rs31471\",\"rs2194079\",\"rs2546807\",\"rs152121\",\"rs2585195\",\"rs2431496\",\"rs27749\",\"rs26945\",\"rs2585199\",\"rs2585198\",\"rs1808378\",\"rs1345662\",\"rs2018571\",\"rs152120\",\"rs2546809\",\"rs246887\",\"rs2585200\",\"rs246886\",\"rs246885\",\"rs1422316\",\"rs2585197\",\"rs12519784\",\"rs2218065\",\"rs2032834\",\"rs1422313\",\"rs4836317\",\"rs4836318\",\"rs112394041\",\"rs2059083\",\"rs4836316\",\"rs1363387\"],\"x\":{\"__ndarray__\":\"lIMDoc6Dyj8rJHjFrROXP410UIRlSpo/Vq8noNuRwz/sDKM5e4yhP0Y6xFYqxs0/Qt+iQVrDlj9C36JBWsOWP0AjQS8+arE/idePr1e4xT/DwH3zUaq4P0Jxy3cbWLs/Kqxg3ePnxj8Sq07QUx6qP1o5+GUt08g/XKrkfRrUwT9fxuZ4oM7CP5eBs/Z8InI/3t0yeQ1umz8HDkal1LDEPwxhDFHlOtk/Yu6VoNCn2T/l3I+qLH3aPxFDsRIxmNk/IVsVc1k13T/Q2iEuqtrZP0db1OLCtOA/46cmq3lE4D+RiAyUqD/WP6FvnMa4Tdo/Ll905L6B1D9G+7e9sljiPz6gsmLA+9U/senxp6H24D+C1v3k6JTdP3Bvy8rLbNs/gcSr1ZJs3j8GP6nVBdrXP3TVXnVuz+U/1GIY7w135j/54xMgr8fmP5JSbsq+Jeg/IQUtvAf/5T9yAENJbu3lP0Mrrhnq5+k/X7IvDv1C5T+DW31a5p/lPyTFbjTJm+U/4lDAPR2K6T+ih2JK4OnnPxSxOeCWd+Y/cAjs3rFq5j8fOChNrMnkP+97IY90ceU/eIjTPQ/B5T9EXn8IE0LlP3wdH0VxPes/FDDWQ9F/5D9MJ7dVT6XxP/7i74xCOfE/hWXdL2wy8T/9Oi8OjfLyP6US++3F5fI/7781kmTU8T8HEm4sXbzyP9bO2lVEvfE/hcaqQPX/8D8Tw7vsuxnyPxSvTddSYvI/XENMxUDq7j8vX76J8GDyP+9IUP38iO0/DjUFMD7Z7T+NTjxAHgvxP78sLBmeke0/r/W5EuTv7D/qw+WKKzXuP49zJGGwCO4/r+0/dNqW9T/XPSTuvr/0Pztu5l2LHfQ/uAhEdQdU9T8SSHddM3jzPxqwuEL/d/Y/nxKjIwyO9j/JBf+CmQL2P2Fywyd3K/U/VtYJ5VRT8z9hcsMndyv1P3ILT2SNkPM/OpoU4pRC9T8+xvFX/1L1P00izss37/U//gIPbMmb9j/fYynPbrL1Pw7QJTkc5PQ/czg0qPNg9j/hyls5Aur6P5TngO22ofg/O3N1u9yC+T+5Z6FeD9j5P4xtg80jBPk/ihYf3k3N/D9Z2t4gfZb4P1UHx6Bot/g/HnBKVw40+j/+VPFBNXf7Pxd5wuwhu/g/0XjxSOrF+D8zL1zVQFH6P7cFv3Pm1vo/u0YHgJzN/D8sXysJjpX8P0S82OTQgPk/30dwMOcd+D/X51z34z/8P+5dw/zFpPs/ehR7W8+1/j/RBj8Micb+PyItsbygywBAD+3e2MkG/T+CHrEOKb7+P7hiHtaNAABAE3g6rJD+/z85Xa9pkGL+PyC1OF7n7v8/MdEwML2kAEDm1kNX+BwAQMFe94OJXQBAjrQfQ0VaAEAvYZ5ZP8gAQMSEREqR2gBAsZGkhnQk/j+PPraufn79P12iCshaEQJAN/1urGz5AkA3/W6sbPkCQJFdzTFlBwFAma4WHgb8AEBBW/WhHLUBQD/ioEbjcgFAT32Iyu0aAkCZvKs0q78BQHKYK8UsJgFAjDC+K21vAUDGra2mIIEBQPRkVvrGuwFASDWzfExEAkBbEv03WVkCQHqCxd0ZHgNAJqLqwTsXAUAUrs2TvisFQE+XNavdFwRAMtjgf47HA0AlH0r5dcIEQBccIcxjbwRAbl6Zg7AiBEDJPQcMy34EQOb3xQaXTANAuyepD65aA0Cj7tkWYT8EQFHhtQJuUANA16qzMDFxA0AUVH8BnN0DQPvmCR3ZlARAtLOqWpZ3BEDd0ICokZEEQF953c7T8gZAbi2VWhltBkBpZd8rnz8GQJZr6+JEsAZAXPhB1rMHBkBkjeWcwW4GQGll3yufPwZAU4ZDcInfBkCcwDBq1gcHQCRJjioWFQdA+2L1dwfpBkCQiyRLCPkHQCpVP/M3VwZA0l+5R89dBkDfhRk4Pf4FQEQzOjzv4gdAUFDJfIXWB0COy5UYD14KQC2Jn248VglAiU8f+AY7CkAEqT3qAq8IQEJwNxqpRwpAl3jrUHUVCUCOxTJ5UfoJQJJzDR+9SghA9e8JfYBFCUAJJe+CCfUJQMRYz53sxwlAcn3HxOnnCUDiiLt0XzgJQEIFf5u4LQhA4y2iIQv/CUDjtPCEzDMKQAetvQJelglA+TLZ8d+tCECONP7pHrQIQCfaReuUhQpAhxZg+AwEC0Cv14ctyr4KQChDYbwKLwxAhypjhdzXC0CXRz5rWhkLQFNhOBjYawtAxxwjC0/aC0ArvaCS2/8KQEHW3EDm5wtAlVytIXJBDEDiHapPnIULQBCHD429JAtAYbCTs05aC0Cx07F9tY0KQCv+soaCogtA4PheHH9tDEDcRnDFhLYLQK9Z8kNDNQtAHyt8IZajDUDGvxgyskIOQOTOHxPEVw5AGaBQWk1EDUAXkXGs1XINQPTra8eYug1AGML+rEBXDUCC5LDhTScOQJ21w11p8A5ASYgPAJR5DkALOjuq648NQLysKsjRSA9Aly/EfmUZDUDK0m3mtI4NQE53D413zhBAYlaHwlloEECDHGAWtgwQQIMcYBa2DBBAzMYl4rcoEEAo1aQXp2YQQJahOcCDyQ9As+U+0vUaEEDiYFsKmmkQQM83H+GRbw9A9qu5iIQCEEA+BRf5qPMRQO2hNT7dgRFAKqEU75DIEUAW+HUMovgQQJQ2vxTN9xBATn4n6IQrEUANiyHj41cRQFSlohBurBFAmjxJzfoDEUCmBNCeSAwRQDRKqMiEHRFAR5t4G776EEBIvr2jCcARQKeGBx9ROxFAe0ArSaWjEUBOTkGVIBQRQJEygm6KHRFAiRRszxEWEUDonikBlb0SQAytc8P2eBJA0Vhf5w50EkBqGFOy6mASQMQSFLrjbBJAJyw3c/oZEkD7T2yNztMSQLsLrH8fIBJA2RbxY7QyE0BLuiAuV4cSQMfVqozYABNAZqjEYmpLEkCE6CNeFIISQLVjtyW3BRNAjFzkHl0CFECxFWXc9PgTQEJDFtWzZxNAHU20e++/E0Bazlj3Un0TQPT9FjMAURRA6weunACPE0ALpz2jWLcTQPBTzSMfABRAg5jb+EW9E0AoZX+i31ITQP9m9TZ0VxRAMJr4fdpGFECCBik3UrMTQEwsBLEp3hNAacogKtu6FECKrJxOuLIUQJeejy+uExVAlObSkMqOFUDW946EyhwVQL0FhFtoIhVAspRzRQKYFEBmJeRbuGIVQFcFgHFnMxVAzz+jLT+ZFEB/p3Fx5WsVQK4ypPvfMxVApLHWSsWdFECksdZKxZ0UQNdMT/NiGxZAJRAAWnXQFUCeZKrBCxYWQHZk+YuFmhZAR7LVpPWiFkA2R0wd8ioWQDKIUXZ4EBZAkN5u+N/QFUCvy107kVcWQNpJSaaWPBZA2SNEXCefFkCVINS24FUWQLGjj/0wcRdAqOCTr+VgF0C8DCVwEEgXQBbxhsrF7BZA77mhkucIF0CQRRPqhmUXQL6AT/uiABhA+3kz2WXvF0B8VGOAXA8XQFqjDTfsPRdAB+3CHS5GF0AjdPWinNYXQC2ZRbbk0hhAO7xUbivqGEDqbIndxnYYQBDZ5HfGchhAJRtD7FYCGUD/hjINHBwZQD011c0WjxhA3bpzX/i8GECjuTZ50PIYQEioFeyATRpASKgV7IBNGkAtZLbcnFoZQJ43WSA0fxpAsfH0R9T8GUCWGoF/R8kZQMXE9rVlfhlAQZ7/5fGqGkDnydSi/akaQDaXijIooBpApxsMdmgEG0DgREp7TwcbQIotwyJaihtAfCeZCn/rG0A0AKZ/woYcQN6+yY8a0BxAbDXI53O2HECOOqpG/lkcQMDq+u4RvxtA2LGP1e4MHkCkyfYl2f8cQD4n5mbHYR1AnAFeEKNPHUCcAV4Qo08dQOCbJQnVSB1AKfGBazsUH0AXHJnBQ5weQLZu8NBT3R5A0vL0yG5FH0AXHJnBQ5weQNLy9MhuRR9Am6nY/NpDH0B8TzyZc1seQPFK2o53iB5AU5+DGtq6H0CWzaEM6okfQKRseU++TiBAKz8KQ065IEBHMa83UCkhQOEI7YJUdSFAxNYE5UPiIUCZh7GAWvIhQJmHsYBa8iFAB0GtEqqlIUDraWeKwZIhQKnN+1vLiiFAqc37W8uKIUBdZMkY8zwiQPZJuZZ48yJAOhwEpQSqI0C2PCBMgFIjQCqMdwnC7SNAMwYsmPzmJEBOkAj/JFIlQD989zAksyZAK3GNJi1OJkDeskdNy/cmQDe9rD82lSpA0c+PgVgbLUBewgKl1bEtQAbYd+XbQTBAWzi7E8t8MEBAfhuuga8wQDciHqusGzFAohaUVgJOMUANpdgniqAxQKARd9dFrTFAoBF310WtMUCgEXfXRa0xQCf8cn3wIzJATOpMuIudMkCbcc7/SccyQHyjsDHOkTRAo1UqlS/ENEBBfUwJKwk1QM+1Qx8fTDVAJKaSqG6bNUCf/fL/RYY1QPtqbuhgbzVA1q1epArQNUAZ0nUloCk2QKXinMISezZA8kXq2sOkN0CW8G4LAO43QFKB1K/qFThAFhV61CfdN0Dtxcc50NM4QB7hvXxpTTlAaDaX98MLOUCqrPgCScs5QD8fjh9R7jtA1oVWZ4OaPED8+bsgcMY8QHKBHoQeTz1A1xyGqCaWPUBILjW6kCc+QOF4YbOwGT9A0RFeKauwP0AF6T3H5xtBQKtcPzlXVkFAxv4UgmdwQUBTKiV1q4hBQKWzQMMCPUJAAY6LwQiGQkC080n5Fr1CQGB2k3nu90JArgiMo/rtQkD60exLBfZCQHiYs5Y8CkNAOKQ0G1pIQ0Dw9uXBHVVDQHHt2BXqpENA9qk5bqLIQ0B637npBclDQIO53tg58kNAp29xrBcLREA4PsvVZulDQG8/xJG3EURAhambJ6FTREBdyaEFTZZEQHrdaua5nURAFX9zB6vAREDasbUS6MlEQFtPH2JoIkVAX/vjgVKIRUC+nBUUKuBFQBQ0ZQYggUZAsIqxxDBrR0CwirHEMGtHQJ5dkKu18kdA5goNX4npR0Bd/2puEuRHQJAviW636UdAoqsxNNbyR0Cxa08STOVHQAGMf0qM/kdAAYx/Soz+R0ABjH9KjP5HQAGMf0qM/kdAHp98euuPSEDUFWYI/5BIQFemuGyOpkhAKjfoKFOmSEDUWzsLMsNIQBxxcnQbPElALClzAzKKSUAsKXMDMopJQJCOxTBmw0lAZCFoNU8DSkCgQoUtMO5JQEDX6gYBLEpAmJY71iCSSkAXbY+Xws1KQJuzXHRk1EpABiI9vw8fS0DMfVBvallLQJSYqLsXXEtA5m9kDUd1S0BnYhA3KNxLQPo5oWEx2EtAVFZKFpDFS0C7TCY4orxLQFjNp2wZBExAbv+hGpr4S0CzOEmuXONLQFjNp2wZBExAQP7BHNfpS0D21RtdTvdLQNC1QxjEEExAIv0DupE4TEDzaBESzHxMQF9XWsyTN01AN4sqgsMeTkD5V0Fqu0NOQKredcKhgU5Af2XibcUKT0B/ZeJtxQpPQH9l4m3FCk9An88ESoUfT0BI9XxVOZJPQEZs7jkha1BAr00qNxGXUEDQTAo+iOlQQG7iCdwBu1FA5Mm2Pgu8UUBQaQB395tSQIdvGn0TplJA1JYBhezmUkBJnoOMNehTQEXtxUa6WVVATBG2vEVeVUAMpW8nBTRWQDOE7x7ATFZAQp+BAlyYVkBCn4ECXJhWQNsiZLJPBVdAj58iGAYQV0DumWcZbjtXQO6ZZxluO1dAl+OGpGA8V0Ciy+iJTkVXQJfjhqRgPFdAEoxKvlNVV0DhqwHsRFxXQCOXdv5scldA7Qa9T/y7V0BkJ1EHE+dXQIUPSz1uelhAvn652h6yWEDOt8wgyFRZQLlFKpGiTltApQW78nO6XUAlygsuFHNiQIgrdehBh2JAiCt16EGHYkCU/zaegIBiQIgrdehBh2JANHX7caCWYkDHQOmuFsJiQL6o/25/1mJA\",\"dtype\":\"float64\",\"shape\":[561]},\"y\":{\"__ndarray__\":\"AAAAAAAAAADJMnqs0oCiP9ho+ROIHrQ/QvARQqpsvT9GCCQ98sLEPzFyM9gcPsY/h0CUlT9NzD/TKxyI6EPOP2hgcr95LdI/vA7+/UsK1T87IMeM8SPXP26XWAIc6dc/BM3MqgSk2z/ZXHAT9hrdPx3jkzi8pd8/I/PY60l64D/FU206iVThP5ylsyxRa+I/3cbudbyK4z+3O7mOA/fkPwAAAAAAAAAApJ0MNenNqT/uxqnW5Q25P/bZBC1i8r0/bM4XUwScwz8dz4wL1FnHP5pmFNnym8k/HABqa4Lo0D9Q8jmwFCLTP7IzmZBbT9U/EwVGnkYb1j9KeFoyv8zYP4pKb0iuito/K+xUVBT73T+rDzYmrMHgP3QhiI5sPuM/rIxpfGaz5T9oTQP4ehrnP28BSPoA15I/YOWQSWTWqj8SKsTbDFy3P796fScC0Lk/Z6+k6bgixD8vNkEw8G3GP6FV4WVwB80/HT6YYNWF0T9fItsm47XUP8PpREqZX9Y/ifhorj2D2D9LGiWuga3bPxj65BSAtd0/c5v9IJuj4D+CbiRSg1DhPwi5jVM1X+I/J9N9oUHX4z8kSDittnjkP4JG00l96OY/9BDb1X2Z5z+TJ6l+olmbP/DmxzAQWaI/mJjV1fgNsz/Sw1mmkw29PyIq+lNsysM/OSLUGGC6xT+1uV2k5HvLP7zadOvUzM4/W8LpxcfU0j/SHTfymgXVPyAAb1Vy1tY//ziDeewZ2D9Hq55qy4faP3cFUbHGSNw/1tMIFxlV3z93L942AsDgPwIqDmTn3+E/Dv+xiKU54j/Uax2jRYfjP3ju8vA79uQ/XMvE3rLXnT/EE/55d0KmPxcZotyW1Lk/pX3EVcHQwz/+NuejT+3IP+5NBEI4Y8s/nfFG3gzPzj8E2FM3vWDRP3nD52PxA9Q/srJMPuHE1j+fDbdHBLbXP/kx7SjEjNo/oUNO+tIz3T/USgmumC3eP6sv+QhR5uA/TKgfY6IQ4T9unQ3JwynjP7qnGRd/j+M/K0Of+bxX5D8HaHKTjuuTPxl1ekKH360/psYpzKVltD+YsnrG+vu5P88zlPUbHME/BvAE1fczyT+8cLVY0czNPyyWG59WA9E/XZ8e+fTe0T+NMszWRnHTPylI+GtRR9c/S26EQiuR1z+gtf9FyNXaPxIQIaI7Kdw/d7wr7f4p3z+gVpxjg3vgP+d7id8TA+I/MiNpu0yp4j8cIs5iK83kPxcIpJaVb+U/EWJNmP1Xlj954C0gk6uuP20Hbu3nWrY/4SOegFrgwz83ae/RytfGP7zKMAfZs8k/Bsq25n2D0D8rNrzfnBbRP4YjSVtMENU/EQi0SK6F1j/2PE8Gz1XYPxh87ovPU9s/HO1EcihK3D+lPM/+DbvfP2KNeJZCZeA/nCkq7XQ34T8sO4Vygn/iPyPMvZDeQIE/aD9tqgVJoz/fTs6Cy2m1P8JHByVFurs/w2N0y3rnwj/Xi83qxIvGPyraFZ2EWMs/5ZuPyBC0zz9LOAoPC7DSP+mY02RDptU/KtJddBfY2D8EKYMMPO/ZP4OQISb+kt4/4lQ6B8RE4D+oozOc3EDhP2cHKEP0IuM/WSUlPH924z8xGkDpMymSP0i5DT62cKQ/2Q1hgXE/tD8sgceIiKq9P+J5r2jDs8M/An84dsr2xT/behdQennLP5p3ycRcGdE/cAVl0adt1D+C9GWIq6LVP5xpvZr7ztc/GTNS01yX2j/WFaMLaBLdPyesV5U6C+E/AcH8453r4T8HkEr6y/7kP+UZ6uwdQZo/Xi7TTAAarD+G97TSAjy2P6EYiPP5/cM/ewl4abhaxj+v057lCbXLP+1EB+kJic4/XE/84j6m0T/idieW8WnVP1w1V6Tvvtg/d/KDPaIV2z8gbtX8oZLcPy4Br90A5+A//mNCtsCM4T8K9SpjLUfjPzt3uH34wOU/7yHp9yzt6T/7W4QYeQahP4a56s6jNbA/I0OwHffgtz/auSWeH+q8P0b590dAtsE/Yz7xuCVRyT+weSmBa/LJP2P2dU5GLM4/157LtTI70T8QxiVIR7nUP7wIoOTEydU/CkXb3TAI2D9eRTDuaUDaP3Rdu5N1690/VIzaZ9bo4D83pF1MTgfiP9LUapEhROI/EJJO/ce84z83zdY0jyflPxqqz73GfuU/MEpJ5gsPfD9E2J9Rn0urP2l1n+1prrE/MHM+XQI0wD+S+ZEzrC/BP9C/aD+sgsk/XNcdqZpgyj+UVaALD/TNP4KerMb319I/PK2rYj6I0z+qSoRDxzbWP9Bt60WXutg/OnAwwr8I2j/9ApVuK7zbP/zBFNmy6N0/uyrrjtUD4D/BwzWYjlzhP63EyRAlwe0/Vq13raBsej93FrvhHR2uP2edk+u0C7I/sh/Bgl8WvD9EJJ+59RvBP3xUYEjTZ8o/uqPfwGJWzj+DLPk8g/bRP40ihhjwS9Q/Os/gJFLZ1j/+umRAK8XXP9+2mmSi9No/PrDeVpQG4D/DozFq9lnhP1ZgLyRj1as/n4QSGsg1sz8mDZms25S5PypXKO/Bs8M/nol1aBbWxT9gC0KMf0nQP8fGloHFvNE/KzF90cK53D8B80KTuLTfPwpw8+P/KuE/l7McKD5m5D//tWE46jCbP5JYjR7G0LA/pB5LNcDJsj8fyAV/ed25PwaZt2qUt8Q/MSUC5Uo2yD+wtMrinmbLP1wdyiDGztE/BTmrUKF10z/19SFWv/3WP216DFH9Tdg/UrlCyGKz2j9Hwc5GtG3dP07kcsR33d4/fbhhDEk04D8gMHxZ/W3iP4/r6yNeVeM/Z72jPlZ45D+KtLpmdNSxP5hITJ9KCMA/rGWw3ZBFwT9PPIQBAMDFPxQ8kKBZJs4/MOSAq1K70T+nd1v6qx3VP53MZ3NzRdY/5RjdF9+d2z9mvZPrtZreP4yZwOfmm+A/FAX60u5N4T80DwxTTXXoP2SF4Z5Sce4/w4p9vPfqnj+c8JQ54EewP0/rL4jO9rU/YjdaJY1uwD81KiXxU4DEP0hmJOE9Gck/ci+eoU6Zyj81x6k7cCvQP0zEu5x+JtM/MFVzH+dL1z9JiH7ezuzXP5cFSjPhJd0/EXCupBPA3z+YnU4QpjngPwokzGSQLeE/ix+drH+KrT+/qzeY7/ezP/VHLzpwsbs/GBJk9Na3wT/uPpWobVTFP1KbNpFefso/Hssa5qV/0D+TL1Z0mVrUP0pM9UsQBtc/H6j+S2JR4D95I1uNQUvhPxZL0xhNBuM/n5p00xzc5T+EoZf2jd3mP2Xe8nyfpKI/0x4db4T7uD8tGY0fQuG6PwrLFYYtcsQ/fnAlyPyRxj9mORmjM3DMP7Pg3G2oQs8/VrNFJOFf0T88iocNQRDZPxNm7u7m59o/YHURb4TU3T+J1sVM9pPhP7S4d8LP66k/N1DMYD9btj+HWFFOQxnAP91VCxnrEMQ/XTO8ncDYyT81NC1zNm/UP+HJeJdux9g/c0HRr3Df2T+tbnhwIpncP824ayByEt4/u5xwdVQv4T/yuQ6L+4bkP+LkBCd1cKk/tmNMHRhjvz9bU0TKeenBP/XOHNlrFMg/8LvGL2LSyz+XdDuDA+fWPyW9b/bw+d4/johHqRgQ4D9ggsjjpYbnP5a7toxvZLw/IgO4JuMFxT+qDxbzDgbHP5t3LZOXrso/kxjWo3mD0z933ZJ/VLjZP9H0Xv1CrN0/ZDnHWDPRuT/Py79w3Z3EP0L01cRxJMY/9mUw+S0l0j9nqcu7ZAjeP+zshdegAuM/KO09oedbxj9BrTcl4nrQP57sibfPBtU/1Iqd8ibI2T80+A3K1CPcPwGa9QpcFOU/DsDWCeL4zD+Plv6k55DSP2k5UIKOsdg/kMKWoZG/3T9zOEBDfujdP15FesFW9uA/UPVoRWoKxD9MGM6vXnbHP16zu1zAKso/GxC5SAJ+zz/wIJnppx/SPy8aCgNg9dY/MY0vwg2r4D8OkIYzZCfqP15wTQrD2fQ/cx03jJvq0D81Mf35+A3cP+eh2473ZNE/snhfy4m71z83bptDnDLRP7591ttG29s/ATaZLqDvyj+j1qD98ADTP5RZBqIhUNc/ZVC3t9nw1z+Lir7IOhPaP9rWt0W/TuE/lhDVEWnD5D90BosyNdjjP+UNhgNRoPI/IqYQC8PE2D8H7sGZ5qvbP6ZUpTMcFdc/B9zCgpVL0z/Mv1VPBPLUP/rPq5oD7tk/unFKqPpD5j+FTr+6wg/MP/JDqlGe+9Y/fck4wxo8CEANw3sLeifgPwDy73WYX+w/0ZNVxOhA9j+2Jjs5FtENQDX7bXI9NOc/Z4af+I823z95pPyyzZfaP9EuA0ATqQZA1+j5ceZ1B0CKClNjEqAKQODtjSPD/v0/GvBtQa7n3z8KfdQUjLniP9coO+2/Jt8/bN6V6LLCEUBJtvcUN/DbP/zFXU/H0RNAE+OtnHIC5T+UEb9RQkLwP1P3DRQhVBRAn8g0x8ZY2D9tICZZ1zjiPxdJNrRg2uY/CyUaHwGl5j+5+7Zba+bePy06QQfRNOE/Jq3HZyt75T9/pmCeETjiPwcCBbWLhuE/N+1oQadf5D+khrR+UZrlP5tEhmGyNdw/xz6b3TtS8T+cO0hzKTjgPw5Dkylh0uE/WtSby7ne6z960Q/oNc/rP6fIGOT9Le8/MuciSI505j+CWItdGVjeP+8bLgopVOc/Bk9/maCT8T80xxPid7HlPw37zvOW8xRADJNlpD5d4z9upQLomurrP5xDeRADiOM/ef/jP3Zf5z83rMtpnR4YQO71xM4xdxlAcf4lfG3Y5T9EsUIGu4T0PxETWcwsme0/I0hAePwC6z9YIILmt3DyPw7DidbCeus/3ZqRZqwo8T8ov0qgOgTzP4U5pJhXEPI/UKKzn8BZE0Bg5vFb687zP8Pd/BGKWBNAUVKwsZv07z+lrdvvau35P994IkD5IvE/s7ZTFMpy8D/6fn7I1Sr6P6lGt4h/QvQ/czBG3mpwGkAxvXKik8UbQKNwPEbSk+k/wr3/nv/37j+0H++rDA3xPy51j0YX/vI/pmJK/cOp8z9KlLarKE74P9gpg/Psy+M/gXjpAMC75T+PkJPfZuXpP0qKMo2uzfc/ZDi3jQs/7D+1Cfo6LNbpP5yVeEKFGOs/rJwKcPYX+T8GKGNNGZnhPzqHOltGAvc/gjF7hEIk9D9lWJ7F7Vj/PwDEc7zrtSBAqFXGBB768D9XvHh7NfryPx4iUxSKwAFAsaNXuf1a8z/hG19rlK7qP6BG8SLYaOk/0APWKnu1+z8WpUJIZeP1P92+XLZ/i/w/Q9LD8ks25j9fj/WPA/zuP5E+dG0CWfg/qmn6sxQ9/D/ZM7z8zN3/P016aAgo/eg/4wyYHsKT8j8HbYthuevzP/SAfG4ZyvY/Q1goSSwL9z/K3qk9j/36P2TQBvh1qPI/DULodwyE/D/Xl9Go9Kv4P7lcHw1f9/Q/hulakv3L9D/pEH1PZUv1PxJ2eAEjPwBAIEeLA5aj+D9DUHauURT5P9YLrVN9yP0/qf1OgH5g9D9D5W3WqAr0P0S7uSgwD/M/Bi9Opj3+BEBUJjv2+YH2PyJICPCsSwNAw3GB2NNADkAr2HVC+SkEQF6A64uRS/c/IVl9PVelB0CiZS6NGBkBQI1ChHIVVAhAEYGUg8YwEkDBulrBVAENQOO1gmXllQxAd0jwXWHp+T+NdsSQkr8JQM2t9Csr2BNAExttctwUC0BSwjmeMFIGQGBblQkfdwdALrrEZXEOC0CQTjL4PiwPQLdt1B1fChFA1h0ZpcR1AUAvhmiMfjQNQIDEeZfBJhFAHISNVzyZEUCs0g3sHQUUQFKnrD16axFAFE0S+2i7DEBVDH/P28YOQB7UDiLBcRdAsg2jcmSnMECSYSX9D9EhQI39nnLXAyFAw861cS9hJECh3hjKn0UnQBRwgqPwQihAZ1ZmKckHJUBxMKUz7CIgQKEZB2aX5SRA\",\"dtype\":\"float64\",\"shape\":[561]}},\"selected\":{\"id\":\"1391\",\"type\":\"Selection\"},\"selection_policy\":{\"id\":\"1390\",\"type\":\"UnionRenderers\"}},\"id\":\"1361\",\"type\":\"ColumnDataSource\"},{\"attributes\":{},\"id\":\"1334\",\"type\":\"LinearScale\"},{\"attributes\":{\"callback\":null},\"id\":\"1328\",\"type\":\"DataRange1d\"},{\"attributes\":{\"axis_label\":\"gini importance\",\"formatter\":{\"id\":\"1388\",\"type\":\"BasicTickFormatter\"},\"ticker\":{\"id\":\"1342\",\"type\":\"BasicTicker\"}},\"id\":\"1341\",\"type\":\"LinearAxis\"},{\"attributes\":{\"callback\":null},\"id\":\"1330\",\"type\":\"DataRange1d\"},{\"attributes\":{},\"id\":\"1332\",\"type\":\"LinearScale\"},{\"attributes\":{\"active_drag\":\"auto\",\"active_inspect\":\"auto\",\"active_multi\":null,\"active_scroll\":\"auto\",\"active_tap\":\"auto\",\"tools\":[{\"id\":\"1346\",\"type\":\"PanTool\"},{\"id\":\"1347\",\"type\":\"WheelZoomTool\"},{\"id\":\"1348\",\"type\":\"BoxZoomTool\"},{\"id\":\"1349\",\"type\":\"SaveTool\"},{\"id\":\"1350\",\"type\":\"ResetTool\"},{\"id\":\"1351\",\"type\":\"HelpTool\"},{\"id\":\"1360\",\"type\":\"HoverTool\"}]},\"id\":\"1352\",\"type\":\"Toolbar\"},{\"attributes\":{},\"id\":\"1349\",\"type\":\"SaveTool\"},{\"attributes\":{\"dimension\":1,\"ticker\":{\"id\":\"1342\",\"type\":\"BasicTicker\"}},\"id\":\"1345\",\"type\":\"Grid\"},{\"attributes\":{},\"id\":\"1342\",\"type\":\"BasicTicker\"},{\"attributes\":{},\"id\":\"1347\",\"type\":\"WheelZoomTool\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1364\",\"type\":\"Circle\"},{\"attributes\":{},\"id\":\"1350\",\"type\":\"ResetTool\"},{\"attributes\":{},\"id\":\"1390\",\"type\":\"UnionRenderers\"},{\"attributes\":{\"ticker\":{\"id\":\"1337\",\"type\":\"BasicTicker\"}},\"id\":\"1340\",\"type\":\"Grid\"},{\"attributes\":{\"data_source\":{\"id\":\"1361\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1363\",\"type\":\"Circle\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1364\",\"type\":\"Circle\"},\"selection_glyph\":null,\"view\":{\"id\":\"1366\",\"type\":\"CDSView\"}},\"id\":\"1365\",\"type\":\"GlyphRenderer\"},{\"attributes\":{},\"id\":\"1391\",\"type\":\"Selection\"},{\"attributes\":{\"source\":{\"id\":\"1361\",\"type\":\"ColumnDataSource\"}},\"id\":\"1366\",\"type\":\"CDSView\"},{\"attributes\":{},\"id\":\"1386\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"overlay\":{\"id\":\"1392\",\"type\":\"BoxAnnotation\"}},\"id\":\"1348\",\"type\":\"BoxZoomTool\"},{\"attributes\":{\"fill_color\":{\"value\":\"#1f77b4\"},\"line_color\":{\"value\":\"#1f77b4\"},\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1363\",\"type\":\"Circle\"}],\"root_ids\":[\"1326\"]},\"title\":\"Bokeh Application\",\"version\":\"1.4.0\"}};\n",
-       "  var render_items = [{\"docid\":\"a7e48548-75db-40d9-b01b-b5a7df3b244e\",\"roots\":{\"1326\":\"28a45c93-2f53-4c0d-a6d2-4156b2d77c12\"}}];\n",
+       "  var docs_json = {\"1b079820-2e46-4bb5-b7f1-bb93e264331d\":{\"roots\":{\"references\":[{\"attributes\":{\"below\":[{\"id\":\"1336\",\"type\":\"LinearAxis\"}],\"center\":[{\"id\":\"1340\",\"type\":\"Grid\"},{\"id\":\"1345\",\"type\":\"Grid\"}],\"left\":[{\"id\":\"1341\",\"type\":\"LinearAxis\"}],\"plot_height\":800,\"plot_width\":800,\"renderers\":[{\"id\":\"1365\",\"type\":\"GlyphRenderer\"}],\"title\":null,\"toolbar\":{\"id\":\"1352\",\"type\":\"Toolbar\"},\"x_range\":{\"id\":\"1328\",\"type\":\"DataRange1d\"},\"x_scale\":{\"id\":\"1332\",\"type\":\"LinearScale\"},\"y_range\":{\"id\":\"1330\",\"type\":\"DataRange1d\"},\"y_scale\":{\"id\":\"1334\",\"type\":\"LinearScale\"}},\"id\":\"1326\",\"subtype\":\"Figure\",\"type\":\"Plot\"},{\"attributes\":{},\"id\":\"1392\",\"type\":\"UnionRenderers\"},{\"attributes\":{\"source\":{\"id\":\"1361\",\"type\":\"ColumnDataSource\"}},\"id\":\"1366\",\"type\":\"CDSView\"},{\"attributes\":{\"dimension\":1,\"ticker\":{\"id\":\"1342\",\"type\":\"BasicTicker\"}},\"id\":\"1345\",\"type\":\"Grid\"},{\"attributes\":{},\"id\":\"1334\",\"type\":\"LinearScale\"},{\"attributes\":{},\"id\":\"1349\",\"type\":\"SaveTool\"},{\"attributes\":{\"bottom_units\":\"screen\",\"fill_alpha\":{\"value\":0.5},\"fill_color\":{\"value\":\"lightgrey\"},\"left_units\":\"screen\",\"level\":\"overlay\",\"line_alpha\":{\"value\":1.0},\"line_color\":{\"value\":\"black\"},\"line_dash\":[4,4],\"line_width\":{\"value\":2},\"render_mode\":\"css\",\"right_units\":\"screen\",\"top_units\":\"screen\"},\"id\":\"1390\",\"type\":\"BoxAnnotation\"},{\"attributes\":{\"axis_label\":\"gini importance\",\"formatter\":{\"id\":\"1387\",\"type\":\"BasicTickFormatter\"},\"ticker\":{\"id\":\"1342\",\"type\":\"BasicTicker\"}},\"id\":\"1341\",\"type\":\"LinearAxis\"},{\"attributes\":{},\"id\":\"1350\",\"type\":\"ResetTool\"},{\"attributes\":{},\"id\":\"1332\",\"type\":\"LinearScale\"},{\"attributes\":{\"axis_label\":\"-log10(p-value)\",\"formatter\":{\"id\":\"1389\",\"type\":\"BasicTickFormatter\"},\"ticker\":{\"id\":\"1337\",\"type\":\"BasicTicker\"}},\"id\":\"1336\",\"type\":\"LinearAxis\"},{\"attributes\":{\"callback\":null},\"id\":\"1330\",\"type\":\"DataRange1d\"},{\"attributes\":{},\"id\":\"1389\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"callback\":null,\"tooltips\":[[\"x\",\"@x\"],[\"y\",\"@y\"],[\"rs\",\"@rs\"],[\"loc\",\"@loc\"]]},\"id\":\"1360\",\"type\":\"HoverTool\"},{\"attributes\":{\"data_source\":{\"id\":\"1361\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"1363\",\"type\":\"Circle\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1364\",\"type\":\"Circle\"},\"selection_glyph\":null,\"view\":{\"id\":\"1366\",\"type\":\"CDSView\"}},\"id\":\"1365\",\"type\":\"GlyphRenderer\"},{\"attributes\":{},\"id\":\"1342\",\"type\":\"BasicTicker\"},{\"attributes\":{\"overlay\":{\"id\":\"1390\",\"type\":\"BoxAnnotation\"}},\"id\":\"1348\",\"type\":\"BoxZoomTool\"},{\"attributes\":{\"callback\":null},\"id\":\"1328\",\"type\":\"DataRange1d\"},{\"attributes\":{},\"id\":\"1337\",\"type\":\"BasicTicker\"},{\"attributes\":{},\"id\":\"1391\",\"type\":\"Selection\"},{\"attributes\":{},\"id\":\"1347\",\"type\":\"WheelZoomTool\"},{\"attributes\":{\"active_drag\":\"auto\",\"active_inspect\":\"auto\",\"active_multi\":null,\"active_scroll\":\"auto\",\"active_tap\":\"auto\",\"tools\":[{\"id\":\"1346\",\"type\":\"PanTool\"},{\"id\":\"1347\",\"type\":\"WheelZoomTool\"},{\"id\":\"1348\",\"type\":\"BoxZoomTool\"},{\"id\":\"1349\",\"type\":\"SaveTool\"},{\"id\":\"1350\",\"type\":\"ResetTool\"},{\"id\":\"1351\",\"type\":\"HelpTool\"},{\"id\":\"1360\",\"type\":\"HoverTool\"}]},\"id\":\"1352\",\"type\":\"Toolbar\"},{\"attributes\":{\"fill_color\":{\"value\":\"#1f77b4\"},\"line_color\":{\"value\":\"#1f77b4\"},\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1363\",\"type\":\"Circle\"},{\"attributes\":{\"ticker\":{\"id\":\"1337\",\"type\":\"BasicTicker\"}},\"id\":\"1340\",\"type\":\"Grid\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"1364\",\"type\":\"Circle\"},{\"attributes\":{},\"id\":\"1387\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"callback\":null,\"data\":{\"index\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525],\"loc\":[\"2:109511398\",\"2:109513785\",\"5:126640893\",\"5:126672621\",\"5:126717058\",\"2:109515229\",\"15:66258762\",\"2:109514754\",\"2:109512115\",\"15:66368339\",\"15:66293576\",\"15:66259108\",\"15:66437036\",\"15:66367576\",\"15:66392652\",\"15:66500990\",\"15:66419034\",\"15:66397022\",\"2:109511527\",\"2:109511758\",\"4:54511177\",\"4:54513755\",\"2:109514224\",\"5:126664084\",\"5:126701190\",\"15:66288134\",\"15:66272733\",\"15:66327823\",\"15:66282840\",\"15:66308817\",\"15:66373866\",\"15:66372912\",\"15:66398948\",\"15:66498409\",\"15:66420014\",\"2:109511454\",\"2:109511666\",\"2:109512468\",\"2:223031897\",\"5:126770604\",\"5:126751361\",\"2:109512230\",\"15:66371875\",\"15:66371877\",\"15:66282596\",\"15:66206437\",\"15:66309124\",\"15:66284998\",\"15:66372477\",\"15:66360224\",\"15:66420174\",\"15:66417844\",\"15:66368685\",\"2:109511525\",\"2:109513987\",\"2:109514579\",\"2:109515238\",\"5:126700140\",\"5:126693671\",\"2:109513321\",\"2:109514056\",\"5:126694200\",\"15:66234857\",\"15:66332288\",\"15:66332280\",\"15:66284969\",\"15:66324341\",\"15:66227660\",\"15:66359605\",\"15:66359486\",\"2:109511706\",\"2:223035136\",\"5:126712316\",\"5:126721410\",\"2:109512256\",\"5:126669211\",\"15:66490680\",\"2:109511467\",\"15:66404128\",\"15:66244025\",\"15:66245497\",\"4:54510555\",\"15:66301584\",\"15:66397161\",\"15:66360842\",\"15:66389902\",\"4:54511847\",\"15:66397242\",\"2:223033124\",\"2:109513109\",\"2:109515567\",\"5:126675101\",\"15:66186061\",\"5:126685019\",\"15:66275967\",\"15:66244175\",\"15:66404169\",\"15:66205498\",\"15:66251595\",\"15:66328481\",\"15:66359710\",\"15:66361057\",\"15:66455564\",\"2:223032680\",\"5:126664057\",\"5:126716639\",\"5:126727794\",\"5:126659404\",\"5:126686583\",\"15:66196997\",\"15:66261730\",\"15:66519507\",\"15:66303141\",\"15:66258023\",\"15:66303253\",\"2:109514464\",\"15:66296764\",\"15:66263374\",\"15:66438085\",\"5:126631824\",\"5:126661859\",\"5:126658266\",\"5:126625964\",\"2:223036256\",\"15:66249102\",\"15:66247768\",\"15:66480107\",\"15:66280111\",\"15:66320806\",\"15:66487222\",\"15:66358474\",\"15:66330946\",\"15:66478017\",\"4:54509910\",\"5:126625757\",\"5:126636166\",\"2:109515025\",\"5:126644306\",\"5:126676554\",\"15:66371962\",\"2:109512428\",\"2:109515632\",\"2:109514105\",\"15:66213698\",\"15:75029399\",\"7:113988537\",\"5:126656761\",\"5:126632055\",\"4:54513653\",\"5:126651089\",\"5:126638066\",\"5:126726073\",\"5:126651982\",\"5:126719845\",\"15:66193404\",\"15:66442953\",\"15:66469990\",\"15:66332864\",\"15:75025814\",\"4:54513106\",\"7:113987281\",\"5:126665815\",\"5:126637966\",\"2:109512364\",\"5:126692229\",\"5:126693357\",\"15:66268217\",\"15:66268827\",\"5:126766903\",\"5:126726669\",\"15:66224813\",\"15:66529223\",\"15:66300745\",\"2:109514192\",\"15:66304403\",\"4:54512752\",\"4:54511203\",\"5:126626099\",\"5:126626288\",\"2:223034770\",\"5:126641571\",\"5:126692562\",\"5:126675888\",\"15:66275546\",\"15:66349495\",\"15:66245880\",\"5:126713606\",\"5:126716060\",\"15:66300341\",\"15:66462352\",\"2:109512234\",\"7:17284085\",\"5:126649405\",\"5:126642369\",\"5:126650817\",\"5:126635383\",\"5:126760928\",\"5:126673159\",\"5:126737444\",\"5:126738041\",\"5:126737186\",\"5:126736832\",\"15:66270361\",\"15:66301813\",\"2:109513786\",\"15:66527853\",\"5:126655604\",\"2:223031933\",\"5:126643533\",\"5:126633442\",\"4:54510021\",\"15:66476229\",\"15:66357458\",\"15:66185803\",\"15:66339400\",\"2:109513601\",\"15:66293780\",\"15:66453760\",\"5:126641982\",\"5:126654751\",\"2:223034162\",\"2:223031835\",\"2:223033853\",\"5:126735430\",\"5:126696556\",\"15:66264965\",\"15:66471172\",\"15:66341925\",\"15:66264944\",\"15:66294695\",\"15:66260432\",\"15:66299460\",\"2:109511765\",\"4:54514026\",\"15:66331497\",\"5:126629021\",\"4:54510826\",\"5:126713824\",\"5:126773859\",\"5:126631736\",\"5:126695040\",\"5:126630327\",\"15:66266116\",\"5:126724209\",\"4:54512721\",\"15:66482259\",\"2:109514985\",\"4:54510427\",\"4:54511246\",\"15:66351526\",\"5:126653342\",\"5:126644814\",\"5:126625827\",\"5:126798031\",\"5:126781446\",\"5:126785310\",\"15:66249807\",\"15:66479057\",\"15:66465816\",\"15:66335979\",\"15:66483512\",\"15:66504551\",\"5:126798856\",\"5:126645650\",\"15:66301377\",\"15:66272605\",\"15:66299964\",\"15:66374639\",\"15:66282617\",\"15:66259809\",\"15:66264100\",\"15:66390090\",\"2:223032002\",\"2:223033867\",\"5:126653091\",\"15:66382987\",\"15:66382336\",\"5:126627233\",\"15:66295812\",\"15:66307304\",\"5:126655009\",\"5:126798558\",\"5:126705920\",\"5:126795159\",\"15:66217240\",\"15:66480216\",\"5:126657860\",\"15:66317465\",\"5:126729450\",\"2:223035359\",\"15:66267469\",\"15:66508895\",\"15:66267107\",\"15:66301934\",\"5:126764698\",\"15:66333100\",\"7:113990352\",\"5:126681193\",\"5:126663759\",\"5:126662370\",\"5:126713978\",\"15:66380254\",\"5:126789986\",\"5:126722859\",\"5:126745230\",\"15:66327924\",\"5:126642357\",\"5:126677978\",\"5:126684179\",\"5:126706883\",\"15:66269804\",\"5:126631791\",\"5:126645727\",\"15:66326871\",\"5:126662820\",\"5:126667268\",\"15:66323837\",\"5:126661686\",\"5:126776307\",\"15:66400117\",\"5:126667126\",\"5:126689935\",\"15:66271429\",\"15:75028490\",\"5:126666529\",\"15:66272491\",\"5:126625593\",\"5:126625592\",\"5:126625758\",\"5:126630875\",\"5:126689269\",\"5:126689790\",\"5:126669834\",\"5:126683373\",\"5:126688726\",\"5:126683321\",\"15:66269504\",\"15:75025988\",\"2:223032504\",\"5:126735334\",\"15:66271772\",\"5:126695127\",\"5:126697755\",\"5:126678028\",\"5:126636000\",\"5:126633404\",\"5:126636244\",\"5:126639196\",\"2:223033196\",\"15:66438961\",\"2:223032943\",\"5:126701622\",\"2:223033006\",\"5:126683590\",\"5:126688400\",\"5:126655361\",\"5:126636782\",\"5:126675780\",\"5:126672710\",\"5:126675068\",\"5:126663406\",\"5:126715151\",\"5:126634444\",\"2:223034758\",\"5:126653607\",\"5:126644632\",\"7:17285867\",\"4:54513819\",\"5:126793219\",\"5:126777362\",\"5:126767961\",\"2:223032642\",\"2:223032399\",\"2:223033396\",\"7:17284989\",\"5:126796585\",\"5:126723562\",\"5:126795246\",\"4:54510874\",\"5:126710915\",\"4:54509759\",\"5:126630491\",\"5:126773180\",\"4:54511913\",\"5:126769874\",\"5:126744956\",\"5:126661600\",\"5:126731876\",\"5:126751728\",\"5:126717984\",\"5:126725054\",\"5:126797404\",\"5:126725568\",\"5:126726847\",\"5:126699347\",\"5:126726851\",\"5:126697138\",\"5:126796531\",\"5:126797292\",\"5:126715759\",\"5:126687687\",\"5:126686756\",\"5:126657432\",\"5:126773064\",\"5:126780212\",\"5:126775113\",\"2:223035313\",\"5:126661519\",\"5:126694523\",\"5:126693265\",\"5:126669209\",\"2:223033978\",\"2:223033030\",\"5:126645710\",\"5:126739085\",\"5:126698023\",\"5:126683416\",\"5:126782325\",\"5:126780344\",\"5:126772748\",\"5:126792974\",\"5:126693280\",\"5:126775462\",\"2:223035940\",\"5:126669004\",\"2:223035211\",\"5:126645705\",\"5:126667551\",\"5:126683809\",\"5:126682354\",\"5:126731259\",\"5:126727008\",\"2:223033642\",\"2:223034660\",\"5:126642675\",\"5:126642148\",\"5:126652742\",\"5:126642563\",\"5:126641296\",\"5:126644396\",\"5:126642920\",\"5:126641770\",\"5:126644769\",\"5:126644552\",\"5:126643590\",\"5:126685374\",\"5:126645343\",\"5:126640971\",\"5:126653950\",\"5:126645738\",\"5:126639025\",\"5:126637872\",\"5:126639135\",\"7:17284577\",\"5:126683883\",\"5:126682039\",\"5:126639801\",\"5:126659892\",\"5:126640205\",\"5:126658500\",\"5:126656324\",\"5:126633436\",\"5:126656998\",\"5:126633958\",\"5:126660301\",\"5:126652407\",\"5:126657766\",\"5:126646864\",\"5:126650805\",\"5:126644401\",\"5:126653809\",\"5:126650411\",\"5:126641654\",\"5:126640576\",\"5:126651068\",\"5:126644681\",\"5:126654623\",\"5:126645646\",\"5:126635437\",\"5:126698345\",\"5:126694437\",\"5:126679697\",\"5:126688517\",\"5:126689489\",\"5:126689438\",\"5:126687822\",\"5:126640246\",\"5:126652710\",\"5:126650182\",\"5:126679402\",\"5:126661774\",\"5:126625548\",\"5:126668683\",\"5:126674613\",\"5:126664039\",\"5:126648201\",\"5:126661380\",\"5:126628098\",\"5:126639097\",\"5:126657217\",\"5:126639432\",\"5:126664981\",\"5:126662114\",\"5:126632821\",\"5:126632848\",\"5:126635667\",\"5:126635083\",\"5:126635055\",\"5:126656500\",\"5:126636211\",\"5:126655749\",\"5:126631841\",\"5:126655730\",\"5:126654970\",\"5:126647941\",\"5:126633827\",\"5:126629170\",\"2:223034082\",\"5:126626645\",\"5:126628771\",\"5:126629112\",\"5:126630016\",\"5:126628584\",\"5:126630948\",\"5:126627875\",\"5:126626044\"],\"rs\":[\"rs150055772\",\"rs189753082\",\"rs144655867\",\"rs79533077\",\"rs191687436\",\"rs79444434\",\"rs28495830\",\"rs4676219\",\"rs75155869\",\"rs144078416\",\"rs75687954\",\"rs2113690\",\"rs7174196\",\"rs1550030\",\"rs7172217\",\"rs35615386\",\"rs1477801\",\"rs6494552\",\"rs574502076\",\"rs548040744\",\"rs114395204\",\"rs77629803\",\"rs78249499\",\"rs2585205\",\"rs17165035\",\"rs77751535\",\"rs535038974\",\"rs74368114\",\"rs2004127\",\"rs551668229\",\"rs62011838\",\"rs11634212\",\"rs6494553\",\"rs11634401\",\"rs16949541\",\"rs558429529\",\"rs545744696\",\"rs115259025\",\"rs111488274\",\"rs11273003\",\"rs201438247\",\"rs114097029\",\"rs56067269\",\"rs117273652\",\"rs746648\",\"rs16949096\",\"rs12592821\",\"rs75056469\",\"rs8035662\",\"rs8027897\",\"rs7179044\",\"rs17241929\",\"rs11412871\",\"rs147877575\",\"rs151214951\",\"rs7591765\",\"rs61447904\",\"rs76676895\",\"rs74384421\",\"rs7607563\",\"rs2169812\",\"rs34817464\",\"rs148315888\",\"rs534981188\",\"rs548927906\",\"rs16949217\",\"rs333586\",\"rs539661160\",\"rs55781516\",\"rs9783681\",\"rs200168149\",\"rs184491207\",\"rs73344999\",\"rs17165010\",\"rs73952545\",\"rs3050852\",\"rs78638359\",\"rs145115545\",\"rs12148601\",\"rs557763197;rs565732226\",\"rs333548\",\"rs144220715\",\"rs530957259\",\"rs34890708\",\"rs1369159\",\"rs12439661\",\"rs17730883\",\"rs35478778\",\"rs114196416\",\"rs148961371\",\"rs76935644\",\"rs57261222\",\"rs72742821\",\"rs58043513\",\"rs11638943\",\"rs55812611\",\"rs11071859\",\"rs16949091\",\"rs333565\",\"rs189155\",\"rs11633172\",\"rs2899714\",\"rs1477796\",\"rs371522534\",\"rs139462045\",\"rs73346905\",\"rs73346940\",\"rs75801243\",\"rs72786500\",\"rs77535266\",\"rs7168215\",\"rs7170773\",\"rs425030\",\"rs66856851\",\"rs5813372\",\"rs940928\",\"rs150027980\",\"rs333557\",\"rs7181974\",\"rs545921569\",\"rs7705580\",\"rs11955086\",\"rs10519930\",\"rs79922615\",\"rs2113689\",\"rs75265185\",\"rs3082855\",\"rs72742861\",\"rs333580\",\"rs12904629\",\"rs8036078\",\"rs1465485\",\"rs10851751\",\"rs139265415\",\"rs116760623\",\"rs146073831\",\"rs60288156\",\"rs144120128\",\"rs17165041\",\"rs75530576\",\"rs3749096\",\"rs137965476\",\"rs6542783\",\"rs16949100\",\"rs8030076\",\"rs2690826\",\"rs144355010\",\"rs150961227\",\"rs539249144;rs200448899\",\"rs114372912\",\"rs80026451\",\"rs11952947\",\"rs192993949\",\"rs10519936\",\"rs1063697\",\"rs550598582;rs571338567\",\"rs1382052\",\"rs59651556\",\"rs12441817\",\"rs2668550\",\"rs1527146\",\"rs371234883\",\"rs76396046\",\"rs10206737\",\"rs56217196\",\"rs74290651\",\"rs72742844\",\"rs72742845\",\"rs6595773\",\"rs6874521\",\"rs78767632\",\"rs4776767\",\"rs1991144\",\"rs2378217\",\"rs113413922\",\"rs2590773\",\"rs2590771\",\"rs144701115\",\"rs142722272\",\"rs201276449\",\"rs74384711\",\"rs74776185\",\"rs147858479\",\"rs17239740\",\"rs333577\",\"rs77976268\",\"rs1363388\",\"rs6886487\",\"rs432170\",\"rs566112961;rs546156411\",\"rs13001699\",\"rs6943079\",\"rs115859035\",\"rs151097298\",\"rs76886238\",\"rs79449805\",\"rs17164957\",\"rs17165043\",\"rs12233927\",\"rs11952552\",\"rs56006993\",\"rs1363631\",\"rs425829\",\"rs2552181\",\"rs3789738\",\"rs5813385\",\"rs78834003\",\"rs115498426\",\"rs115021097\",\"rs75811918\",\"rs75718680\",\"rs115227715\",\"rs1351032\",\"rs61543049\",\"rs333603\",\"rs3827760\",\"rs2552177\",\"rs4776754\",\"rs114403661\",\"rs185150222\",\"rs73990988\",\"rs114946697\",\"rs79534778\",\"rs251031\",\"rs114300755\",\"rs183481\",\"rs1871002\",\"rs333608\",\"rs435990\",\"rs333544\",\"rs72625765\",\"rs2552176\",\"rs10865025\",\"rs79162003\",\"rs390919\",\"rs74472247\",\"rs1477873\",\"rs35530\",\"rs2408871\",\"rs17165103\",\"rs564744176\",\"rs111412119\",\"rs333564\",\"rs368047649\",\"rs73250977\",\"rs7181353\",\"rs11689836\",\"rs2668552\",\"rs2616389\",\"rs4776712\",\"rs147883627\",\"rs60337565\",\"rs3812058\",\"rs17164923\",\"rs2270933\",\"rs41298320\",\"rs333569\",\"rs1351031\",\"rs11071863\",\"rs4776276\",\"rs7164771\",\"rs10152285\",\"rs73348777\",\"rs78802780\",\"rs434416\",\"rs437111\",\"rs417442\",\"rs4776720\",\"rs2414897\",\"rs333554\",\"rs333559\",\"rs59635353\",\"rs7607981\",\"rs80199364\",\"rs146195344\",\"rs6494550\",\"rs8041690\",\"rs79637336\",\"rs10639458\",\"rs11350229\",\"rs143156276\",\"rs17164922\",\"rs1422318\",\"rs3756721\",\"rs12903123\",\"rs899079\",\"rs59539946\",\"rs621616\",\"rs143954261\",\"rs13431945\",\"rs409309\",\"rs55922529\",\"rs2552183\",\"rs147698593\",\"rs17164951\",\"rs170781\",\"rs2049604\",\"rs114244425\",\"rs17762863\",\"rs76302267\",\"rs113289788\",\"rs1600053\",\"rs76912327\",\"rs6881894\",\"rs3844184\",\"rs333592\",\"rs116194529\",\"rs17684525\",\"rs79699136\",\"rs12657844\",\"rs511563\",\"rs17165102\",\"rs140948654\",\"rs333588\",\"rs17762857\",\"rs17684438\",\"rs333584\",\"rs114484030\",\"rs60681812\",\"rs1993832\",\"rs10519949\",\"rs55918025\",\"rs368614\",\"rs11072500\",\"rs551009886;rs6862045\",\"rs388813\",\"rs187467669\",\"rs183280201\",\"rs10519929\",\"rs146140674\",\"rs73344963\",\"rs73344964\",\"rs4836320\",\"rs56144110\",\"rs73344962\",\"rs56096254\",\"rs372969314\",\"rs4886605\",\"rs36054640\",\"rs10519939\",\"rs428658\",\"rs35528\",\"rs78259230\",\"rs17839696\",\"rs7702573\",\"rs73785574\",\"rs73785576\",\"rs56169866\",\"rs13411329\",\"rs35259179\",\"rs16863471\",\"rs35524\",\"rs529478087\",\"rs72786494\",\"rs72788505\",\"rs73785580\",\"rs17165082\",\"rs78120546\",\"rs77589749\",\"rs17673170\",\"rs11285616\",\"rs79713470\",\"rs2194080\",\"rs71050391\",\"rs138731838\",\"rs72786459\",\"rs10281571\",\"rs6858782\",\"rs10793809\",\"rs59745564\",\"rs6866678\",\"rs986430\",\"rs986429\",\"rs11895863\",\"rs10277582\",\"rs2898043\",\"rs9327438\",\"rs3756722\",\"rs6816209\",\"rs34537147\",\"rs6818959\",\"rs200086613\",\"rs6859181\",\"rs4864809\",\"rs10078629\",\"rs56320297\",\"rs33930493\",\"rs2059084\",\"rs6595770\",\"rs35529\",\"rs10041484\",\"rs4836324\",\"rs4401615\",\"rs2008432\",\"rs35525\",\"rs1318923\",\"rs35527\",\"rs35236935\",\"rs4836323\",\"rs113091845\",\"rs43148\",\"rs185030\",\"rs246889\",\"rs6859304\",\"rs12516897\",\"rs34451603\",\"rs66885466\",\"rs10550881\",\"rs27563\",\"rs246892\",\"rs145619126\",\"rs2196751\",\"rs16863473\",\"rs541675801\",\"rs6877254\",\"rs35156178\",\"rs187514\",\"rs10072587\",\"rs10519941\",\"rs12514969\",\"rs3812052\",\"rs144085293\",\"rs2408872\",\"rs11690945\",\"rs26944\",\"rs5838931\",\"rs201053818\",\"rs27562\",\"rs27388\",\"rs246894\",\"rs13171067\",\"rs1019482\",\"rs2218064\",\"rs985473\",\"rs2546084\",\"rs2585192\",\"rs246946\",\"rs2546083\",\"rs2585194\",\"rs2546802\",\"rs2546085\",\"rs2585193\",\"rs1422315\",\"rs2546804\",\"rs2585191\",\"rs550745558\",\"rs2546086\",\"rs2546081\",\"rs246948\",\"rs13153845\",\"rs2546079\",\"rs2546806\",\"rs2546808\",\"rs4410790\",\"rs27652\",\"rs246895\",\"rs2431724\",\"rs34208116\",\"rs1816058\",\"rs152122\",\"rs3050850\",\"rs970546\",\"rs246888\",\"rs2585196\",\"rs31472\",\"rs246944\",\"rs559620165\",\"rs2161283\",\"rs2546087\",\"rs2546803\",\"rs246947\",\"rs1345664\",\"rs2546082\",\"rs2546080\",\"rs246943\",\"rs2254762\",\"rs2439927\",\"rs2546805\",\"rs35796097\",\"rs35526\",\"rs26947\",\"rs246896\",\"rs185033\",\"rs26946\",\"rs1160960\",\"rs36308\",\"rs1816059\",\"rs246945\",\"rs1345663\",\"rs246897\",\"rs31470\",\"rs2408868\",\"rs2546078\",\"rs27782\",\"rs36307\",\"rs1422317\",\"rs31471\",\"rs2194079\",\"rs2546807\",\"rs152121\",\"rs2585195\",\"rs27749\",\"rs26945\",\"rs2585199\",\"rs2585198\",\"rs1345662\",\"rs2018571\",\"rs1808378\",\"rs152120\",\"rs2546809\",\"rs246887\",\"rs2585200\",\"rs246886\",\"rs246885\",\"rs1422316\",\"rs2585197\",\"rs12519784\",\"rs2218065\",\"rs2032834\",\"rs4836317\",\"rs4836318\",\"rs1422313\",\"rs112394041\",\"rs2059083\",\"rs4836316\",\"rs1363387\"],\"x\":{\"__ndarray__\":\"lIMDoc6Dyj8rJHjFrROXP7h0MKFNHrM/YDuTvqhkxj/WtiGBMDamP+wMozl7jKE/Fb1CQJPUzD9C36JBWsOWP0AjQS8+arE/EqtO0FMeqj8qrGDd4+fGP1+FN4Epbsw/5Txzf/faxz9cquR9GtTBP/5xGBkmSsw/5pH/bhazuj8mom7jb9XFP5j1w+ojDbI/DGEMUeU62T9i7pWg0KfZPxFDsRIxmNk/0NohLqra2T9HW9TiwrTgP5GIDJSoP9Y/uEJTYaK+1T8a3Cb7PDfjPz6gsmLA+9U/Xnt1MzsH3T+x6fGnofbgPxS6x6oUBNg/kjFsDkPM0z+C1v3k6JTdPwY/qdUF2tc/b4aGyQzh2j9roWfJi1bhP3TVXnVuz+U//OjbSjXa5D/54xMgr8fmP3IAQ0lu7eU/A75n5H5M5z/spBu6CdvnP1+yLw79QuU/Q/FXK1QD7D9D8VcrVAPsPwdeZsIZaOk/cNPb/dH16T+I2r0iSJ7kPwzkWBMOXeM/cAjs3rFq5j8UMNZD0X/kP3wdH0VxPes/HyA5ppng5D98kdJ+GcfoP0wnt1VPpfE/0IKKidT37T+FZd0vbDLxP/06Lw6N8vI/7781kmTU8T9YfGonwDfxPxSvTddSYvI/hcaqQPX/8D/WztpVRL3xP0pTOmm6AfM/T43hoA8L8j9PjeGgDwvyP41OPEAeC/E/nUtc4qkU8j/vSFD9/IjtP49zJGGwCO4/6sPliis17j/XPSTuvr/0Pztu5l2LHfQ/QDP4oh738z/4NJWwSqD1PxqwuEL/d/Y/PvxU98VD9j8wJLZ7xfzzP2Fywyd3K/U/FCalcKiB8z86mhTilEL1P5DbI4emnvU/TSLOyzfv9T/fYynPbrL1Pw7QJTkc5PQ/4n9Z7Pni9D9xNbuexsbzP13sUCPNqvc/KfKCMTpK9D/hyls5Aur6P5TngO22ofg/jG2DzSME+T+pkKVuHnf6P+dcCnwf5fk/ihYf3k3N/D9Z2t4gfZb4P14tJVCOSPw/oSBbYtAF/D8XecLsIbv4P9F48Ujqxfg//sCIC5/i+j9EvNjk0ID5PzMKcMfhJfw/mqAMFohA/D96FHtbz7X+P+e9MSRdRP0/+mAeDaVH/T/tvksGh8sAQA/t3tjJBv0/gh6xDim+/j89/NLB9n4AQC2jlyzZ/v0/HPM6BrwNAECOtB9DRVoAQObWQ1f4HABAd559K7QQ/z+PPraufn79Py9hnlk/yABAiD2hVG0w/j/GkXjqpjUAQF2iCshaEQJAma4WHgb8AECpi2SETs4CQEFb9aEctQFAn0zwb9mhAUAX9JaRHjoBQAwMWv8zIQFAWJZnJZn/AEDGra2mIIEBQC3Evgn6ewFA9GRW+sa7AUCMML4rbW8BQEg1s3xMRAJArOoubuHxAEBPlzWr3RcEQG+YAnOnNwRAJR9K+XXCBEBuXpmDsCIEQBccIcxjbwRA1KfsiJ3tBECtcrqGqwgEQKPu2RZhPwRAMd4MnZ2TA0DXqrMwMXEDQNTaWhV5zgNAnO5EP/JgBEDd0ICokZEEQBZ8YnoyvQVAX3ndztPyBkCWa+viRLAGQGTyajbbowZAXPhB1rMHBkBIF2+6te4FQGll3yufPwZAZI3lnMFuBkBThkNwid8GQJ0dwoXWUAdA0l+5R89dBkAqVT/zN1cGQN+FGTg9/gVAWOcjOx3iB0BEMzo87+IHQI7LlRgPXgpALYmfbjxWCUA26i8iizwKQASpPeoCrwhAZmSFRpo8CUDLFaZnKXsJQN7B3TbQxglASroAF4A2CEAJJe+CCfUJQKLAj+iYyQhAJSLUsRQ8CEBCBX+buC0IQOO08ITMMwpAsvMDTeidCECONP7pHrQIQI40/uketAhAr9eHLcq+CkCzBwsxr+ILQIcqY4Xc1wtAJLr9m9lzC0Bmu5GiOMsLQJVcrSFyQQxAU7D1s+QKC0AjvWfh7JwKQEHW3EDm5wtAGnv5n7jAC0DiHapPnIULQLHTsX21jQpALtDLJf+/CkAr/rKGgqILQK9Z8kNDNQtAHyt8IZajDUDkzh8TxFcOQMa/GDKyQg5AGaBQWk1EDUCGVmEQHk8OQBjC/qxAVw1AaQ3ar1AzDUCQ75GCMz0NQILksOFNJw5ACzo7quuPDUCrpqseFU8NQJcvxH5lGQ1AytJt5rSODUAnP3HCYjQPQLpF8niYNxBAEg5Wfi1+EECDHGAWtgwQQL8543R/aRBAlqE5wIPJD0CWVOIxRrsQQGc3q5HmBRBAzzcf4ZFvD0Cz5T7S9RoQQParuYiEAhBAK6oTccaeEEDLOZrP4qcQQD4FF/mo8xFAPgUX+ajzEUAqoRTvkMgRQBb4dQyi+BBAWN2F1mDfEUCUNr8UzfcQQMf5IrwdhRFAVKWiEG6sEUBHm3gbvvoQQJo8Sc36AxFAVKWiEG6sEUCJFGzPERYRQDRKqMiEHRFAKiMOdAa9EUB7QCtJpaMRQJEygm6KHRFA6J4pAZW9EkBqGFOy6mASQAytc8P2eBJA0Vhf5w50EkDIqMCIm40SQPtPbI3O0xJAxBIUuuNsEkD5QHO55VwSQDKrr8l3MRJAJyw3c/oZEkDZFvFjtDITQEu6IC5XhxJAx9WqjNgAE0C1Y7cltwUTQIToI14UghJAzykFG3MpFECxFWXc9PgTQLEVZdz0+BNAYjXWH1dQFEDrB66cAI8TQPBTzSMfABRAC6c9o1i3E0Dy2odvxlQUQJ/dH2YcbxNAggYpN1KzE0Bf5jEvOzwUQIS0OkbushNATXd9DSt4E0CylHNFApgUQGnKICrbuhRAlObSkMqOFUB6b2936kAVQOi7YNWz5RRA7eE6QS+HFUDPP6MtP5kUQGYl5Fu4YhVAx89/WCIgFUB7g7wDWAQVQKSx1krFnRRApLHWSsWdFEDXTE/zYhsWQMd4ELc3RBZAx3gQtzdEFkCeZKrBCxYWQHyyjFpLzhZAXM1l02jRFUAyiFF2eBAWQJDebvjf0BVANkdMHfIqFkDZI0RcJ58WQLdz2QlfxRZAlSDUtuBVFkC8DCVwEEgXQLGjj/0wcRdAqOCTr+VgF0CQRRPqhmUXQGychKztmhdAtDB00oG7F0CST2a7FHEXQFqjDTfsPRdAfFRjgFwPF0AH7cIdLkYXQCN09aKc1hdALZlFtuTSGEAQ2eR3xnIYQBDZ5HfGchhA6myJ3cZ2GEBKZWnDPY4YQIVOT4jA3xhA/4YyDRwcGUDdunNf+LwYQDEbQGpXiRlAnjdZIDR/GkBIqBXsgE0aQC1kttycWhlAsfH0R9T8GUBcgh1irPoZQJYagX9HyRlAxcT2tWV+GUBvIKLY/fcaQKcbDHZoBBtAQZ7/5fGqGkBvIKLY/fcaQOfJ1KL9qRpAii3DIlqKG0DgREp7TwcbQHwnmQp/6xtANACmf8KGHECOOqpG/lkcQMDq+u4RvxtApMn2Jdn/HEA+J+Zmx2EdQJwBXhCjTx1AnAFeEKNPHUDgmyUJ1UgdQOHhFlFr4x1AFxyZwUOcHkAXHJnBQ5weQLZu8NBT3R5A0vL0yG5FH0A6N/XLrjMfQNLy9MhuRR9Am6nY/NpDH0B8TzyZc1seQPFK2o53iB5AU5+DGtq6H0CWzaEM6okfQKRseU++TiBAKz8KQ065IEBHMa83UCkhQOEI7YJUdSFAB0GtEqqlIUCZh7GAWvIhQJmHsYBa8iFAqc37W8uKIUAb+8p1oOMhQKnN+1vLiiFAXWTJGPM8IkD2SbmWePMiQLY8IEyAUiNATnwUFUO7I0A6HASlBKojQCqMdwnC7SNAMwYsmPzmJEBOkAj/JFIlQD989zAksyZAK3GNJi1OJkDeskdNy/cmQDe9rD82lSpA0c+PgVgbLUBewgKl1bEtQAbYd+XbQTBAWzi7E8t8MEBAfhuuga8wQDciHqusGzFAohaUVgJOMUANpdgniqAxQKARd9dFrTFAoBF310WtMUCgEXfXRa0xQCf8cn3wIzJATOpMuIudMkCbcc7/SccyQHyjsDHOkTRAo1UqlS/ENEBBfUwJKwk1QM+1Qx8fTDVAn/3y/0WGNUAkppKobps1QPtqbuhgbzVA1q1epArQNUAZ0nUloCk2QKXinMISezZA8kXq2sOkN0CW8G4LAO43QBYVetQn3TdA7cXHOdDTOEAe4b18aU05QGg2l/fDCzlAqqz4AknLOUA/H44fUe47QNaFVmeDmjxA/Pm7IHDGPEBygR6EHk89QNcchqgmlj1ASC41upAnPkDheGGzsBk/QNERXimrsD9ABek9x+cbQUDG/hSCZ3BBQKtcPzlXVkFAUyoldauIQUCls0DDAj1CQAGOi8EIhkJAtPNJ+Ra9QkBgdpN57vdCQK4IjKP67UJA+tHsSwX2QkB4mLOWPApDQDikNBtaSENA8PblwR1VQ0Bx7dgV6qRDQPapOW6iyENAQXg799bcQ0B637npBclDQDg+y9Vm6UNAp29xrBcLRECDud7YOfJDQG8/xJG3EURAhambJ6FTREBdyaEFTZZEQHrdaua5nURAFX9zB6vAREDasbUS6MlEQFtPH2JoIkVAX/vjgVKIRUC+nBUUKuBFQBQ0ZQYggUZAsIqxxDBrR0CwirHEMGtHQKKrMTTW8kdAsqNSNeH0R0Bd/2puEuRHQJAviW636UdAnl2Qq7XyR0Cxa08STOVHQAGMf0qM/kdAAYx/Soz+R0ABjH9KjP5HQAGMf0qM/kdAAYx/Soz+R0Aen3x6649IQNQVZgj/kEhAKjfoKFOmSEBXprhsjqZIQNRbOwsyw0hAHHFydBs8SUAsKXMDMopJQCwpcwMyiklAkI7FMGbDSUBkIWg1TwNKQKBChS0w7klAQNfqBgEsSkCYljvWIJJKQBdtj5fCzUpAm7NcdGTUSkAGIj2/Dx9LQJSYqLsXXEtAzH1Qb2pZS0Dmb2QNR3VLQLtMJjiivEtAZ2IQNyjcS0BUVkoWkMVLQPo5oWEx2EtAQP7BHNfpS0D21RtdTvdLQFjNp2wZBExAQP7BHNfpS0Bu/6EamvhLQLM4Sa5c40tAQP7BHNfpS0DQtUMYxBBMQCL9A7qROExA82gREsx8TEBfV1rMkzdNQDeLKoLDHk5A+VdBartDTkCq3nXCoYFOQH9l4m3FCk9Af2XibcUKT0B/ZeJtxQpPQJ/PBEqFH09ASPV8VTmST0BGbO45IWtQQK9NKjcRl1BA0EwKPojpUEBu4gncAbtRQOTJtj4LvFFAUGkAd/ebUkCHbxp9E6ZSQNSWAYXs5lJASZ6DjDXoU0BF7cVGullVQEwRtrxFXlVADKVvJwU0VkAzhO8ewExWQEKfgQJcmFZA2yJksk8FV0CPnyIYBhBXQO6ZZxluO1dA7plnGW47V0Ciy+iJTkVXQJfjhqRgPFdAl+OGpGA8V0ASjEq+U1VXQOGrAexEXFdAI5d2/mxyV0DtBr1P/LtXQGQnUQcT51dAhQ9LPW56WEC+frnaHrJYQM63zCDIVFlAuUUqkaJOW0ClBbvyc7pdQCXKCy4Uc2JAiCt16EGHYkCU/zaegIBiQIgrdehBh2JAiCt16EGHYkA0dftxoJZiQMdA6a4WwmJAvqj/bn/WYkA=\",\"dtype\":\"float64\",\"shape\":[526]},\"y\":{\"__ndarray__\":\"EPj1P6UBdz8GplnRtSSuP3Xx9iIKk7g/549ZSpsHvz9z+i464yDEP7xXTgwMRs0/9Hr6j+4o0T9TGU4Ti4nTP2TB4GaY89Q/Be3BLTfI1j+jhUUI8SjaP5oBoig8wNs/EV8TSOL13z92pyB6NUzgPxNa8NP+0+E/7jG6FSMf4z/hrxhlAtPkP55lcvyhmeU/AAAAAAAAAABg0l3cwI6nP8jH5rtVDbs/Mx96GKCHwz/23CyOtQ3HP88aB1jROcs/ttkZ1uHRzz9T1mRI6OPRP/5oSbawCNY/DgiSEOpr1z+h+8TDC+TZP09SRabEaN8/EezN4a1I4T8Er6tuUi3iP7VhLzyAxeM/e+xs7F374z+2SCYBHTXmPwAAAAAAAAAAzoIJ4s6/rD/nr1e7tF+1P1sS0zyyFcA/W3OiGNfdxT/iq57+VJLKP1yCqI4gotA/7unwRia40z9YUACiD9XUPyySrmjUH9c/0d1ziHOl2j/6FnWpNPDcPzs0kbEN9t8/TyftE69E4T9PijXr/4XiP5oL9RXg3eQ/IseWAlFN5z8dvWgEApDpP74BDOCy/pE/e82ywQxupT8qpG7IaXO4P5XNm+04DcA/l8icTd6nxj8y+LpvlsLJP22VD0r2ONE/2x4WATHn0j/nXpkhVG7UP3FJGSYYm9Y/TkA3wdZP2z9cRwfxKM/bPwIrUJlNgt4/CaThaSKS4D+rE3SZc5vhPyaXWUrQpOM/dWmoyVTe5T9KiFn0NvWeP9VvAxNwfqY/jg3HZHxFwD/SdveyKF7GPyMSAG+vc8w/Zb2qewCizj/NBDUrpR/TP4iDVd1OUtY/vG+P93K32D910ZXYqlDZP4tG9EdQKNw/gTBqDsnK3j9k/AJ8kNvgP5e19X1tuuE/QRw8T1Cq4z8RYvz+HPTjP7cVKnx1z+U/rms/wxEC5z+JvxI4khySPysUUT47gq4/Vv+F9T+duz8ENeGyFfHAPw2UG8g5Scs/p/LcSe/A0D8obEVeIO3RP8qpl8D1PtU/l43JRzCk2D9oymmvwGzZP2P71xuJCd0/IeTY0em64D+ZcdwdR87hPxLk9On+buM/R17hvHF85D8pbN7n2QiaP/5NBdrrsa4/hkcodUsvuD8/3Ksj66bCP+oeTSN5EcY/urvyYCwzyT/OjydE3CDRP1eZWqBxzNM/jmvaWLQH1j+1T/07Tp7XP08vi8ps4Ng/EArQJVEm3D/Zw9PRFdbfP8TKQQLXLOE/nPfeK1qY4T+HEZXFufzlP6x+rc0DmW8/4B1/YO7Lsj8Yv3N0IDm2P1jjgqJr6cI/V7Hrd/0Yxz9PvPU9arzNP4khrtaGcM8/DBu80T0H0z9MH7/tFDLWP1S3hEzWMds/7gnb3d5l3D9YdiXEkxXgP3ebXB8rPeE/Pjv/iJ9m4T8dvseW5quNPytgJmQM2KQ/EEcblUQAtT/HauqVdeW9P02Gu7G88sY/FHlIs+d60D/WKm1eRGfSP4ZUdIkEJtU/CQe6My6e1j+A0Nh/BdnYP4dlhaKNDtw/hpH+Or2J5T8OlPxPw2XmP+zxuoDzw3U/YrmZoTuWpj9Ufc8EDS+9P4GLkF1EZ8A/Ru500pW5xD87GMpl2eTIP4hh/ybKJ9A/1OFVq+x40z9oQ4CgPJbWP/f0mrAhHNs/TzVCNvA93T9e7eqQSIHfP8IbswvogOI/aK/ICXtA5z9qS0U93vXoP9YzISUBUYs/mtPAduyBsj86DAQDY+azP/8xQBV52ME/9faqltXcxj/TBieFoTbMP1x0YiBlts8/yb9XLMqp1T8hxTWTLXXXP+bouRxRxNk/8A8F9A3N3z9WMWbYeT7hP3RfNtOFbOI/+Vnoj+WP4z/gFoXRLJrkPz/SqT28v+U/HoY6UtdSnD+d+2sA9wqwP2YMPZsWfb0/ng04gLekwD9gDTefGEvEPxOtv4h4pMk/8rVV7x54zj93R9ylHNjRP53gIb35N9Q/T1aqrWE22D9GI6ucleLYP4ALSM3DO9w/T9WhZHcU4D+oWDbACVbhP0CxiJ4sWvA/H7tTep8koj8R1K5xauSyP3kscaJUB7c/bZ2EAm45wz/xcTZAw3/EP4XDl/FTX80/3NRjDpPUzj9mHQhKOPHSPwh60J+oGdQ/y/yxnK0/2T+zqX0JGL/dP37W1/qtU+A/+nfX3UaY4j/FYScXYa7iP93VUsppI7M/+WHpzna5vT8ANwM/5/+/P5jav7NfbMU/rDybDCdHzz8rmxW/TKjTP2z6248tWNc/IriWRwmy3D+9aBvce/jePxsG+QDcF+I/BCxanI6+4j9OYvmOuWDkP5I52b/SfqA/P8xCiGCUpz8yK2kvC865P+XdOvSh0sE/gQ+a7728yD8Q/xduoEnJP8tusAkv3tE//gf9QXvE1T+GkdrWE2XWP94ZiVtqutk/Q0VL8Oq52z9RnLAjLLXfP8k0dEC6O+A/vv1TFudn4T8qkU1djfXjP87rLXOgu+Y/qHqpcqV8rD8/+WZ3oqK0PzWNTqlxq74/W4C/828Bxj/dObs/+grJPy8E2R6rr88/qBTKRHB60T8pwd8C3QHVP2ydY9Hn0to/caHebdar2z+ddKvEqhvgPxRvOcYvZeA/tK8bdffJ4T93Pv9d0nrsP5g4mJvXzOw/mxaur+vBoT/FcSF1YA6yP1mChqCrnL4/ZzlRJ1vzwz9gZtTnX0XMP+L/3KK8J9M/er3Yft1q1T9blQpH2e3XP6/R/aMGE9k/TaRbGYHB3T/doa9nxg/gP0l/lDpkK+E/tUeK76Gy4z9ZqWicvBiyPzkwsDJB0rU/zGHmIPydwj8d1+6jHzzEPyvzWvyKS9A/XPaU9koU1T8e5jU+Zu/aP1qDx5GTbts/5ds+SD7s4D+MadBfypTiP50Xa0tVJuc/jayDmWR/6D+BgDCEDNucP0gh0MKma7I/0rYLHgFhtz8KT9bh0X3BPxa+p/5mAcU/kYrGF0EJyT/hkmBjw57PP4qycFdHytI/ktTVO1Vw1T9oNoJqoDXaP/9bIrk9md8/C0RiVtSn4T99rfDFwcWzPyAb4n0oWLQ/ufSEEFbtwT/hFiy4mW/SP2AJQUtpK9g/x3qxAoh62j9xhZ0NG2/dP/SUCOBZzd4/xlEbinY94D8+F3so/gTjP+EMJ3WPDOU/YL0+T9NrvT+TbAGjrYvBP+DkOo0CAMY/9bHPBRtNyT9UB74C9xzPP0+7gVhtY9I/or6xLPpR1T+HS3JPI03XPxNSDf4Zdac/ganR7ThdwD+9EB0nYHrFP/vMMr77P8w/pz+lim2/0j8IEj6eSGDaP+ClFVbDU94/cvwoM0bv4D/SQBiUSd24P8cHPYUeg8A//KlK2XNhxD+7ORD/R7nJP1atKlx4as4/3sOINOX51D/g8JQmyA/cP/rXPytK0MQ/vF3YaR9Syz/5ib+K1mncP/UztvkfI+Q/bTydLvkOzj87JpQJ/aLYP42vNHp0nto/UiirK7wR3D8SSZ09EbPeP52JfGONkeE/BaD9OKGevz8SyLXgEijIP7kw8mw+Dss/TiLRx10N0D/JJBC4lw/TP/y1yVBwcNU/s2gIpr/65D9C5Bn/t4HlP6DgDMEA2vI/JDLQN8HgxT+3AUVKxNDTP4Kv/ghW8dE/hFEwg/z+2z9e7EumYVfSP33hcbFLGNg/++9IDRHzyD8/CnS1LFvPP/Rb3fKfr9I/3V5Owa+i2j/+cVlcuJTeP1i/O4EFtuA/it/S53QE4j/d+Hq5XfLvP1QobJ6w/NM/MWrv7FQT2j8KMlsZ/pjiP361bzEWL+E/GkZTu2iqyz/XhhnEC9jWP1r5geZ1n90/9Q4EsRgc4z/3XZ6m7xvQP9kyGDUbWOI/fdAPoeZrBEAM457KKSfnPx9GR5yBD+M/5H2RWiNR/T/dxP2AwiUMQN84yZY/a+A/3s6i736z4D/k12lqGP/kP1SoH3PbWQdAEcfGMEgKCkB5WXStulIMQBzbdc56IP8/Gdaly6Ik2z9LKNt9D/XhP25FI2gjB90/chTfZymlEEDbEG6GDLPgPzPS1ecqMRBAshRdh6qV7j9SizEt5NbwP44Nu2RJyBFA0kbwUFNC3j/l4LwUmRjjPyrOg0LdWOY/EhjmgisY2T8sMFWEWTjgP2/b6rAkEuI/+QQqJTg35T+lZVB0sjjlP0RypIZ+vu8/23QAbAbn6z95Mh6KjPrbPy/JnZ+4x+M/Un+6ZqV/6T85oq7bkqfdP9c3UM0vpvA/9pbUHWh/4j+1SuyvrzThP/cqh5GDUew/qrbnOUnm6z+w21mWwHLpPwNapEiJbeo/eOyZrz0Q5T96pUeTiAwXQP4QAHwu3eA/FzgzWWQ+5j9ScheeFPbkP/6J/s7EAe0/AOFv5iP3E0B1JbHKiC4YQNujpibK7eo/PJP9Gv0s8T+rV3WI/+bkP0Uxsiqjhe0/R88ZYcX+8T9POKsXzljyP/O8vwb20Og/QR/eMOVo6z8hK8CzsVb0P0yHY02CTfA/dIlwA1Q4FEDYMCVI18zzP6He3xLhvxJAyQRiBYOG6z+Lfu6hK+v4P7kCl6hwAvE/C8rzjfd78D+sS+rBI0/yP7zAExWP/ec/jM+88JADGEDl+UEEmPYbQGSWkz3h594/8e3CZftN4D9vw4ju4/HnP3V4UEf7Hew/vZfregFL7j/kinsV/ELxP3fBWG5YMeo/30tHNtmf7T/F0Ddt+CDvPygRovlNsPE/5P+tIBfc8z9JANADmLn0PxbZZ0yK1+4/blBwfCMM8T8X6jhY0yX8P2DHLhSg+PQ/bK5JuIWP+T+i013C76DoP5q0PTS3Avk/Cb6lgQeqIECjR2fnTCb3P+/K0yxMB/k/IZaca/J77D/N0WMU2Vn1P47pdcxqSvc/fWd/V+E5+j/F/yVvS7j4P/1SjQLkP/A/5okF11NM9j9CQwe3/Zj5Pw7odi6h0fU/S+P9mEiz+j9UBFXplrf6P+HWV1q6pvs/YK5p5HFY8T+Gqi337iP2PzTaAAYl0fY/zA/onlTl9z8qeDJ9qaD8P2mun5Yeuf4/RTnIKfgbAED8LTptpcTuP+I58KRNAAFAO3uQeNXs8z/4Tu7g+cvyP6o6rc+J8fc/w/fRNQnn+D+76ftmE2T/P80iFGmz2vA/+diVZoNA/z80Tsrw51ACQMfgiANqF/U/6VOMJ9qC/j/D1arZBzUBQAvO58xuOP4/ip4m+bxe/j8EdrFlF/wEQOp3g82vBwtAqp3j1dMRB0CJNZI4XbMFQMeW2wudGQFAs3bCUHoQDEBYoxbeA6MGQNCbzWnG5BFACUNmE56kA0BnxoAlPX0NQEUoRkL8PQhAGx5D1thK/D9P0joKiwINQGKR1YF5ZQBAWV2+PEd7CEAbugh0EkEJQF0EKtSj3QtAXsd7zqw0F0DvCUeuecIPQHR6vxj0PA9AJ9VU/eTLC0DN42bjnkwTQHweIf4npg1ApPM7OKBJBECT5Zae9v4NQACMYu5hOA5AKdcKco9dH0BDvnKUy2czQE6M+V0AaRpA9tDKVc/sIUDvP5g65l4jQDtP3aHQPiRAXqA/draJJ0DglkT4uI4nQKz8msjq6yRAF66tx+YOJkA=\",\"dtype\":\"float64\",\"shape\":[526]}},\"selected\":{\"id\":\"1391\",\"type\":\"Selection\"},\"selection_policy\":{\"id\":\"1392\",\"type\":\"UnionRenderers\"}},\"id\":\"1361\",\"type\":\"ColumnDataSource\"},{\"attributes\":{},\"id\":\"1346\",\"type\":\"PanTool\"},{\"attributes\":{},\"id\":\"1351\",\"type\":\"HelpTool\"}],\"root_ids\":[\"1326\"]},\"title\":\"Bokeh Application\",\"version\":\"1.4.0\"}};\n",
+       "  var render_items = [{\"docid\":\"1b079820-2e46-4bb5-b7f1-bb93e264331d\",\"roots\":{\"1326\":\"9e4e5efe-13de-405c-9257-5fac9b77d3d0\"}}];\n",
        "  root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n",
        "\n",
        "  }\n",
@@ -994,6 +989,15 @@
    "source": [
     "_Fig 3: Compare gini importance vs logistic regresion p-values._"
    ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "hl.stop()"
+   ]
   }
  ],
  "metadata": {
diff --git a/examples/compute_local_fdr.ipynb b/examples/compute_local_fdr.ipynb
index d46a97ab..54ad504c 100644
--- a/examples/compute_local_fdr.ipynb
+++ b/examples/compute_local_fdr.ipynb
@@ -40,21 +40,21 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "using variant-spark jar at '/Users/szu004/dev/VariantSpark/target/variant-spark_2.11-0.5.0-a0-dev2-SNAPSHOT-all.jar'\n",
-      "22/07/06 12:34:55 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable\n",
+      "using variant-spark jar at '/Users/reg032/workspace/VariantSpark/target/variant-spark_2.12-0.5.3-SNAPSHOT-all.jar'\n",
+      "23/08/01 15:18:29 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable\n",
       "Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties\n",
       "Setting default log level to \"WARN\".\n",
       "To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).\n",
-      "22/07/06 12:34:55 WARN Hail: This Hail JAR was compiled for Spark 3.1.1, running with Spark 3.1.2.\n",
+      "23/08/01 15:18:29 WARN Hail: This Hail JAR was compiled for Spark 3.1.1, running with Spark 3.1.2.\n",
       "  Compatibility is not guaranteed.\n",
       "Running on Apache Spark version 3.1.2\n",
-      "SparkUI available at http://192.168.0.195:4040\n",
+      "SparkUI available at http://192.168.86.121:4040\n",
       "Welcome to\n",
       "     __  __     <>__\n",
       "    / /_/ /__  __/ /\n",
       "   / __  / _ `/ / /\n",
       "  /_/ /_/\\_,_/_/_/   version 0.2.74-0c3a74d12093\n",
-      "LOGGING: writing to /Users/szu004/dev/VariantSpark/examples/hail-20220706-1234-0.2.74-0c3a74d12093.log\n"
+      "LOGGING: writing to /Users/reg032/workspace/VariantSpark/examples/hail-20230801-1518-0.2.74-0c3a74d12093.log\n"
      ]
     }
    ],
@@ -101,10 +101,10 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "2022-07-06 12:34:58 Hail: WARN: Name collision: field 'sample' already in object dict. \n",
+      "2023-08-01 15:18:34 Hail: WARN: Name collision: field 'sample' already in object dict. \n",
       "  This field must be referenced with __getitem__ syntax: obj['sample']\n",
-      "2022-07-06 12:34:58 Hail: INFO: Reading table to impute column types\n",
-      "2022-07-06 12:35:00 Hail: INFO: Finished type imputation\n",
+      "2023-08-01 15:18:34 Hail: INFO: Reading table to impute column types\n",
+      "2023-08-01 15:18:39 Hail: INFO: Finished type imputation            (0 + 1) / 1]\n",
       "  Loading field 'sample' as type str (imputed)\n",
       "  Loading field 'x22_16050408' as type int32 (imputed)\n",
       "  Loading field 'x22_16050612' as type str (imputed)\n",
@@ -141,10 +141,10 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "2022-07-06 12:35:00 Hail: WARN: cols(): Resulting column table is sorted by 'col_key'.\n",
+      "2023-08-01 15:18:39 Hail: WARN: cols(): Resulting column table is sorted by 'col_key'.\n",
       "    To preserve matrix table column order, first unkey columns with 'key_cols_by()'\n",
-      "2022-07-06 12:35:00 Hail: INFO: Coerced almost-sorted dataset\n",
-      "2022-07-06 12:35:01 Hail: INFO: Coerced sorted dataset\n"
+      "2023-08-01 15:18:40 Hail: INFO: Coerced almost-sorted dataset\n",
+      "2023-08-01 15:18:41 Hail: INFO: Coerced sorted dataset\n"
      ]
     },
     {
@@ -226,8 +226,8 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "2022-07-06 12:35:01 Hail: INFO: Coerced almost-sorted dataset\n",
-      "[Stage 9:=====================================================>   (16 + 1) / 17]\r"
+      "2023-08-01 15:18:43 Hail: INFO: Coerced almost-sorted dataset\n",
+      "[Stage 9:====================================================>      (8 + 1) / 9]\r"
      ]
     }
    ],
@@ -264,7 +264,7 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "2022-07-06 12:35:11 Hail: INFO: Coerced sorted dataset\n"
+      "2023-08-01 15:19:00 Hail: INFO: Coerced sorted dataset\n"
      ]
     },
     {
@@ -331,7 +331,8 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "2022-07-06 12:35:12 Hail: INFO: Coerced sorted dataset\n"
+      "2023-08-01 15:19:01 Hail: INFO: Coerced sorted dataset\n",
+      "[Stage 209:>                                                        (0 + 1) / 1]\r"
      ]
     }
    ],
@@ -354,15 +355,19 @@
    "metadata": {},
    "outputs": [
     {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "No artists with labels found to put in legend.  Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n"
+     "ename": "TypeError",
+     "evalue": "plot_log_densities() got an unexpected keyword argument 'find_automatic_best'",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mTypeError\u001b[0m                                 Traceback (most recent call last)",
+      "\u001b[0;32m/var/folders/c5/g6ky3r7d2qjc07pmv0my66k80000gp/T/ipykernel_12045/3753571859.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0max1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msubplots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfigsize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlayout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'constrained'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mfdrCalc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot_log_densities\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmin_split_count\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmax_split_count\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m6\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfind_automatic_best\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      3\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+      "\u001b[0;31mTypeError\u001b[0m: plot_log_densities() got an unexpected keyword argument 'find_automatic_best'"
      ]
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtgAAAFwCAYAAACCdAwbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADCb0lEQVR4nOzdd3Rc13Xo/++ZBgxmBr03Auy9i6QaJVG9WJJluTtxt+PYsR2nOeWX4jwnLs9O7Dy/JHby4tixYzuu6qI6u9g7CRKN6L3OANPv7487AKbPgCBEANyftbhGPPfcc+/IXtDm5j77KE3TEEIIIYQQQlwbhuv9AkIIIYQQQiwkEmALIYQQQghxDUmALYQQQgghxDUkAbYQQgghhBDXkATYQgghhBBCXEMSYAshhBBCCHENma73C0xXYWGhVlNTc71fQwghhBBC3MCOHTvWp2laUbxr8y7Arqmp4ejRo9f7NYQQQgghxA1MKXUl0TUpERFCCCGEEOIakgBbCCGEEEKIa0gCbCGEEEIIIa6heVeDLYQQQgghFgafz0dbWxtut/t6v0pCmZmZVFZWYjab075HAmwhhBBCCHFdtLW14XA4qKmpQSl1vV8nhqZp9Pf309bWRm1tbdr3SYmIEEIIIYS4LtxuNwUFBXMyuAZQSlFQUDDtDLsE2EIIIYQQ4rqZq8H1hKt5PwmwhRBCCCHEDesjH/kIxcXFrF279pqtKQG2EEIIIYS4YX3oQx/ihRdeuKZrSoAthBBCCCFuWDt37iQ/P/+arildRIQQQgghxHU39Jd/je/8uWu6pnn1GnK/9NfXdM10SAZbCCGEEEKIa0gy2EIIIa5CG/AC8ARwbf9qVQhxY7oemebZIgG2EEKIafAC3wZ+DviBfcC/AJnX86WEEGJOkRIRIYQQ0/Bz4CfA24A/B84Bfw0Er+M7CSHE1Xvve9/LzTffTF1dHZWVlfz7v//7jNeUDLYQQog0eYH/AjajB9cAo+gZ7Z3AQ9fpvYQQ4ur993//9zVfUzLYQggh0vQs0AN8JGzst4AK9HpsIYQQIBlsIYQQybj64I0vQecR+C07WFYD28MmKOAe9Mz2EJD71r+jEELMMZLBFkIIEd/xf4dvL4Uj34GCXrAMwqFh8DijJt4HBIBXr8NLCiHE3CMBthBCiFhNr8FTH4eyzfCpM/DoB8Bngpeegdf/OmrycqAa2P3Wv6cQQsxBEmALIYSI5OqDX34ACpbD+56G4pVgOAjmu2DVu+HY98A9HHaDAu4HjgF91+edhRBiDpEAWwghxBRNg6c+CmN98OR/g8UG1AH9wG1wyx+AdxSO/1vUjfcCGvDGW/3GQggx50iALYQQYsqFX0LdU3DPV6BsU2hwL3qW+hYo3wI1d8Khf4SAL+zGWqAAOP3Wvq8QQsxQa2srd911F6tXr2bNmjV861vfmvGaEmALIYTQBfzw6l9A4SrY/tmwC/uAdUCe/ttb/hBG2uDcz8LmKGAtcOatelshhLgmTCYT3/jGNzh//jyHDh3iO9/5DufPn5/RmhJgCyHEAtV8uI393zvC+Ig7vRtO/QD6LsLdXwaDMTTYD5wHbp2at/RBKFwJR/45aoF1QAswjBBCzBdlZWVs3rwZAIfDwapVq2hvb5/RmtIHWwghFphgIMibPzjB6V9fAKBx/xXu+MzNVG+tSHyTz613B6nYBisfD7twKPR529SQwQCrnoB9X9Vb9mXYQxfWhj7PAbdci68ihLiB/MPzF7jUNXpN11xe6uD3H1yV9vzm5mZOnDjB9u3bU09OQjLYQgixAPjC6qFf/vpeTv/6AqsfXM7bv/4AmdmZPP+3r9F4oCXxAse+CyOtcPffgVJhF04CdmBZ5PyaO0ELQOv+sMFV6P9ZkTIRIcT843Q6ecc73sE//uM/kp2dPaO1JIMthBDz3J62N/jG0a9TZitjdWA9GQfz2Pyutdz0/o0APPGNB/nVH73Aof84RvXWCkwWY+QCAT8c/AZU3w6L745a/TSwnph8TNUtYDBB8+uw9P7QoA1YApy9xt9QCHEjmE6m+Vrz+Xy84x3v4P3vfz9PPPHEjNeTDLYQQsxjHc4OvnPyn6jJqaXKUU3f3iEChgDGm4OTc4xmIzs+tJnRHhdnn7kYu8iFX8Bwi96CL8Io0IgeYEex2KD8Jj3AjrAWPcAOxt4jhBBzkKZpfPSjH2XVqlV84QtfuCZrSoAthBDzlC/g4+tHvoJRGfmL7X/JH2/8U2oalzG4pIcfXPk+AS0wObdyYxnVW8o58fOzkZseNQ0OfAPyl8Lyt0U94Sx6b+sN8V+g5k7oOBp1dPpa9MA8STmKEELMIfv37+eHP/whr776Khs3bmTjxo0899xzM1pTAmwhhJin/vP8f9Aw3MBnN3+eoqwi6vc04Rvzs/mR9TQON/Bay6sR83d8aDO+cT8nfhZWwtGyHzqOwI7f1zcvRjiF/p+JNfFfoOZOCPqh9UDY4LrQp9RhCyHmh9tuuw1N0zh9+jQnT57k5MmTPPTQQzNaUwJsIYSYh1pGrvBUw294uPYRdpTdDMD5Fy6TvyiX+3fey4q8lfzw/H8y7h+fvCevOpelO2u4+HID3rHQpsiD3wRrPmz8YJynnEbf3JgV/yXC67An1QCZwKWZfkUhhJi3JMAWQoh56I221zEoA+9e+V4ABq4M0dcwwKr7l2EwGPjouo8z6BnkF5d+HnHfmoeW4xv3Uf9GEwy3Qd1vYMsnQkeih/Ojl4jEqb+ekGGPU4dtQD/VsXHG31EIIeYrCbCFEGKe0TSNvW172FC0kdyMXAA6znYDsCjU63pl/kpuLb+Npxt/E9HCr3h5IQW1eZx74RLaif8HWhA2fzzOUxqAMRLWX0+ouVMvMYmow64Fmq7y2wkhxPwnAbYQQswzlwbr6BrrYmfFzsmxznM92AqysBdPZaLvrr6Hcf84p3pPTo4ppVjz0HIGmgcIHv43qL0b8hfHecpEDfW6ONfCVN2i12F3nw4bXAz0AM4ENwkhxMImAbYQQswze9r2YDaY2VGun5aoaRpd53soW1OMCjskZkPRRqwmKwc7D0Tcv3RnLTWFFzGOtcKWeNlrgAtADlCe/GWKQ6c39oT3vp4I2KVMRAhxY5IAWwgh5pGAFmBf+x62lGzFZtaz1SNdTsYGxyldXRwx12w0c1PpNt7sPEQgONWyz5xpYsuyN3H77YyXP5DgSReBlYBKcD0kpxosdgmwhRAijATYQggxj5ztO8ugZ5A7Ku+cHOs63wNAWVSADXBz2S2MeEc4339uatDZQ4F3L5cGbuPyvo44T/Gi12CvTP1CBgMUrYkKsMuADKQOWwgxH7jdbrZt28aGDRtYs2YNf/VXfzXjNSXAFkKIeWRv2xtYTVa2lt40OdZ5vocMu4W8qpyY+ZtLtmAxWCLLRM79FBX00WN/nIsv1aNpWtRdjehdRNIIsEEvE4kIsI3o7fokgy2EmPsyMjJ49dVXOXXqFCdPnuSFF17g0KFDM1pTAmwhhJgnAlqAAx372VF2MxnGjMnxrvM9lK4qQhliyzmsJiubijdzsOMAQS10fPnZn0DJeiru2cVgyzA9l/qi7po4Tn0aAfZYLzh7wgYXIwG2EGI+UEpht9sB8Pl8+Hy+iP0sV8N0LV5MCCHE7GsebsLpc7K5eMvk2NjgOMMdo6y8d2nC+24uv4U3uw5RP3SZ5SpTP3nx7r9jyZYaDvz7MS7urqdkRVHYHRcBG1CR3ouFb3S07woNLgaeR+8kYk/7OwohblzfO/1dmoav7R/Ma3MW8/H1n0g5LxAIsGXLFurr6/n0pz/N9u3bZ/RcyWALIcQ8cS5UR726YOro8sn66zWx9dcTtpVuw6iMHOw4AGd/qg+ueTeWLDNLbltE/b4rUyc7AlMbHNP8T0TSTiLN6a0hhBDXkdFo5OTJk7S1tXH48GHOnj2b+qYkJIMthBDzxPn+cxRbiynKmso2d1/qw2g2ULg4P+F9douDNQVrOdZ9jA9eOgAV2yZ7X6+8dyl1LzdQv6eJ1Q8sR6+9vgw8mf6L2UvAWpCkk8ja9NcSQtyw0sk0z7bc3FzuuusuXnjhBdauvfqfXZLBFkKIeUDTNM71n2NNYeQP/IErQ+RW5mA0G5Pev7ZwHf6es9B1Ata+Z3K8ZEUhhYvzOPtsXWizYzPgIe36awCl4mx0LAcsSCcRIcRc19vby9DQEADj4+O89NJLrFw5jZ+BcUiALYQQ80CHq4Nhz1BEeQjAYMsw+YtyU96/pmANtw51oKFgzbsmx5VSrH3bSgZbhmk/1cW0NzhOmAiwJzuSGIFKoG166wghxFuss7OTu+66i/Xr13PTTTdx77338sgjj8xoTSkREUKIeeBcn54dXhMWYHucXlz9Y+RX56a8f3n+CmzDPfQULKEkO3Lz4tLba3jz+yc48/RFKjdeQu9hXT29FyxeC95RGG6F3Il7K4DW6a0jhBBvsfXr13PixIlruqZksIUQYh4413+OHEsOFfbKybHB1iEA8qpj+19Hy3D2snh8mCM5pTHXjGYjqx5YRsvRdnzuOvT66eQlJzHibnSsQs9gR/fZFkKIhW1WA2yl1ANKqTqlVL1S6otxrn9IKdWrlDoZ+vWx2XwfIYSYr873n2VVweqI3qwDLcMAaWWwufwsAC9aTLj97pjLax5cjsFkQAtcBpZM/wWLQ5n1iAC7EnAD/dNfTwgh5rFZC7CVUkbgO8CDwGrgvUqp1XGm/lTTtI2hX/82W+8jhBDzVf94H91j3RHlIQCDV4YwZ5qwF9lSL3LpGTyOcq5kWKkbvBhzOSvPyuoHi7HYRnCPVk3/Ja15YCuGgcthgxPrSJmIEOLGMpsZ7G1AvaZpjZqmeYGfAI/N4vOEEGJBmup/HdVBpGWIvOrcuCc4RvCOQePLGFY8hkEZJ+u5o21+pxWAiy9dZUlH3mIYaAgbmAiwZaOjEOLGMpsBdvTuljbiHwv2DqXUaaXUz5VSV5E2EUKIhe18/zmsJiuLcxZHjOsBdur6a5pfA78b86q3U5tTy7n++AG2NUcPhM887aevcWD6L5q3BAbDT2ErRa/llgy2EOLGcr03OT4N1Giath54CfjPeJOUUp9QSh1VSh3t7e19S19QCCGutwv951metwKjYWrj4fiQG/ewJ73667qnwWKHRTtZU7iWuoE6fAFfnIn1aJqDgDePN39wItQXexryFsNIK/i9oQETUIYE2EKIG81sBtjtTP39IOi7XdrDJ2ia1q9pmif0238DtsRbSNO072qatlXTtK1FRUXxpgghxILkDXhpGW1hWd7yiPGBliGA1D2wNQ0uPQNL7gNTBmsK1uINeqkfuhxncgNKLWPzu9bTdqKThn1Xpvey+UtAC8Jw+H0xP/qFEGLOCQQCbNq0acb9ryfMZoB9BFimlKpVSlmA9wBPhU9QSpWF/fZR4MIsvo8QQsw7LaNXCGiBmPKQwVCAnVeVokSk7yKMtsPSBwEmD6o5G1MmogENwBLWPrKC4mUF7P/XI4wNjaf/snmhd4ypw25BWvUJIeayb33rW6xateqarTdrAbamaX7gM8CL6IHzzzRNO6eU+pJS6tHQtM8qpc4ppU4BnwU+NFvvI4QQ81HjkF7TvDgnsnXeQMswGXYLWfnW5As0vap/1u4CICdD76VdNxCdz+gGXMASDEYDd372ZrzjPvb9y+H0S0XyQu8YUYddATiB4fTWEEKIt1hbWxvPPvssH/vYtesWPasnOWqa9hzwXNTYX4b9858Cfzqb7yCEEPNZ43ADVpOVUlvkATGDEx1EVIoOIk2vQU415NVODq3IW8Gx7qNomhZ2f33ocykAedW53PS+Dbz5gxM07L3C0p01qV/WUQamTBhM1EkkN/UaQogb1v5/O0p/01VssE6ioDafWz+2Nemcz3/+83zta19jdHT0mj33em9yFEIIkUTjcCO1OYsxqMgf10NtI+RWZie/ORjUO4jU7oKwQHx5/gqGvcN0j3WHTZ4IsKdKUdY/vkovFflumqUiSullIhEZbGnVJ4SYu5555hmKi4vZsiXuNsCrNqsZbCGEEFcvoAVoHm7inkX3Rox7XF7cox5yyhzJF+g5A+MDUHNXxPCKvJUA1A1eDMuMNwAlwFTQbjAauPNzt/CL33+Wvf98mPu+uDN1xjxvSVQNdnnoUwJsIURyqTLNs2H//v089dRTPPfcc7jdbkZGRvjABz7Af/3Xf81oXclgCyHEHNXp7MQdcMfUX4906X+NmV2aIsCerL+ODLBrsmuwGDO4NFAXNqpvcIyWV5XD1vdtoPlQKw17m1O/9EQGe7JuOxMoRgJsIcRc9Pd///e0tbXR3NzMT37yE3bt2jXj4BokwBZCiDmrcVjPBNdGdRAZ6XICkF1qT75A02uQvxRyIs/wMhqMLMtdRt3gRIDtB5qIF2ADrH9sFUVL83nzP08Q8AWSPzN/Cfhc4OoJGywFOpPfJ4QQC4gE2EIIMUc1DTdiUiaqs6sjxkc608hgB/xw5Y3J7iHRluetoHG4IXTgTCvgI1GAbTAauOn9G3H2jVH3amPcOZPituorB7qS3yeEENfZnXfeyTPPPHNN1pIAWwgh5qjG4UaqsqsxG8wR4yNdTqw5mViyzAnuBDqPg2ckpv56wor8FfiDfhqGG4juIBJP5aYyipcVcOLnZwn4g4mfG7dVXxl6gJ0i+y2EEAuEBNhCCDEHaZpG41BDzAEzoGewrUVZ9Ds9ce4Madmrf9bcGffyxEbHS4N16PXXBqAm4XJKKTa/Zx3OHheXX0+Sxc6tAVRUq75S9OC6N/F9QgixgEgXESGEmIMG3P0Me4cjNjieaxvipTNdqPo+2qwmvvH118mzWVhSYudd2xexc2Xx1AKtByG3FhylcVaHAmsBhdZC6gYuwpJe9HZ6mUnfqXpLBYVL8jnxP2dZftdiDMY4ORpzJmRXRGWwJzqJdKIH20IIsbBJBlsIIeagxuGJExwXM+71883nLvDR773Jrw+3kOEOsHp1Mb//wEpuW1FE97CbP/nJCX60v2nq1MW2Q1C5I+kzluetCG10jN9BJJpSig2Pr2Kky0n3xb7EE2Na9ZWFPmWjoxDixiAZbCGEmIMmAuxxZz6/9aODtA2M8eS2at63qoSnjz/HrTdVsfzmRQC4fQH+9ldn+Kfdl2gfHOcLt9gwjbZD1c1Jn7EibyXHuvehab0o9WBa71W9tRKj2UDjwRbK1hTHn5S3GOpfCBuYyFpLgC2EuDFIBlsIIeagpuFGCjNL+OMfnycQ1PjOh27iDx9ehW9gDIjsIJJpNvK3T27gt26r5ZdHWnnphV/rF1JksFfkr6DK4UcpjXQy2ACWLDOVG8toPtgylS2PlrsInF3g9068IZCPBNhCiBuFZLCFEGIOah6+Qv9ANlazkX/9yDaKc/T66JFOvQd29CmOBoPi0/cuZ8DpYeTUd9GMmaiSDUmfsSRnCbU5Ex1BEncQiVZ7SzVXjrTTW99P8bLC2Ak51YAGo+2QVxsalF7YQoi5q6amBofDgdFoxGQycfTo0RmtJxlsIYSYY9w+Lx3ODsaduXz1vZsmg2vQT3E0Z5rIzMmIe+8ndy1jDRdpzVgJJkvS52SYMllXmIUvYAAq036/mm2VGIyKpgOt8SfkhPp2D7eEDZYjAbYQYi577bXXOHny5IyDa5AAWwgh5pxvvnQQVJCH16xnbWVuxLWRzlGyyxwopeLeW2xTrFKX2etaQl3nSMpnLcmF1lETgQTVHvFk2DMoX1dKY6IykbgB9kQv7CQ9tIUQYoGQEhEhhJhDeobdvHTpLI4aeHjNupjrI11O8qpzEi/QdRKj5qMxYy0Hd9fxT7+9NWEwDlBsHWV/hwGDaqUmpybt96y9pZq9//dNBq4MUVCTF3kxO5QNjwmwvcAAEKesRAghnv88dJ28tmuWboQH/zHlNKUU9913H0opPvnJT/KJT3xiRo+VDLYQQswhP9zfhDFjAIBKe1XEtWAgyEi3M/kR6W2HANhw84McbRzgcGN/kqcNkWEapXnEFDpwJn012/QguvV4R+xFsxVsxXECbJAj04UQc9G+ffs4fvw4zz//PN/5znfYs2fPjNaTDLYQQswR/aMenjrWxuJ14xizSsg0RR784hoYJ+gPkl1qT7xI60HIruTB22/in4+8wVPH2tm+JFHGWO9V3TvmwOW7yH0196f9rll5VrJL7XTXJeiHnVOdIMDuANam/RwhxA0kjUzzbKmoqACguLiYt7/97Rw+fJidO3de9XqSwRZCiDnixwea8QWCZNqGqHZUxVwf7dY7iCTNYHcchYptmE0G7lxVwv5LvYx7/Qkm1wNgNq6mbmB6GWyA4hWF9NT1Jq7DjgiwpRe2EGJucrlcjI6OTv7z7t27Wbt2ZokACbCFEGIOGHJ5+eXRVu5ZV0zPeAdVjuqYOc4eFwD2Ilv8RdzDMNgApZsAuGdtCW5fgAOXE5262AA4KLetp3W0hTHf2LTeuWRFEWODbpy9rtiL2VV6gD0ZfNuBbCTAFkLMNd3d3dx2221s2LCBbdu28fDDD/PAAw/MaE0pERFCiDngZ29ewe0L8PBNdk4e98UNsEd79Qx2wgC765T+WaYH2BsX5ZNns/DquS7uXlMa54Z6YCkr8lehoXF56BIbijam/c4lK/XSk+6LfTiKo8pWcqrB6wT3EFgnNkFKL2whxNyzePFiTp06dU3XlAy2EEJcZ5qm8eLpTrYvKUQz69nmqjglIs7eMay5mZgsxvgLdZ3QP0MZbKNBcdfqEvbFLRPR0DPYS1iWuxyAuoGL03rvgpo8TBYj3XW9sRelF7YQ4gYmAbYQQlxn9d1O2gfHuXNVMa2j+uEtcUtEel04EmWvATpP6N07HGWTQ3evKcXjC7L/UnSZSDfgApZit9iptFdOuw7bYDRQtKyAnngbHRP2wu5ED+6FEGLhkgBbCCGusz0Xu1EKbl9RTNtoK4XWQrLMWTHzRnucictDQM9gl26CsL7XGxflkW+38Mq56PZ49aHPJQCsyF/JpcG6+BsWkyhZUURf0yB+byDyQsIAexwYntYzhBBivpEAWwghrrM3LvawtjKXAkcGraMtcbPXmqbh7BvDXpwgwPZ7oPf8ZP31BKNBsWt1CQcu9TLmCS8TiQywl+etYNg7TNfY9PpUl6wsJOgP0tcQ1W/bVgxGi/TCFkLckCTAFkKI66hzaJxLnaPcuaqYoBakdbQ1bv21e9hDwBtIXCLScxaC/sn663C71pTi8Qejuok0AMXonT1gZf4qAM73n5vW+xevmNroGMFgmOokMim8F7YQQixcEmALIcR1tOdCDwC3ryymd6wXT8BzdR1EOkMbHMs2x1zaUJ2HLcPE0YhTHRuApZO/W5S9CIclmzO9p6f1/lm5VhwlCQ6cSXjYjGx0FEIsbBJgCyHEdfTGxW4WF9upLrDROqoHo1fVA7vrBFgckLc45pLRoNhQncuJK4OhET/QxER5CIBBGVhXuI4zfaenXYdduDiPgcm1w8QE2NlAFhJgCyHmmqGhIZ588klWrlzJqlWrOHjw4IzWkwBbCCGuk+ExLyevDLJzZTFAWIAd5xTH0GEujkQ12J0noHSjXpoRx6aafK70uegf9QCtgI/wABtgXeF6esd76Z5mHXZeVQ4jXU4CvjgbHUc7IOALDSikF7YQYi763Oc+xwMPPMDFixc5deoUq1atmtF6EmALIcR1su9SL0EN7lylB9gdrg6yLdk4LLFHoTt7XZitZiw2S+xCwQB0n4rZ4BhuU41+2IuexW4IjS6NmLOucD0Ap6dZJpJXlYsW1BhqH4m8kFMNWlAPsidJL2whxNwyPDzMnj17+OhHPwqAxWIhNzd3RmvKSY5CCHGdHLzcR5EjgxVl+kbDTmcnpbayuHOdvS4cxTZUWAu+SQMN4BvTM9gJrCzLxmoxcqJ5gHvW1qPnV2oi5lQ5qsjNyOVM32nuq7k/7e+RV50DwGDLMAU1eVMXJlr1DV2B3EWhwTLg2p6YJoRYKL4BTK8ff2orgD9IOqOpqYmioiI+/OEPc+rUKbZs2cK3vvUtbLYkbVFTkAy2EEJcJ2dah9iwKG8yaO5ydVKWIMAe7XElrr/uDXX+KF6b8Fkmo4H1VblhGexKIDNijlKKdYXrp12HnVuRjTIoBluHIi/khEpdRtrCBsuAUcCZ9vpCCDGb/H4/x48f51Of+hQnTpzAZrPxla98ZUZrSgZbCCGug+7hcbqH3bz/llwAfAEfveO97LKVx53v7HVRsrIo/mI9oQC7MHnN4KaafP7llcsEgpcxGpbHnbOuaD172/fQ7myn0lGZ1ncxmo3klDkYaIk6QCY7dH9MgA16L+zIEhUhxI0ueaZ5tlRWVlJZWcn27dsBePLJJ2ccYEsGWwghroPToWzv+upcALrHutDQ4mawvWM+PE5v4h7YvecgtwYy7EmfuakmjwyzF4NqJ3qD44T1oTrsM33TrMOuzmGoNSrAznBARnaCAFt6YQsh5obS0lKqqqqoq9PLU1555RVWr149ozUlwBZCiOvgTMsQmWYjS0v0DY2dLn3jX5k9NsB29qVo0ddzForWpHzm6vIcVpT1oZRGouxxma2cgsyC6QfYVTkMd47GdhLJroKR1vAnhD5lo6MQYu74p3/6J97//vezfv16Tp48yZ/92Z/NaD0pERFCiOvgTOsQqyuyMRn1PMdEgB1vk+NkD+x4LfoCPuirg2UPpXym2WTg9hWjod/Fz2BP1GGf6DmOpmnxN1XGEd5JJGKjY3ZlVAY7H8hAjksXQswlGzdu5OjRo9dsPclgCyHEW2zc6+dS1yjrqqYC0S5XJ1aTlRxLTsz8yR7Y8TLYA/UQ9KWVwQbYtKgfj9/EyHhpwjkbijYw7B2mcbgh4Zxo4Z1EIsQE2AooQUpEhBALmQTYQgjxFjvfPkIgqLEhVH8Nega71FYWN2Ps7HVhMBnIyrPGLjaxwbE4vQC7urCL5p4iTl4ZSThna+k2DBh4s/NQWmtCkk4i2ZXg7Aa/N2ywDCkREUIsZBJgCyHEW+xMKAhdUzmVrU7Wos/Z58KWb0UZ4pRr9J4DVMoOIhMcmVdo7CnlXNtQwjk5GTmsLFg1rQB7opPIYPRGx5wqQIs6bKYMKRERQixkEmALIcRb7EzrEDVFNnKy9FMZA1qAblc3ZQla9Ln6xrAVJtrgeA7yasGSlcaTh1Cqj+Hxas61DSedub10O00jTXS7utNYV5dblRO/RASiykRKgQHAnfbaQoiFazp996+Hq3k/CbCFEOItFAxqnGkdYl1V7uRY31gffs2fJIM9hr0wQQDdey7pATOR9Jpqo2EZ5zuGCQQT/0dje9kOAA53vZnm2pBfHaeTSMpe2EKIG1lmZib9/f1zNsjWNI3+/n4yMzNTTw4jXUSEEOIt1NLvYmTcx/qwALvTpZdPxAuwtaCGq38Me7wMtt8L/ZdgxWNpPl0PsPPtqxjzdHGlz8Xi4vi9s8vtFVQ5qnmz8xBvW/JoWqvnlGejBTVGu53kTpS/pAywa9J8dyHEQlRZWUlbWxu9vb3X+1USyszMpLIyvYO3JkiALYQQb6EzkwfMTHUQSdaib3zETdAfxBYvg91/CYL+tDc4Qj3gYEnxYqCLc21DCQNs0LPYv7z8c5zeUewWR8rVs0v1OSNdYQF2Zg5YHNILWwgRl9lspra29nq/xjUnJSJCCPEWOtc2TLbVRHXBVMDc5erEbDBTYC2Ime/qHQOIXyLSG+ogkmaLPj2DvYTqAjv2TFNaddhBLcjR7vR6w+aUTQTYo5EXYlr1FQFGJMAWQixUEmALIcRb6FLXKMtLsyPa8ekt+koxqNgfyROnOMbNYPeeR+8gsiKNJ2voAfZSDAbF6ooczrcnD7CX5S0nPzOfQ50H01gfMnMyMGeaGO5yRl6ICbBN6EG2BNhCiIVJAmwhhHiL+ANBGrpHWVYaWW7ROdJGUa8X13//BM/BgwR6eiavOfsmMthxarD7L0FuDZjj9MeO0Q04mTjBcU1FDg09TtzeQMI7DMrAttLtHO8+hifgSfkEpRTZZY7YDHZOVVSADXqZSPodSoQQYj6Z1QBbKfWAUqpOKVWvlPpiknnvUEppSqmts/k+QghxPbUOjOHxB1lelj055mtopHOohbz9Zxn6wz+i78l30bVpCyNf/RpaMIirfwyj2UBmdkbsgn11ULA8zafXhz6XAnoP7kBQ42Jn4gNnAG6tuA13wM2xNMtEskvtjHTGKREZ7dSPdZ9UimSwhRAL1awF2EopI/Ad4EFgNfBepdTqOPMcwOeA9HtBCSHEPHQ5lNmdyGB7Dh2i/v1vx2tW1Dz+W5Qc3E/Bf/+IrHc+yei3/4mB3/ldnN0j2AqyYk941DQ9g51WeQhMdBCZzGBX5gIkPXAGYG3BOnIsOexr35vWU7JLHYx2O9HCWwBmV6IfNhMeUJcBPYA/rXWFEGI+mc0M9jagXtO0Rk3TvMBPgHi9pP4W+Cpy4oAQYoG71DmC2aioKbThOXKUvve8j77FhQBUrb0FU3U1mTt3kvsP3yT7L/8/3M89x+C+49hyLLGLjXaCzzXNDHYxoGfP82wWyvOsKTc6Gg1Gbqm4lSNdh3H7U/+Yzi61E/DpmfepwUSt+gJAX5rvL4QQ88dsBtgVQHhfprbQ2CSl1GagStO0Z2fxPYQQYk643DXK4mIHRoNi5Mt/h6EgH/f/91kgskWfUgrHJz9B/n/8P8b9Fsx1J9DcUcFtf53+WTCdDPaSiJE1FTmcS7HREeD2ip14Ah6OdB1OOXeqVV9YmUh2lf4Ztxe2lIkIIRae67bJUSllAL4J/EEacz+hlDqqlDo6lxuRCyFEIpqmhTqIOPC89jreI0dwfPazdGvDGJSB4qzimHsydu3CnZGLpbORwT/+YuRJZ/2X9M+0Mth+oImJ+usJaypz6B520zeafAPjqoLV5Gfms7d9T8onZZdN9cKeGpzIYIfnXEpDnxJgCyEWntkMsNuBqrDfV4bGJjiAtcDrSqlmYAfwVLyNjpqmfVfTtK2apm0tKiqaxVcWQojZ0TfqYdDlZVmpg5GvfR1jVRW2976HTlcnxdZiTIbYc7/Gh9xoGuTuvInxX/wC5//957AF68BknQpek2oBfMQG2LlA6jpsozJyS/mtHOs+yphvLOlce2EWBqNiODyDnZkDZltUBlsCbCHEwjWbAfYRYJlSqlYpZQHeAzw1cVHTtGFN0wo1TavRNK0GOAQ8qmlaelvVhRBiHpnY4Lio+Ry+M2dwfOH3URYLna5Oyuzlce+ZaNFX8K6HsT76Nkb+/iu4X35Fv9h/CQqWgSGdH+OXQ5+RAfbyUr1cJVUdNsBtFTvxBX0c7kq+H91gNGAvtjPSGZbBVipOL+xMIA/9uHQhhFhYZi3A1jTND3wGeBG4APxM07RzSqkvKaUena3nCiHEXHQpFGAXfe/bmJYuJesdTwDQ6eqgLM4R6QCu0CEzjiI7ed/8BubVqxn43Ofxt7eHAuzpbHA0ApHHEWeYjSwrdaRVh70yfyWF1kL2pVMmUmqfRi9syWALIRaeWa3B1jTtOU3TlmuatkTTtC+Hxv5S07Sn4sy9U7LXQoiF6nLXCOUZGhkXz5H9h3+AMhoZ9Y7i8rkiNjiGm8hg2wqyUFYr+f/yz+D3M/i7n0IbbJzGBsd6YBEQ241kTUUOF9qHCYS31YvDoAzsKLuZkz0n8aToJpJd6oiswQY9gz3cGjVTemELIRYmOclRCCHeApe6RqkZaMNYVkbmww8BevYaSJzB7h/DZDGS4dADY9PiWnK/9lWClw+jtMA0M9hL415ZU5nDmDdAc68z7vVwN5Vuxxv0crrvdNJ5OWV2vC4v7vDNk9mV4OyEQHjf6zL0EpHkwb0QQsw3EmALIcQsc3n8tPWPUV13AuvbH0eF6qY7nXr2NlGA7exzYSuMPGQm67FHsb39dgDcjalLO/Tj0TtJHGDnAqRVh722YC1WkzVlu774rfoqQQuCM7zmugzwAIMpny2EEPOJBNhCCDHLGrpH0YCavitkPfH2yfFOlx5gl9hK497n7BvDXmiLGbfdtxmAoS//K4GUrUsjj0iPVpWfhSPTlFYdttloZmPRJo50HY5sGRhlslVf+EbHuL2wpZOIEGJhkgBbCCFm2cQGx6V5FsyrVk2Od7o6KcgsIMOYEfc+V98YtsKsmHE13ISWkU9g0M3QH/5x0mB3KsBeFveqwaBYXZGTslXfhG2l2+h399M43JhwjqPYDsBoT7xe2HLYjBBi4ZMAWwghZtnl+g7sbhfVD98bMd7l6qTMFr9FXzAQZGxwHHucAJv+OlTxKnL+7E9xv/wyY//1oyRPbwBsTGWLY62pzKGxx8mYx59wzoTNJVtRqKRlIuZME5nZGYz2uKYG4x42MxFgS6s+IcTCIgG2EELMssv1nVQPtpH1+GMR452uDsrsCTY4DoyjBTVscUpE6L8MBcuwfeTDZNyxk+G//ht89Q2Jno5eHqISXNfrsIMaXOwcSfld8jLzWJa3PGUdtqPYhrM3LMC25oE5KyqD7UAP/iXAFkIsLBJgCyHELAoGgzR5jNRaApgqprLV4/5xhjxDCVv0TfTAthdFBdjeMb0bR94SlMFA3je/AZkZDH3xi3FKRTSSdRCZsLoiB0hvoyPoZSKXhy4x6B5IOMdeZI8sEYl72IxCWvUJIRYiCbCFEGIWtR44zrgpg2WrF0WMd7lSdBDp1Xtgx5SIDIZqn/OXAGAsLSXni1/Ee/AQ47/6ddQq3ehdRJIH2Hk2CxV51rTrsG8q3QbA0e7ERxc4im04e1yRQX9MgA1y2IwQYiGSAFsIIWbRxVcOArDqrm0R4+m06IN4AXaoFCRvyeRQ1vvei3njBoa/9LcER8LLPJJvcAy3pjInrU4iADXZtRRkFnCi53jCOY5iG35vAPdIVC/smMNmJnphCyHEwiEBthBCzBJN07h0qR2ApbWRmww7x/QAO9kpjpYsM5asqNMXB0IBdv5UgK2MRnL/7ssE+/oY+d/fCJs8EWAvIZU1Fbn0jnjoGUl+SiOAUorVBWu40H8+YQeTidKWyE4iVTDaAcFA2MwSYARwIYQQC4UE2EIIMUv89fU0KxulJj+2TFPEtU5nB9mWbGzmOJsY0Wuw47XoY7ABMnLAmh8xbNmwAdtvfQDXf3wf79lzodHL6DXOjpTvurZKr8M+3TKUci7AqoLV9Lv76R2P34d7olWfM7qTiBYAZ3fYTGnVJ4RYeCTAFkKIWeJ+cTdX8itYUpEXc63L1ZWwRR8kPmSGgQY9e61iu4Jk/8kfY8jJYeSrXwuNpN7gOGFFWTZZFiPHmxNvXAy3Kn81ABf6z8e9PpnB7o3Xqi9eL2wpExFCLBwSYAshxCwZ2f0yHbllLK0uirnW6epIWH8NU8ekxxhsiKi/DmfIzcX+8Y/hefVVvOdOAc2kG2CbjAY2LMrjWFN6AXZNdg2ZxkwuDFyIez3DbsFiM0+jF7ZksIUQC4cE2EIIMQsCPT00N3cTVAaWltgjrvkCPvrG+xLWX/u9AdzDntgNjgE/DDVH1F9Hs33ogyiHg/FffBMIkG6ADbClJp8rfS76Rz0p5xoNRlbkr+DCQPwMNuhZbGd4DXZOvOPSCwAzEmALIRYSCbCFEGIWuF96mSt5FQAsLYmsge4e60JDS3zITH+oRV90D+yRVgj6E2awAQw5Odg++NsEeg+ERtIPsDfX6nXd0ykTuTLczJhvLO51R5EtskTEmg+mzKgA24C+0VECbCHEwiEBthBCzILxF3fTsmgVZqOiqiAyE92Zsgf2RIu+qAA7TgeReOwf/xjmtZlofgXUpP3Oy0sd2DJM6QfYBasJEqRusC7udUexPXKTY9zDZkBa9QkhFhoJsIUQ4hoLulx49u2jrWY1NUV2TMbIH7VTAXb8TY6uvkSHzMT2wI7HWFhI5l2V+C/58LelH7iajAY2TqMOe0XeShSKiwnqsO3FNrxjPjxO79RgdlWcXtjlQEfa7ymEEHOdBNhCCHGNed7YAx4PVzLzWVJsj7ne6ezAarKSbcmOe//EITO2gjinOBotkF2R8h1MSzR8dQGc3/u3ab375pp8WvrH6E2jH3aWOYtF2TUJO4k4QiUuzuhOIjEZ7HKgH0j9TCGEmA8kwBZCiGts/MXdOItK6fVoMfXXAF1jeos+FafVHugBdmZ2BqaMyN7ZDDRAbi0YjCneYARl7ANtCeO//BWa15ti/pQttXpLwfTLRFZRN3iRgBaIuTbRCzvysJlKGG2POmxm4g8MksUWQiwMEmALIcQ1pPn9uF9+ma67HgFgSUn8DHbyFn1jseUhoJeIpKi/1uknOJoW30dwYAD3q6+m9e4Ay0qzsWea0i4TWZW/mnH/OC0jV2Ku2YsnTnMMy2DnVOsbNSMOm5kIsNvTfk8hhJjLJMAWQohryHvkCNrQEO1rbwJgSVQGOxAM0DPWk7BFH+g12LboDY6apmewU9Rf6y4DYF77OIbiYsb+5+dpv7/RoNi4KI/jzYNpzZ88cCZOHXZmdgYmizGyRCSnWv8cbgmbOVGLLgG2EGJhkABbCCGuofEXd4PFQlNuOTlZZoocGRHXe8d78Wv+lIfMxGSwx/rAOzqNDHY2ylRG1juewP3yKwT6+9P+Dltq8mkbGKN7eDzl3OKsYhxmB03DjTHXlFLYi+2RJSKTAXZ4xjsfyERKRIQQC4UE2EIIcY1omoZ7924ybruV+r5xlpU6Yuqsu1K06POO+fC6fLE9sCda9OUtTuNNGtD7Xyuy3vkk+P2M/+rXaX+PHUsLAdh/qS/lXKUUNTk1NA83x73uKLbFlohAVAZboWexJYMthFgYJMAWQohrxF9XR+BKC5Z776Oxx8myOBscJ1v02RO16JvogR2VwR5q1j9za1O8RRA9g60fMGNesQLzhvXTKhOpKbJRVZDFnovdqScDNdm1XBlpJqgFY67Zi2yRJSKZ2ZCRExVgg16HLRlsIcTCIAG2EEJcI+4XdwPQs/U2PP4gy8ti2/B1ujowG8zkZ+bHXcMZ6oEdU4M9GWDXpHiLTmCM8BMcs971Tnxnz+I7l/hY83BKKXauLOZo0wBOty/l/EXZNbgDbrrHYgNyR7EN94gHn9s/NZhTnSDAbge0tN5RCCHmMgmwhRDiGhnfvRvzpo00+C0ALCuN06LP1UWprQyDiv/j15ksg51VCBmxXUki1Yc+pwJs66OPgdnM2M/Tz2LfsbIYf0Dj4OXUZSK1OXpWvXm4KeaaI9RJxBldhx03wB4DhtN+RyGEmKskwBZCiGsg0NWF7+QprPfdx+WuUcxGRU10Fho9g510g2PvGCjIyo8TYKfMXsNEBxGY2gxpzM8j8447GH/+BTQtvQzxmspc8u0W3rjYk3JutaMahaJ5pDnmmr0o1As7vEwkd1GcAHuiZCb6EBohhJh/JMAWQohrwL37JQAy79cD7Nri2CPSNU2j09WVsoNIVp4Voynqx/NQU5oBdgN6NjgyuM+8/z4Cra34z8c/1jya0aC4fUUxBy734vXH1laHyzBlUmYrS5rBjtnoOD4AnrCsthw2I4RYQCTAFkKIa2B8926MNYswLV/Opa5RlpfG1l8PuAfwBjxJA2xX3xj26Mx3MAhDV6aRwV4aM5p57z2gFOO7d6exhu6OlcWMeQIca0rd4q8mR9/oGC0rz4rBZMAZr5PISGvYzIkMtgTYQoj5TwJsIYSYoaDTiWf/Aaz33ceA08ugy5ug/lrvIJLskBlnnwt7UVR5iKsbAp40AmwP0Eq8ANtYVIRly5bJjZjp2FKbT5bFyJ40ykRqsmvodHXi9rsjxpVBYS/MYrQ3Xi/s8DKRLCAPadUnhFgIJMAWQogZ8rz2Oni9ZN5/H5e6RgBYHifATtWiT9O0+BnstFv0NQEB4gXYAJkP3I/vzBn87ekFsRlmIzcvK2TPxR6CweS12zXZtWhotIzGOzLdnkYvbJjqJCKEEPObBNhCCDFD47t3Y8jLw7J1K5e7RgFYGrcHdgcGZaDIWhR3Hc+oF783gC1hD+yaFG8y0UFkWdyrmffdB0zVi6dj58pi+p1eTrcOJZ1Xk6O/W7wDZxzFtsgSEXsZKGOCjY4SYAsh5j8JsIUQYgY0nw/3K6+Sec/dKJOJy12jlOVacVjNMXO7XF0UZ5VgMpjirjXVoi8qgz0Y2jyYuyjF29QDFqAy7lXzksWYli7F/cKLKdaZcvuKYjLMBnaf6Uw6rzirBKvJSvNInI2ORTbGBscJ+AL6gNEE2RVxAuwq9D7eqXtvCyHEXJZWgK2UeptSCZq2CiHEDcz75mG04WEy79ezw/oGx9jsNaTRoi90yEz8HthFYIlt+xepHlgMxA/gQS8T8Rw6RHBoKMVauqwME7evKOaVc134A4m7iRiUgUXZi+JmsO0TvbB7o8pEhqLLSarQT6JMHswLIcRcl27Q/G7gslLqa0qplbP5QkIIMZ+M794NmRlk3HEHbm+A1n4XS+ME2Jqm0ensTNFBRA9A45aIzKCDSDjrffeB34/71dfSWE9337oyhsd8HG5M3k2kJruW5pGmmF7bjuJQL+zoOuy4GWyA6HEhhJhf0gqwNU37ALAJvcHq95VSB5VSn1BKxU/TCCHEDUDTNNwv7ibzttsxZGXR0DNKUIu/wXHUN4rL70p5yIzBZCAr1xp5YagZ8lJtcBwE+kkVYJs3bcRQXDytbiI7lhbiyDSx+3TyzHJNdg1On5N+d2Qg7ihKkMEeaYNgIGzmRIAth80IIea3tMs+NE0bAX4O/AQoA94OHFdK/d4svZsQQsxp/vMXCLS1TZaH1HXqGxyXxemBnW6LPlu+FWVQU4PBIAyn0wM79oj0eJTBQObdu3Dv2YPmS6/W2WIycNfqEvZc7MHtDSSctyhbf8foA2eyCrJQBsVo9HHpQR84u8Nm5qEfkNOKEELMZ+nWYD+mlPoV8DpgBrZpmvYgsAH4g9l7PSGEmLvGd+8GpfRDXIAL7cPkZpkpy82MmdvpDLXos8Vv0Qd6Dba9KKrO2tkJAe81C7ABMnftQhsZwXv0aMq5E+5bV8aYN8C+S70J51Q59Ax0uzMyA200GbAVZKXRqk+hZ7ElwBZCzG/pZrCfAP5B07R1mqZ9XdO0HgBN08aAj87a2wkhxBzmfnE3ls2bMRbpbffOtw+zuiIHpVTM3E6XfkJhia0k4XquPtcMW/TlAQUp3ztj5+1gNuN+5dWUcydsqsmn0JGRtJtIdkYODrODdmdsqz17kS22RAT07HwECbCFEPNfugF2l6Zpe8IHlFJfBdA07ZVr/lZCCDHH+ds78J05M1ke4vL4aex1sroiJ+78TlcXhdZCMowZca9rQQ3XwHiSQ2ZqUrzRxAbH2OA+msFuJ2P7dtyvph9gGw2Ke9aWcvByL6PjiUtLKhwVMRls0HthR2SwJ77PYHRbv0r049L9ab+bEELMNekG2PfGGXvwWr6IEELMJ+6X9E2CU/XXI2garK5MFGAnb9E3NjRO0B+M36IPUgTYAaCRdMpDJmTsugt/3SX8belvKNy1ugRfQOPA5cRlIhX2yrgZbEexDVf/GMGJVn8ZDsgqhKHoALsa/ftIqz4hxPyVNMBWSn1KKXUGWKmUOh32qwk4/da8ohBCzD3uF3djWrwY81I9qL3QPgzA6vL4AXaXqzPpBkdXqAe2LV4G21YCZmvsTZPaATfTCbAz774bAPfL6f8l5NrKXArsFt640JNwToW9ggH3AGO+sYhxe5FNz9L3h43n1sbJYE90EpEyESHE/JUqg/1j4G3Ab0KfE7+2hFr3CSHEDSc4MoLn4KHJ7DXo9dcVeVZybZaY+WO+MYY8Q1d/yMw13OA4wbRkMcaaRdPqh20wKHauLOZgfR9uX/xuIhV2/RTJ6Cx23F7YeYthsDFqhYlTKKUXthBi/koVYGuapjUDnwZGw36hlMqf3VcTQoi5yf3aa+DzRQTY59qHWZWg/rp7rAtI3aIPEhyTnlaArYAlKeZNUUqRuWsX3v370cbH077vjlUljHsDHElw6MxUgB1ZejLRHcUZEWDX6l1EInphFwBZSC9sIcR8lk4GG+AYcDT0eSzs90IIccNxv7gbQ0EBls2bAeh3eugacife4JhOi75eF6YMIxmOsAx4MKAHoGltcKwCYtsDJpN59y40txvPwUNp37OlJh97pok9CcpEymxlGDAkDLBHe8N6YefW6r2wR8Kz3Qo9iy0lIkKI+StpgK1p2iOhz1pN0xaHPid+LU61uFLqAaVUnVKqXin1xTjXf0cpdUYpdVIptU8ptfrqv4oQQsw+zevF/eprZN57D8poBMLqrxN2ENFb9CUrERntceEotke2+Bvt1APQlKc4NjCd7PWEjB07UFYr7lfSr8M2mwzcsqyIvXU9+Cc2LIZfN5opsZXGlIiYLEay8jJjS0QgzkZHadUnhJjf0j1o5lallC30zx9QSn1TKVWd4h4j8B30biOrgffGCaB/HOqtvRH4GvDN6X4BIYR4K3kOHUIbHY2pvzYaFCvKYo9IB+h0dZJjySHLnBX3OoCzx4mj+Gpa9LnRg9Fl6bx+BJWZScZtt+J+5VU0TUv7vjtXFTM05uN061Dc6xX2CtpGY0s87EX22BIRiFOHXY2+cVNa9Qkh5qd02/T9MzCmlJo4ubEB+GGKe7YB9ZqmNWqa5kU/Yv2x8Amh49cn2ID0f8ILIcR14H5xtx6Y3n775Nj59mEWF9uxWkxx7+l0dVJmT5y9BhjpdmEPbQSclFaA3YD+ozP9DY7hMu++m0BrK/76+tSTQ3YsLcRiMvDGhe641yvslXS4OghqkRluR7GN0ejDZpQhTieRGvRWfVKHLYSYn9INsP2ant54DPg/mqZ9B4ifqplSQeTf8bWFxiIopT6tlGpAz2B/Ns33EUKIt5ymabh3v0TGHTsxWK2TYxMnOCbS5eqkNCtxgO1xevG6vGSXRAfYocAzJ9lfGE4ExtPPYANk7NoFMK0ykawMEzctLuCNiz1xM98Vjgq8AQ99430R4/Zi/TRHLRi6x2iG7Ko4JSI1oc/ocSGEmB/SDbBHlVJ/CnwAeFYpZQDM1+IFNE37jqZpS4A/Af4i3hyl1CeUUkeVUkd7exMfcCCEELPJd/YsgY6OiPKQtoExRsb9CQNsX8BH33gfZfbkGxyB+CUi9tIUPbDr0Tc3xuQv0mKqKMe0aiXul9M/1RHg9hVFdA25aekfi7lWmaCTiKPIRtAfZGwwrGtJXm2cEpGa0GfztN5JCCHminQD7HcDHuCjmqZ1oW/x/nqKe9qZOjGA0D2xx3tN+QnweLwLmqZ9V9O0rZqmbS0qKkrzlYUQ4tpyv7gbDAYy77lncuxcig2O3WNdaGiU2koTrjvSrXfWcMRksJv1ThtJ1QOLSf/HeazMu+/Ge+QIwZGR1JNDNtfqnVqPNw3EXKuw68F+e1Qd9mQv7PAykbiHzdiAYiTAFkLMV2n9RNY0rUvTtG9qmrY39PsWTdN+kOK2I8AypVStUsoCvAd4KnyCUir87zQfRu81JYQQc5L7xd1Ytm7BWFAwOXbqyiC2DBOLo+unQzpdqVv0jfaEAux4NdhJ66819B+bV1ceMiHz7l3g9+PZszfte6rysyhyZHC8OTbAzs3II8uURVtUJxF7cbxe2IvB2Qm+6F7cNUiJiBBivkq3i8gTSqnLSqlhpdSIUmpUKZU01aFpmh/4DPAicAH4maZp55RSX1JKPRqa9hml1Dml1EngC8AHr/6rCCHE7PG3tuI7fz6iPATg5JVB1lfnYjSouPdNBdhJWvR1OzFbzVfRA7sfGOJqNzhOsGzejMrNwf1q+mUiSik21+ZzrHkgpg5bKUWFvTJuiQhM/YECmOokMrGhc1INcAXZ+y6EmI/ib3mP9TXgbZqmXZjO4pqmPQc8FzX2l2H//LnprCeEENeLe/dLAFjvu39ybHjMS1OviwfWJ85Odzo7yDJlkW3JTjhH74Fti+yBPdIOQX+KAHviL/1mlsFWJhOZd9yB+9XX0IJBlCG9cpPNNfm8eLqTK30uaoois+8V9grO9p+NGDNbzWQ6MiZrzoGpEpjBJihaFTa7BnABfYCUBgoh5pd0i/a6pxtcCyHEQuJ+cTemZcswLZ6qiT7VMgTAhkV5Ce/rdHVSZiuLDJ6jjF51D+xLoc/lSeakJ/Puuwn29uI7cybtezbX6N/7ePNgzLUKRyV94724/e6IcXt0q76Eh83UhD6b034fIYSYK9INsI8qpX6qlHpvqFzkCaXUE7P6ZkIIMUcEh4bwHDoUUx5y6sogFpMhdYu+JOUhmqYx2u2Kv8ERUpzieBkoARJnx9OVcecdoBTuV19L+57K/CyKsjM4lmSj48QplhPsRTZGu8MCbHsJmKxxOolMfG+pwxZCzD/pBtjZwBhwH/C20K9HZuulhBBiLnG/+hoEAljvi6q/bhlkVXk2FlP8H6W+oI+usa7JYDMej9OLb9wXf4MjpOiBPfMNjhOMBQWYN23C/dJLad+jlGJLTT7H49Rhl4c2dXY4IwNsR7ENZ69zar5SCVr1FaJ3E2me3hcRQog5IN0uIh+O8+sjs/1yQggxF7hf3I2huBjzpo2TY+NePxc7RtiYpDyk29VNUAtSniTAHk3Wos9RDqaMBHd60YPPaxNgA1gfehDfqdP4r1xJ+57NNfkMurw097kixif6fne4ogNsO35PAPeoZ2owfykMRJ8kqYBFSIAthJiP0u0islwp9YpS6mzo9+uVUnEPhRFCiIVE83hwv/YamffeE7H571zbMIGglrT+eqKLRrIM9mhPokNmmlLUXzeiHyc+8/rrCda36X8xOf7Ms2nfM9EPO7pMxGqykp+ZH5PBtoc6iTjDy0QKlkP/ZQhGHq2u12E3p/0uQggxV6RbIvI94E8BH4CmaafR+1oLIcSC5jlwAM3lii0PuTKIUrC+KjfhvR2hPtDJA+yr7YF9bTqIhDNVVmLetInxp55O+56KPCvF2ZmciNMPu8xWHlODPfEHiYiNjgXLIeDR2xJGWAz0AKNpv48QQswF6QbYWZqmHY4a81/rlxFCiLnGvfslVFYWGbfdGjF+smWQZSUO7JnmhPe2O9vJseRgtzgSzhntdmKxWciwh/XADvhhuDXFKY6XgQwiD8yduaxH34bv7Fn8jeltLlRKsaU2n+PNg7F12PbyyT9kTJg8zbE7rBd2wQr9s/8SkSb6ezek+/pCCDEnpBtg9ymllhDq+K+UehLonLW3EkKIOUDTNMZ3v0TGnXegMjMnx/2BIOfahpOWh4AeYCerv4apHtiRg+2gBdLIYC8BjEnXny7rI6EykafTz2Kvq8pl0OWlcyiyJV+5rZwhzxBjvrHJsQy7hQyHhZGusKx0QajMJWGAHV2fLYQQc1u6AfangX8FViql2oHPA78zWy8lhBBzge/0aYJdXTHlIZe6Rhn3BpJucAS9BjtZeQjomdyELfoSBtgaeg/sa1d/PcFYXoblppsYm0aAvapcbxN4sWM4Ynxio2N0mUh2qYORrrAMtr0ELI44AXYJYEcCbCHEfJM0wFZKfUEp9QXgcfQTGb8M/AvwS+Ads/52QghxHblf3A1GIxl33x0xPrGhb2N14gDb5XMx5BlKGmBrQY3RbifZ0QH2YKg8I2GA3QsMcy3rr8NZH30b/gsX8V2+nHoysKTEgcmouNAxEjFebtO/e3tUmUh2qZ3hzrAMtlKhjY7RAbZCz9JLgC2EmF9SZbAdoV9bgU8BeUAuevZ686y+mRBCXGfju3dj2XYTxvzIQPpY0wC1RTYKHIla6IVvcKxMOMc1MIbfGyCnLKpGe6gZUJCTqL762m9wDGd96EFQivGnn0lrvsVkYGmJgwvRGWxbKRDbCzunzIGz10XAH9Y1JG6ADXqZSD2hCkUhhJgXkgbYmqb9jaZpfwNUAps1TftDTdP+ANgCJDv9QAgh5jV/Swv+CxdjykP8gSCnWgbZUluQ9P62UIu+ZDXYwx16Fje7PE6AnV2RpAf27AbYxtJSLDu2M/7r38RsXExkVXk2FztGCAan5meYMim0FsYtEdGCGs7oTiJDzeCLrOPWA2wn0H1V30UIIa6HdGuwS9BPNZjgDY0JIcSC5H5xN0DM8ejn24cZ9wbYEur/nEiHsx0DBsqSHJM+sdEvbgY76QbHS0AZ+l8wzo6sd74Tf0MD3sPRDaTiW1meg9Ptp21wLGK8zFYek8HOLtXfeyS8TKRwBaDBYHTHkIk/REiZiBBi/kg3wP4BcFgp9ddKqb8G3gS+P1svJYQQ19v4iy9iWrkC06JFEeNHmwZQCjbXpO4gUpxVjNmYuI3fcMcoRrMBe2H0ITPNKQLsemYrez3B+ujbUNnZuP7rx2nNX10xsdExqg7bXh5zmmN2qV5znl4nkSWhTwmwhRDzR7pHpX8Z+DAwGPr1YU3T/n42X0wIIa6XQG8v3jcPY33wwZhrx5oGWFbiICfLEufOKe3OdiocieuvAYY7R3GUOFAGFfZwP4y0JQmwPcAVZjvANlitZL39ccaffZbg4GDK+bVFdjJMBi60R9Zhl9vKGfWO4PROBdNZ+VZMFmPkRsf80PeJCbAd6H9hKgG2EGL+SDeDjaZpxzVN+1bo14nZfCkhhLie3C+8CMEg1oceihj3+AKcaR2aPB48kaAWpMPZPtlFI5GRzlFyouuvR1pT9MCeOCJ9dgNsANv73w8eD2O//FXKuSajgWWljpgM9kSrvvAstlKK7LKoVn2Z2WAvTbHRUQgh5oe0A2whhLhRjD/3HMbaWkyrVkaMn20bwusPsjVFgD3gHsAT8FDhSN6iL26AnbIH9kQAeu17YEczr1mNedNGXD/6UVqbHVeW51DXOUIgbKPjxB8yYuuw7ZElIpCik0gz4JveFxBCiOtEAmwhhAgTGBjEs/8A1ocfQikVce1Y0wAGRVoHzABJe2BPtugrTRRgJzomvR7IRG/uNPts738//rpLeI8eSzl3VUU2Y94ALf1T3UFKbaUoVNyNjqNdTrSwYJyC5dBXF2fl5YAfOTJdCDFfSIAthBBh3C/thkBA7wUd5WjTACvLc7BnJt64CFMHqyTrgZ20RZ8yQHaiey+hZ3Tfmh/f1kffhrLbGfvRj1LOXVWeA0RudLQYLRRZi2Jb9ZU58HsDjA2OTw0WLIexXhiPrvleFfq8eDVfQQgh3nISYAshRJjxZ5/HWFmJef36iPExj59zbcMp2/MBtI+2k2HMID8z8dykLfocFWCKt4lSQ++BPfv11xMMNhtZb3+csaefJjg0lHTuokIbVosxZqNjmT1eqz69k8hweJlI0Rr9s+dc1MqVgA24MP0vIIQQ14EE2EIIERIcGcGzZw/Whx6MKQ851TJIIKilrL8GaHO2Um6vwKAS/4hN2KJvsClJ/XU3MMJbUX8dLusD7we3h7Ff/TrpPKNBsaIsO/bIdHs5Ha72iDruqV7YYRsdS9bpnz1nolY2ACuRAFsIMV9IgC2EECHul18Bn4/MqO4hAIcb+jEbFRuqk9dfA7SOtlDtSH7YbdwWfZCiB/ZEJ423LoMNYFm7FvP6dWltdlxR5uBSV+xGR5fPxYh3KvB2FNswGFXkRsfsSsjIgZ6zcVZehf79/TP7MkII8RaQAFsIIULGn30WQ2kJli2bY64daexnQ3UemRZj0jWcXid9430syl6UdF7cDiJ+L4y2Q16iDY4THTaWJl17Ntje/378Fy7iO3Ey6bxlpdl4fEHaw050rAz1A5/Y/AlgMBqwF9kiA2yloHgtdEdnsEHPYHvR2xQKIcTcJgG2EEIAgYEB3K+8ivWRR1CGyB+N/U4P9d1OblpckHKdltEWABZl1ySck7BF30gbaMEkGezLQAVgT/ke15r18cdQWVm4Umx2XFKsv1t991TgPNFNpW20LWJuTnn25GbPScVr9Qx2TKZ8omWilIkIIeY+CbCFEAIY/9WvwefD9u53x1w72tgPwLYlaQTYI1cAqHYkzmAnbtHXpH8m7YH91paHTDDY7Vjf/jjjv3mK4MhIwnm1RXYMChq6p2qri7KKMRlMk91VJuRWZDPUNhzZqq94LbgHYbQzauVq9I2O0klECDH3SYAthBDA2M/+B/O6dZhXr4q5drihn2yrieVl2SnXuTLSjNVkpSirKOGchC36BpMF2G6glesVYAPY3v8+tPHxpJsdMy1GqgpsERlsozJSZiuPKBEByK3Mxu8J4OyfKidJvtFxBZLBFkLMBxJgCyFueL5z5/GdPUvWu98Vc03TNI40DrC1tgBj9IbEOFpGr1DlqE7aQWSwVW9jl1eVE3WhEQwmyK6Kc1cDEOR6Btjm9esxr13L2I9+nHTekmI7Dd2RpR8V9orYDHbo+w+1hrX1K16rf8bd6LgSvUxGNjoKIeY2CbCFEDc8109/BhYL1scei7l2pc9Fz4g7rfIQgJaRlpQbHAdbh7HYLGTlWaMuNELOIjCa4tx1OfT51rboC6eUIus978Z37hy+84kzyUtLHLQPjjPmmQqEK+yVdLk68QenxvIq9QB7sC0swM4qAHtZgo2OqwEPU91UhBBibpIAWwhxQ9O8XsZ/9Ssy770XY35sC74jofrrdDY4DnmGGPYOJ62/BhhsGSK/Oiem1zaDjZC3OMFdl4AsoDzle8wm62OPgsnE2C9/mXDO0lIHmgaNvVN12JX2CgJagJ6x7qm1cjLJdGQw1BZ5MM3kRscYE4f/xAu+hRBi7pAAWwhxQ3O/8grBgQFsccpDQK+/rsizUpGflXKtK6ENjulksHOjy0NAD7DzlyS4q5638oj0RIz5+WTedSdjv/oVWiAQd85kJ5GwFnwVk636ospEKrMZaovaNFmyDnrPQTB6/TKgADg9g28ghBCzTwJsIcQNbewnP8NQUkzGHTtjrvkDQY41D6SVvYapDiLJAuzxYTfuEU9s/bV7GMb7E2SwNa5nB5Fo1ieeINjVjefAwbjXy3KtZFmMNPRMZbDLE7Tqy63MiSwRAT2D7Xfrf+CIoNCz2JLBFkLMbRJgCyFuWN6z53C//DK2970PZYqtez7XPsyYJ5B2/fWVkWYclmxyMxKf9ph4g2Oog0jcALsLcDJnAux770E5HIz/4hdxrxsMisXF9ohOItmWbByW7JhOInlV2biHPbhHPFODxaFOInHrsNcBbcDAzL6EEELMIgmwhRA3rNFvfhOVnY394x+Le/3Q5T6MBpV+Bnv0Cosci2Jrq8MMtgwBCTqIQIIAuy70uSKt95htymrF+sjDjD/3PMHx8bhzlpY4aOgejThaPW4nkXgbHYtWgzJA18k4K0/UYUuZiBBi7pIAWwhxQ/KePo37xd3YP/FxDDlx6qGBg/V9rKnMwWE1p1xP0zSujFyhOp0OIllmbAVRNd0pA2wDcyWDDZD1xBNoLhfuF1+Me31piYORcT+9o1OZ6Qp7ZZxe2KFWfeEBtiVLD7I7j8VZeRVgQspEhBBzmQTYQogb0sjXv4HKzcH+sY/GvT7g9HCxY4SblxamtV7feC/j/vG0NzjG7SBizYfMeMH+RaAGyEzrXd4Klh3bMZaXM/aL+N1ElpTEHpleaa9gyDOEy+eaHHMU2TBZjLEbHcu3QsfROEemZ6Bn8iXAFkLMXRJgCyFuON5jx/G8+iqO3/kdDA5H3DlvNujt+W5ell6APZ0OIjHlIQCDDUla9F1EP2Rl7lAGA9a3P47njT0EBwdjri8p0f+9RnQSsU90EpnKYiuDIqciO3ajY/lWcPXASGTGW7ceOIccOCOEmKskwBZC3FC0QIDhv/97DPn52D7y4YTzDl7uI89mYXlp6uPRAa6M6gF2taM64Rz3iIfxIXeCADtRD+w+oJe5FmADWO+/HwIB3K+/HnMt22qmJCczbieR6DrsvKqcyNMcQQ+wQc9ix9iAfuDMxat/eSGEmEUSYAshbhiapjH8V3+N9+Ahsv/sTzHYbHHnBYIabzb0sWNpIYY0jkcHaBxqoNBahN0SPyMOYR1EqnMjLwQDMNScYoPjqrTe461k3rQRQ2Eh7pdejnt9SVQnkTJbGQYMtI9GbXSsyGa014Uv7ORHStbrx8bHDbA3hT6Pz/AbCCHE7JAAWwhxw3B9799w/cf3sX/yE9je+56E8y52DDM85ku7PASgYaiepblLk84ZbB0C4nQQGWmDoD9BgD2Rpb1+R6QnogwGMu/ehfu119F8vpjrS0scNPe68PmDAJiNZoptJTEbHfMX5YIGg1eGpgbNVr0fdtwAuwCoBeJtghRCiOtPAmwhxA1h/NnnGP7S35L50ENk/8WfJ5178HIfSsG2NNvzuXwuOlwdKQPsgZZhzJkm7IWJOojEO8XxIlANxM+2X2+Z996DNjKC9/CRmGtLSx0EghpX+qc2NVbaK2iLCrALFucD0NcUVcudcKMjwBbgJFKHLYSYiyTAFkIsaL4LF+j/2McZ+MQnMW/cSP63/xFlSP6j71B9H6vKc8i1WdJ6RsNQPQBLUgTY/Y0DFNTmxe8gAkky2HOv/npCxs6dYLEw/tJLMdcmj0wPKxOpciyifbQNf3AqMHYU27DYzPQ3Rh0eU74Vxgf08pkYWwAXUyU0Qggxd0iALYRYkHyXLzPwO5+i55778Ozbj+MPvkDhT36MslqT3jc85uV8+/C0y0MAluYm7lOtBTX6mwYns7URBhv1euPsyqgLQ0AncznANthsZNx6C+6XXo44VAZgUaENk1FFdBKpya7Br/npCNvoqJSioDaPvsY4GWxIUCayOfQpZSJCiLlHAmwhxILib2pi4Pc+R8+ue3C/+hqOz/4epQf3k/2F38dgt6e8/8DlPoIa3DKNALt+qJ4iaxE5GfEPrAEY7hzF5/ZTuDjOMeoDDZBTDcbo49onsrNzN8AGyLznHgLNzfgbGiLGTUYDtUX2iE4iE20MJ9oaTiiszWegeZBgIDg1WLwWjJYkddg1SIAthJiLJMAWQiwYvro6eu69H/dzz2H/5CcoOXSA7D/5Ywx5cYLaBPbV9VBgt7CqPHGwHK1+qD5p9hqgr0EvfyiMl8EeuAwF8TYxTmxwnBtHpCeSee89AHG7iUR3Eql0VGFQBq6MNEfMK1ycj98bYLhjai6mDL2bSNwAG6QOWwgxV0mALYRYELTxcQY+/RlUVhbFe14n5y/+HGN+nGA2CZ8/yMH6Pm5dXpR2ez6n10mnqyNl/XVf0wAGkyG2g4imQf+lJAF2OZB+sH89mCoqMK9ejTtOHfbSEge9Ix6Gx7wAWIwWym3lNEcF2AWhzH5/U1QddsV2aD8MgXhB9EQdtvTDFkLMLbMaYCulHlBK1Sml6pVSX4xz/QtKqfNKqdNKqVeUUsmPQBNCiASG/9eX8V+4SN4//gOmioqrWuPElUHGPAFuX1mc9j0Nw3pZxLK85Bns/sZB8qtzMJqNkRecXeB1Jgiw65jr2esJmffeg/fIUYJDQxHjE0emR5aJ1NASVSKSW5mDwWSIrcOuvk3/99N9Ks5TtwEKODTzLyCEENfQrAXYSikj8B3gQWA18F6l1OqoaSeArZqmrQd+Dnxttt5HCLFwje/ejev7/4n9Ex8nc9ddV73O3roeMkwGbqpNrz0fpNdBRNM0+hoG4peH9F/SP/OjA3Qn0MJcr7+ekHHHTggG8bz5ZsT40jhHpi/KrqFrrItx//jkmNFkIH9RLv3Rrfqqb9M/W/bFeWou+r8fCbCFEHPLbGawtwH1mqY1aprmBX4CPBY+QdO01zRNGwv99hAQvYVeCCGSCrpcDH3hDzGvXUv2F//kqtfRNI19db1sXVxApsWY+oaQ+qHLFGeVkG1JfKS6q28M96gnfgeR/sv6Z0wGOxR4z5MA27JpEyozE8/+AxHjhY4McrLMERnsmuwagJgsdmFtHn2NA5HdSHIqIbcGruxN8OQdwBn0P5AIIcTcMJsBdgXQGvb7ttBYIh8Fnp/F9xFCLEDu3bsJDg6S8zd/hcrIuOp1GnucdA6Nc/uKomndV5/GCY59jUk2OPZfAmMG5FRFXZioK54fAbayWLBs34Zn//7IcaViNjpWJ+gkUrA4H/eIB1f/WMQ41bfpGey4B87cDASARBshhRDirTcnNjkqpT4AbAW+nuD6J5RSR5VSR3t7e9/alxNCzGnjTz2NobQUy7ZtM1pnb53+s+XW5ekH2E7vKF2uztQBdtMgKCiojdPNpP8S5C8FQ3TW/CJQhN6Obn7IuPVW/BfrCET9nF5a4qCxx0kwqAfIpbZSMowZsa36Jjc6xikTcXXr7QxjrAOygIPX6FsIIcTMzWaA3Q6Ep2QqQ2MRlFL3AH8OPKppmifeQpqmfVfTtK2apm0tKppedkkIsXAFh4dxv/4G1rc9kvJ0xlT21fWwqjybouzMtO+Z2OC4JI0WfbkV2Zgzo/tck6KDyPzIXk/IuOVmADwHIoPdpSUOxr0BOob0mmuDMlDtWBTTqq+gJg9lUPRc7o9cuPp2/TNuHbYZPT9zCIiX4RZCiLfebAbYR4BlSqlapZQFeA/wVPgEpdQm4F/Rg+ueWXwXIcQCNP7ibvB6yXr00Rmt0+/0cK59mNumWR5SN6CXcaTMYCfa4BgMwEB9nADbDTQz3wJs87p1KIcjpg57opNIeJnIouxFXBmNzGCbrWbyF+XSfTHqbyoLV4I1H1qS1WG3E1mVKIQQ18+sBdiapvmBzwAvAheAn2madk4p9SWl1MR/Db8O2IH/UUqdVEo9lWA5IYSIMf7UUxirqjBv2jijdfZe7EHTYOfKkmndd77/PNWORTgsjoRzXP1juPrHKF4e52TIoSsQ9MUJsC8DQeZLi74JymQiY8f2mDrsxcV2lIruJLKIYc8QQ56hiLklK4voqeuLPNHRYICqWxNksAFuCX3uT3BdCCHeWrNag61p2nOapi3XNG2JpmlfDo39paZpT4X++R5N00o0TdsY+jWzNJQQ4oYRGBjEs3efXh6i0jsUJpE3LvZQkWdlaUnqo9Qnn68FuDhwgdUFa5LOm8jGlqyIE2BPtOiLCbDPhz7nVwYb9DrsQHMz/vapikCrxURlflZML2wgpkykdGURPrefwZbhyIUX3a7/+3J2x3lqJVALJMpwCyHEW2tObHIUQojpcj//PPj9WB9924zWcbn9HG3sZ+fK4mkF6leGmxnzj7G6ILq9f6Tuuj6MFmPiDY4QJ8A+CxQC08uozwUZt94KEFMmsrTEweWukcnfTwXYkWUiJav0Mp2u6DKRRXfon02vJXjy7cAxpF2fEGIukABbCDEvjT/1NMaaGsxr185onQP1vfgCGnesmmZ5yICeZU4ng120JD/2BEfQA+yMHLBF136fA9agn1I4v5hWrsCQnx8TYC8vddA2MI7T7QMgNyOXbEs2zcNNEfMcxTay8qx0XYjallO+BTLzoDH2OHbdTvR2fdJNRAhx/UmALYSYdwIDg3gOHCDr0bfNuDxkz4Ue8mwW1lXlTuu+C/3nKbQWUZyV+Fj1gC9Ab8MAxfHKQ2Cqg0jEdxhBP8ExeeA+VymDgYxbbsG7f3/EgTEryvSDeC6H6rCVUizJXUp96CTMyfuVomRlEd0X+yIXNhihdhc07E7QD3sdkAPsuYbfRgghro4E2EKIecd79CgEg2TcdefM1vEH2X+5l9tXFGE0pB+oa5rGuf5zKctD+hoHCPqDlKxM0J0kbou+ifrrmWXmryfLLTcT6Owk0NQ8ObY8FGDXdU6ViSzPW07LyJWII9MBSlcVMtrtxDUQdeDMknthpA366uI81QjcChxAz2QLIcT1IwG2EGLe8R47BiYTlnXrZrTOsaZ+xjyBaZeHdI91M+DuZ3V+ivrrUBY27gZH3zgMt8QJsM+FPpOvPZdl3LwDAM/hNyfHCh0ZFNgtXOqc6iSyPG8FQYI0DEUeIDPxB5Luuqgs9pL79M+kZSLDwOmZvL4QQsyYBNhCiHnHe+w45rVrUFbrjNZ540IPWRYjW2vj9KhO4kL/RP118ixzd10v9mIbtvys2Iu9FwANiqNLQc4BNegdTOcn07JlGPLz8R56M2J8eVk2dV3hGWy9DeGlwciMdOHifIxmA90XojY65tVC3hJoSBRg3wxYgFdn+A2EEGJmJMAWQswrmt+P7+RJLFu2zGidYFBjT10PNy8rJCPeBsQkzvWfxWayUZ1dnXRe98W++NlrgJ4z+mdxeJCuMbXBcf5SSmHZsR3Pm4cjxleUZdPc68Lt00s4cjJyKM0qjQmwjWYjRcsK6Dwf5/yxJfdC82sQ8MV5sg390JlX0fuICyHE9SEBthBiXvFdvIg2Po5ly+YZrXO+fZgBp5fbVybepJjIhYHzrCpYhUEl/hHq7HPh6h+jJNHpkD1nwZihZ2QndQP9zPcAGyBj+3YCLS342zsmx5aXOQgENRrD+mEvy1seE2ADlK8rpa9hAI/TE3lh8b3gdULboQRPvgf93+O5BNeFEGL2SYAthJhXvEePAsw4g73nYg9Gg+KWZdM7Hn3EM0zraGvK9nxdoexr6aokAXbRajCawgbPhj7nf4Bt2bEdAO+bU2UiK0r1jY6XOiPLRPrG++gf74+4v3JjGVpQo/101MEytbtAGfRuInHtBEzAKzP9CkIIcdUkwBZCzCveY8cxlBRjrKiY0Tp763rYtCiPbKt5Wved7dOD4FT11x1nu7HYzPEPmAHoPhNVHgL65rwMIHrj4/xjXrUK5XDgCavDLs+zYs80RXQSWZGv12FfHrwUcX/x8kLMVjNtJzsjF7bm6sem1z2d4Ml29DKRV9BLboQQ4q0nAbYQYl7xHjuGZcuWGfW/bu130dTr4vYV0y8POdF7nCxTFsvzkgfBHWe6KVtdjMEY58fs+CCMticIsFcD0wv65yJlNGK56aaIDLZSiuWlDurCOokszlmCSZmoi67DNhkoX1tM+6moABtg5WPQfQqGrsReA/QykU6mWh4KIcRbSwJsIcS8EejrI3ClZcb113vr9O4UtyfqT52Apmmc6D7O+qINmAymhPNc/WMMd4xSvi5B+7+eUClISXibQTdwEVg/rXeayzJ2bMdfX0+gb6rd3vKybBq6R/EH9E2IFqOFmpzauHXYlRvLGOlyMtI1GnlhxaP6Z91TCZ68E70vtpSJCCGuDwmwhRDzhvfYMWDm9dd763pYUmKnPC9O+7wkOl0d9Iz3sLF4U9J5HWf0uuHydaXxJ0wE2BEZ7AuAH9gwrXeayzJ26P2wvWHdRFaUZePxB7nS55ocW563nPqhywS0yANiKjaWAcSWiRQsg8KVSQLsbGA7UiYihLheJMAWQswb3mPHwWye0QEzw2NeTl0ZvKrykOM9xwHYVJw8g95xpguLzUL+otz4E3rOQkYOZFeGDZ4KfS6cDLZ53VqU1YonfKNj6ETHS12RB86M+8dpH22LuD+3IhtbQRZtJ7tiF1/xGDS/DuNDCZ6+C2gH4p36KIQQs0sCbCHEvOE9dkw/YCYz86rXOHC5j6AGO6+iPd/JnuOU2soos5UlnddxtpuyNQnqr2Fqg2NEHflpoBrInfZ7zVXKYsGyZQveg1Mt9aoLssgwGajriD1wJroOWylF5cYyOs50EQxE9bVe8SgE/VD/QoKn34mUiQghrhcJsIUQ84Lm8+E7eQrL5pm35yt0ZLAylElNly/o40zfGTalKA9x9roY6XImrr/WND2DHXPAzGkWUnnIBMuO7fguXCA4NASAyWhgaamDi2GdRMrt5WRbsic7tISr3FSGx+ml51LUsemV28FWDHW/SfDkXGAr8DJSJiKEeKtJgC2EmBd8dXVobjeWLckD3GQ8vgCH6vu4fUURBsP0upDUDdQx7h9nU1GK8pCzofrrtQkC7NFOcA9GbXBsAYZYiAF2xvbtoGl4jhydHFtbmcOF9mF8fj0rbVAGNhRt5FTvSTQtMhiu2lyOwWSg6VBr5MIGIyx/G1x6FnzuBE+/G2gFLl+7LySEEGmQAFsIMS/4zurZTcu6q69RPt48wLg3cHXt+XqOYVAG1hUlf3776S4y7BYKahL0v457RPpE/fXV15bPVZZNG8FiiWjXt6E6D48/SF3XVBZ7Q9FGBtz9tI5GBtIZNgvl60pofrMtJvhmzbvAO5qkTOQu9DKRRIfSCCHE7JAAWwgxL/jOnUfZbBhrFl31Gnsu9mK1GNlSmz/te0/0nGBl/ipsZlvCOZqm0Xayk4oNpahEGfKuk/pnRIB9AsgBaqf9XnOdslqxbNwQceDM+mr9Dx+nW4YmxyY6s5zsPRGzRu32KkY6RxlqHY66sAuyCuHsTxI8PQ+9m8gLQDDBHCGEuPYkwBZCzAu+s2cxr16NMlzdjy1N09hX18P2JQVkmI3TunfIM0TDUD0bizYmnTdwZYixgXGqNpUnntR+BPKWQFZB2OAxYDML9UeyZft2fGfOEHTprfkKHRmU51k53TI4Oac4q5hyWzkne2ID7EXb9G4rTW9GdhnBaILVT8Klp8HrirlP9xDQBZyc+RcRQog0Lcyf5kKIBUULBvGdv4B5zeqrXuNixwi9o56r6h5yuPNNNDS2l+1IOm+iX3PlpiRdRtoPQ8W2sIFOoAOY2ebNuSxjx3bw+/U2iyHrq3I53ToUUfaxoXgjZ/vO4A/6I+63FWRRvKyA5jej6rAB1r4HfGNw6ZkET78DsALPz/yLCCFEmiTAFkLMeYErV9CcTsxro48WT9/euh4MCm5ZNr3TGwEOdh6gNKuUmuzkJRxtJzrJq8rBXpigjGS0E0ZaowLsY6HPhRtgW7ZuBYMB76Gpdn3rq/MYcHppGxibHNtYtAl3wE3dwMWYNWp2VNF7uR9nX1Smuvo2sJclKROxorfsexnwzvSrCCFEWiTAFkLMeb5z5wFmlMHeW9fL+uo8cm2Wad3n8rk41XOSm8tvQanEnUf8Hj+d57qp3Jgse31E/4wJsHOAJdN6r/nEYLdjXrc24sCZ9dW5AJxuHZocW1e4HgOGuHXYNdurAGiOLhMxGPXNjpefA/dwzH26h4BRYP/VfwkhhJgGCbCFEHOe9+xZMJkwL19+Vfd3DI5zuWv0qrqHHO06gl/zs6Ps5qTzOs/1EPAFqdycrP76MCgjlIW3GjwObGKh/zjO2L4d74mTaG69pd7iIjv2TFPERke7xc6yvOWc7DkZc39eVQ75i3Kp39Mcu/ja90DAC+d/nuDpNwEFwHMz/BZCCJGehf0TXQixIPjOnce0bOlVn+C4r64HgNtXXl15SF5GHivyVyad13qiA6PZQNmaJEF8+2G9/7XZGhroQj/Oe+GWh0yw7NgOHg/eU3pLQoNBsa4qN2KjI+jt+i4PXsLli920uHRnDd0XexnpdkZeqNwOBSvg5PcTPN0E3AfsA0YSzBFCiGtHAmwhxJznO3cW85qrr7/eU9dDTZGN6oLELfbi8QQ8HOs+yo7ymzGo5D8u2050UramBHOGKf6EYBA6jtxw9dcTMrbp39sb3q6vKpemXhfDY1O10RuLNxEkyKnekzFrLL29BoCGvc2RF5SCjR+Cln3Qn+hQmQcBH3J0uhDirSABthBiTgv09hLs7sFylfXXo+M+TjQPXuXhMsfxBDzcXHZL8mf0OBlsHaZqc5L664F6cA9FBdiH0euvl0773eYbQ14eplUro+qw9X7YZ9umaqdX5q/EYcnmYMeBmDUcJXZKVxXFLxPZ8NugDEmy2KuARUg3ESHEW0ECbCHEnOY7dw7gqjuIHKrvIxDUrqo938GOg9jNdtYWJj9hseVoOwDVWyoST2o/rH9OBtgacAj9IJQb40dxxvbteI8cRfPrbfjWVORgNChOXZkqEzEZTOwo28GRrsP4Ar6YNZburGHgyhD9zZGlJWSXw5L74eR/QjAQ5+kKPYt9HL00RwghZs+N8VNdCDFv+c6GAuzVq67q/j0Xe8izWVhdkTOt+7wBL4c7D3FT6XZMhgRlHyEtR9vJLrWTU5GdeFL7YTDboGgiE38Z6AeS99ZeSCzbt6ONjeE7dRqATIuRleXZHGseiJh3S/mtjPnH4nYTWXzrIpRBUf9Gc+wDNn4IRtuhMVEZyAOhT8liCyFmlwTYQog5zXfuHMaqKgy5udO/1x/kYH0fty0vwpjo6PIEDne9icvv4s6qu5I/w+On/Uw31TdVJm3jR9tBKN+it5UD4GDo88YJsDNuuw2Uwr1nz+TYzUsLOd8+zKBrqg57fdEGbCYbBzpi2+pZczKp2lTG5TeaCAaijj9f8Shk5sGJf0/wBpXoHVueRv8bBCGEmB0SYAsh5jTf2XNX3f/6xJVBnG4/t19FecirLS9TkFnA+qL1Sed1nO4i4A2waGuS8pDxQeg8DjXhwfqb6L2vp/9u85UxPw/zhvV4Xn9jcuzW5UVoGhy83Ds5ZjaY2Va2g0OdB/EFY8tEVty7FFf/GG0nOiMvmDNh4wfhwq/A2Z3gLR4DWpCj04UQs0kCbCHEnBV0ufA3NV11/fXeuh4yzAa2LS6Y1n2D7gGO9xznzqpdGJUx6dyWo+2YMk3J2/M1vw5aEBbfHRoYB04AyXtrL0SZO3fiPXGC4LC+sXFFWTYFdgv7L/VFzLu1/FZcPhdnek/HrLFoawXWnEwu7K6PfcDW34GgD44nymLfDdiAp2b2RYQQIgkJsIUQc5bv/AXQtKvKYGuaxt6LPWxbXECmJXmQHO311tcJakHurr476TxN02g52k7lhjKM5iTPaHxFr7+u2B4aOIbeMu7GKQ+ZkHHnHRAI4NmvdwkxGBS3LCvizYY+/GElHxuLN2E1WeOWiRjNRpbvWsyVI22MDY5HXixcof9NwbHvJtjsaEXvif0S4IxzXQghZk4CbCHEnOU7rWcvLeuTl2nEU989Stewe9rt+TRN49XWV1iet5xKR1XSuQNXhnD2jVG9NcnpjQCNL8OinWCaOKb9AJABbJzWuy0Els2bUXY77rAykVuWF+F0+yOOTbcYLdxUuo2DnQcJxAmUV967FC2ocenVxtiH3PQpGL4C9S8keItHATfw8oy+ixBCJCIBthBizvKeOo2huBhjaem07917sRel4NYV0zu9sXG4kSsjzeyqSp69BrhyuA2A6mT118Nt0F8Hi+8JDWjAG+jt+a7uZMr5TJnNZNx6C5433kDT9I2G25YUYDIq9l/qjZh7a/ltjHpH4nYTya3IpmxNMRdeqp9cZ9LKx8FeCkf/JcFbrAUWI2UiQojZIgG2EGLO8p05c1XZa9BPb1xbmUuBPWNa973a8gomg4nbK+9IObfpUCvFKwqx5WclmRRqGTdZf10HdAOp11+oMu64g0BbG/4GPftsyzCxaVE+B6IC7K2lN+GwZPNKS/xM88r7ljLSOUr7qai+1kYzbP4YXHoWBhri3KnQs9ingaYZfx8hhIgmAbYQYk4Kulz4L1/GvGH6AXbPsJuLHSPcPs3stcfv5rXWV9heugOHxZF0rrPPRV/DADXbKpMv2vgKZBVB8cRhNW+gB3i3T+vdFpLMO/U/XHjC2vXduryQpl4XHYNjk2Nmg5k7K+/iUOdBRrwjMessuXUR1pxMzjxzMfYhWz8FBhO8+e0Eb/EQYESy2EKI2SABthBiTvKdPQuadlUZ7L11PQDTbs/3RtsbOH1OHl78tpRzJ8pDarYnqdPWND2DXbsLDBM/bt8ANgD503q3hcS0aBHGmpqYOmwgpkzknkX34A/62dP6esw6RrORVQ8so+VoO8Odo5EXs8th7Xv0biLjQ3HeIh/YCTwL+GfwbYQQIpYE2EKIOWnitD/z+uTHlMezt66Xyvwsagptad+jaRrPNj5NTXYtawrWpJzf/GYbOeUOciuTnN7YcxZGO8LqrzuAS9zI5SETMu/YiffAATSPB4DqAhuLCm28dj6yf3VtzmKW5CzhpZaX4q6z+oFlGAyKc8/WxV68+ffB54Lj/5bgLR4FBoB9V/9FhBAiDgmwhRBzkvf0aYxlZRiLp5eFdnn8HGvqZ+fK4uQnK0Y533+OppEmHl78SMr7PC4vHWe7qdlelXzu+Z+DMsCKiYz4REmEBNgZd96JNj6O59ChybH715dxvHmQjqjWe/csuo+m4UYahmLrqW35WSy+dRF1rzTgHYs6lKZsk96y781vQyD2wBq9D3kR8MuZfyEhhAgjAbYQYk7ynTp9VdnrN+v78AW0addfP9P4NDazjTsr70w5t/VYB0F/kJrtKeqvz/2P3p7PXhIaeAm9e0X1tN5tIcq8/TZUVhbjzz43OfbgBr3d4QunOiLm7qy8A7PBzCsJsthrH1mJd8xH3StxNjTe/AUYaYXzv4hzpwl4HP3Y+tar+h5CCBGPBNhCiDknODqKv7ER81XVX/eSk2VmXVVu2vf0j/dxsPMA9y66jwxT6tZ5zW+2kpmTQfHywsSTes5B3wVY/c7QQAdwCngg7fdayJTVSua99+B+7nk0v14DXZZrZWttPs+ebI9oveewONhRdjOvt76GJ+CJWatkRSGlq4o4/dQFAv5g5MVlD0HBcjj4Tb0mPsY70P9T+D/X7ssJIW54EmALIeYc35mzAFim2UHEHwiy/1Ivty4rwmRM/8fb803Po2kaD9U+nPoZHj9XjrZTu6MaQ7JnnPsfQMGqJ0IDu0Of96f9Xgud9W2PEBwcxHPgwOTYQxvLaR8c51TLUMTcB2oexOlz8kbr63HX2viONTh7XDTsa468YDDAjs9DxxFoPRDnzkL049OfQj/CXgghZk4CbCHEnOM9fQpg2hns061DjIz7ptU9xBfw8eKVF7ip9CZKbWUp57ee6MTv9rP4lhRlHudD5SGOiUNyXgDWA0kOpbnBZN55J8pmY/yZZyfH7lpdQpbFyLMn2yPmri1cR212LU83/ib2YBmgeksF+YtyOfXL87HXN/w2WPP1LHZc70I/Nv35mX0hIYQIkQBbCDHn+E6dxlhZibGgYFr37bnYg9mo2L4k/fv2dexl2DOUVms+gMYDV8h0ZFC2tiTxpJ7z0HseVj8ZGqgP/ZLsdbiIMhGfvgnRajFx1+oSXjnXxbh3qn2eUopHlzzGlZErnO47FbuWQbHhidUMXBmi5VhkcI7FBls+CRd/DQNxjlZnA7Ac+Cn6SZtCCDEzsxpgK6UeUErVKaXqlVJfjHN9p1LquFLKr5R6Mt4aQogbj/f06WlnrzVNY19dD1sXF5CVYUr7vmcbn6bCXsmGoo0p5wZ8Aa4cbqdmeyVGU7LykJ8CCla/IzTwIvqhJvckvucGFa9M5OFNFYx5Arx+oSdi7u2Vd5CTkctT9b+Ju9aS22qwF9s48bOzsVnsbZ8BZYQ3vxXnToWexW4Ajs/o+wghBMxigK2UMgLfAR4EVgPvVUqtjprWAnwI+PFsvYcQYn4JDg0RaL4y7frr5l4XbQPj7FyRfnnIpcE6Lg1e4uHFj2BQqX8ctp3sxDfuo/bWRYknBfx63+WlD4CjDP0Qk6eBHcD0MvI3gsw77ogpE9lYnUdlvpVfHons7GExWniw5iGOdB+mw9kevRRGk4FN71hDd10frSc6Iy9ml8O69+n/27h6Y+7VN5/mAD+b+ZcSQtzwZjODvQ2o1zStUdM0L/AT4LHwCZqmNWuadhoIxltACHHj8Z6aqL+eXou+PRf1bOdt02jP92zjM1hNVnZV3Z3W/MYDLVhsFirWJSkPufSMfrjM1t8JDewD+oAnEt9zA1NWK5n33ct4WJmIwaB41/ZFnGkd4nTLYMT8B2sfxKRMPN0Q/4jzFXcvwVFs4+iPTsZmsW/7IvjG4dA/xrkzE/3gmdeB7jjXhRAifbMZYFcQ2Vi0DdndI4RIwbNvP5jNWLZsmdZ9e+t6WF2RTVF26jZ7AEOeIfa272FX1d1kmbNSzg/4AjS/2aaXh5iNiSce/WfIrtTbwwHwK/TDTG5N671uRNa3PYI2NITnjT2TY49sqsCRaeLHB5oj5uZl5rOz8g5ebnmJIc9QzFpGs5Et71lPb/3A5HH2k4pW6nXxh/9PguPTn0TP98TrmS2EEOmbF5sclVKfUEodVUod7e2N91d7QoiFwrNnL5YtmzHY0j/mvH/Uw7n2YW6bRnnI7uYX8Qf9PLz4kbTmtxxtx+vysvT2msSTBhqgYTds/jgYTUAXcAD9L+/Srwu/0WTedReGoiKcP/jh5FhWhoknbqrijYs9tA2MRcx/54p34wv4+NXl+IHwsjtrySl3cORHp9CCUVnsnX8OnhE9yI5RAdyOHmBLyz4hxNWbzQC7HagK+31laGzaNE37rqZpWzVN21pUNL3T2YQQ80egvx/f2bNk3H77tO7bd6kXTYOdabbnC2gBXmx+ng1FG6h0VKW+Abj8RhPW3EwqNpQmnnTsu/pGus0fDQ38OvT5WIIbBICyWLC97714Xn0Vf0vL5PiT26oxGhQ/OdgcMb/CXsEdVXfybNOzDLoHiWYwGtj63vUMXBmi8UBL5MXSDbD8ETj0D+BxxnmbDwLDQPyNlEIIkY7ZDLCPAMuUUrVKKQvwHvRO/kIIEZdn334AMnfunNZ9e+t6KMu1sqTYntb8Y11H6R3v5cGa1AfLAHicXq4caWfp7TWJD5fxOPUNdCsfg+wKwAP8ErgFSN1f+0Zn+8AHwGDAFZbFLsrO5P51ZTxzooPhMW/E/HeteA/+gI9fJshiL7mthvxFuRz98SmCgahtPrf/OYwPwLF/jXPnBmAT8EP0DapCCDF9sxZga5rmBz6D3p/qAvAzTdPOKaW+pJR6FEApdZNSqg14J/CvSqlzs/U+Qoi5z7N3Lyo7G/M0OoiMe/0caejn9hVFKKXSuuf55ufIz8xnW9n2tOY3HrhC0B9k2R21iScd+64etN3yRxNPAQaAD6T1jBudsbyMzPvvx/XfP0EbnyrPeO8tNbh9AX5xOLKjiJ7Fvovnm59j0D0Qs54yKLa8dz1D7SPUv9EcebFqB9TeDQf+N/jccd7mg+gbHV+Y8fcSQtyYZrUGW9O05zRNW65p2hJN074cGvtLTdOeCv3zEU3TKjVNs2maVqBp2prZfB8hxNylaRqePXvJuPUWlDHJJsIoRxoH8PiDaZeHdLk6Od59jPsWPYDJkF5d9OU3msityKZwaX78CX6PHqzV3KUHbwSBH6EfXrI1rWcIsH/og2hDQ4w9NfWXnUtLHNy2oogfH2xmZNwXMf/dK96DP+jj55d+Hne92h1VFC7O49hPTxPwR2Wxd/4FOLvgxP+Lc+etwDLg+0BgJl9JCHGDmhebHIUQC5+/sYlAe/u066/3XOzBkWli46K8tOa/0Pw8Sinur0nvVEVnr4vOsz0su7M2cYb85PfB2alvoAP0jY1NwG+hH2Ii0mG55WZMy5fj+o//jGix98ldS3G6/fxof3PE/HJ7OfdU38tzTc/QNhrVMQT99Met79/ASJeTupfrIy/W3AFVt8D+r0LAF30n8FGgGdh9Db6ZEOJGIwG2EGJO8OzdC0DmzvQDbH8gyL66Hm5eVoQpUW10GG/Ay8tXXmJb6XYKrIVpPePiKw2gYGmi8pCAH/Z9FSq2Qe2u0OAPgBLg3rSeIXRKKWwf/G18Z87gPXpscnxZaTb3rC3lZ29eYcDpibjnA6t/mwxjBv9+9ntx16zeUkHp6iKO/vg03rGwQFopPYs93AKnfhDnzl3oWezvIbXYQojpkgBbCDEnePbuxVhVhbGmJu17TrUMMTTm487V6ZWH7O/Yx4h3hIdq09vcGAwEubi7nsqNZWSXJNhAeeoHMNSkb5xTCjiKftz2byGt+aYv651PYsjLY/Qf/iFi/BN3LcXrD/KDvU0R47kZubxn5fs41n2UI12HY9ZTSnHzR7YwPuzm5C+itvksfQDKb4I3vqSX+UQwAJ9EP3D4uRl/LyHEjUUCbCHEdaf5/Xj2HyDj9tvS3qgI8PqFbjJMBm5eml42+vmm5yi3lbO+aENa81uOtuPqH2P1A8vjT/CNw+t/BRXbYcXbAA34F/SDZd6e1jNEJIPNhv0zn8bzxh48Bw9OjlcX2nhoQzm/PNpK93Bkj+qHFz9Chb2Sfz/zPXwx5R5QvKyQpXfUcPqpC4z2uqYuKAV3f1nPYh+LlwG/A1iNnsWODsCFECIxCbCFENed98RJtNHRadVfB4Mar1/oZsfSQqyW1JnipuFGLg5c4IHahzCo9H70XXjxMln5VhbdlOAQ2sPfgZE2uOcroez1YeAk8GEgI81vIqLZP/jbGEpLGPnq1yNqsT9y5xI0TeNfXomspzYbzHxs3cfpcHXw64ZfxV1z229tAuDwD09EXlh8Dyy6A/b8L/C6ou5SwO8BncB/z+xLCSFuKBJgCyGuO9cPfojKyiLzjvT7X1/oGKZ3xMMdq9IrD3m+6TksBgt3V9+T1vzRbictxztYec/S+L2vx4dg79/Bkvuh9k6mstclwONpPUPEp6xWHJ/9LN4jR/C89vrkeFmulffdUsvzpzo4eSXygJktJVu5uewWfnLxx7SNthLNUWRj/WOrqH+jmZ5LfWEPC2WxXd0JTne8CdgJ/AfQfy2+nhDiBiABthDiuvK3tTH+m9+Q9f73YcjJSfu+Ny70YDQobl2e+nTXMd8Yr7e+xu2VO3FYHGmtf373ZZRSrLxvafwJ+78K7kG45+9DAy8DZ4CPA5a0niESs733PRirqxn56tfQglMt9j60s5bSnEy+/ux5/FEHyPzOhk+Raczk2yf+kYAW215v4xNrsOZmcvD/HYvIjFN9Kyx7CPZ9BcbiBdGfA9zof4ASQojUJMAWQlxXzu/+GyiF/eMfS/seTdN47UI3W2rzyclKHcy+3voq7oCbB2sfSmt975iX889fZtG2ShxFttgJA41w8Juw/gNQtgm9Pvef0LtOvC3t7yESUxYL2V/4fXxnzzIe1hfbajHx+QdX0tDtjDl8Ji8zn4+t/wQXBy7yTEPswcGWLDM3vX8DXRd6aYo+Qv3er4FnRN/wGGMR8C7g18DZmX41IcQNQAJsIcR1ExgYZOzHP8b62GOYKhLUOcfR1OuitX+MO9I4XEbTNJ5reo4lOUtYlptgs2KU8y9cxuvysunJBGdf7f5DMJj12msAfgJ0AJ8H0j8kRyRnfeLtmNetY/hv/pbgyMjk+B0ri9mxtJDvvlZP/2jk5sM7K+/ippJt/PDCD+lwtsesueLuJeQvyuXNH5wg4AvLchevgS2fgCP/F/rq4rzNJ9E3r34ZadsnhEhFAmwhxHXj+sEP0MbHcXzqk9O67/Xz3SgFd6wqSTn3fP85Wkav8GDtw2l1KPF7A5x56gIV60spXhanO0njK3DxV3D7n0F2BdAL/D/gNiC9o9dFepTRSO7XvkKwr4+Rr3x1alwpvvDQSnyBIH//9LmIcg+lFL+78TNYDGb+99Gv4wtGdhUxGA3c/JEtjHQ5OfWr85EPvPNvwGSFl/44ztvYgT8GLgP/dc2+oxBiYZIAWwhxXWjj47j+33+QsWsX5lWr0r9P03jpbCfrqnIpdKTu1PF883PYTDZ2Vt6R1vqXXmtkbNDNxnfEyV4HfPD85yC3Fm7+Qmjwm4AP+IO0v4NIn2X9emwf/jCuH/wQ77Hjk+PVBTY+fc9y9tX18qujkac4FlgL+Mymz1I/dJn/Ov/DmDUrN5ZRe3M1J/7nLKPdzqkL9mL9NM66p6D+xThvcydwF3rbvsZr8fWEEAuUBNhCiLdccGyMwc9/gWB/P47f/Z1p3VvXOUpTr4sH1pennDvoHuRA+352Vd9Npikz5fyAL8CpX56jaGk+FRtKYycc/AfoPQcP/AOYM4FDwEvobfmqpvU9RPqy//gPMZSUMPgnX0TzTWWk37m9mh1LC/jWixdp6nVG3HNL+a08UPMQv6r/BSd6jkcvyS0f3QIKDvz7scgLOz4PBcvh2d/V+5zH+BPACvwF4J3pVxNCLFASYAshrrmg00mgry+yU0OIv72dvsefYPzZZ8n+iz8n4+abp7X2C6c6MBsVd69JXR7ycstL+DV/2psbz79wmZEuJ1veuz62nGSwGV7/a1j5OKx8DL2rxFfRA+vfntZ3ENNjsNvJ/fLf4r9wgdH/852pcYPiLx5fh9Vs5K9+fhqvP7KryEfXfYxqxyL+4dg3GPIMRVyzF9nY8u71NL/ZypXwDLgpAx75FxhshD1fjvM2hcBfApeAf75WX1EIscBIgC2EmDHN42H0n/4PPfc/SMeatXSuWEXXhk10rl1H79ufYOD3PsfA732WgU/9Lr0PPoy/pYWC//w+jk9NL3vtDwTZfbaTW5YXpeweEtACvNj0POsK11PpSJ1d9jg9HPvpaSrWl1K9JWrDpabBc58GgxEe/HZo8P8CrcCfIYfKzD7rAw9gffvjjH7zH/C8+ebkeKEjgz97bC2Xukb5xnMXIv5Ql2HM4I9u+mPGfGP847FvEtQiA/B1j64ktzKHff9yBO9YWK127V2w4bdh/9egJ+p4dUDvi/0O4IfAG9f0ewohFgYJsIUQM+J+5VW6d93DyFe+inLYyXr0UbL/7E/J+Zu/xvqI3rLOe+QI3uPH8Z09h2n5MoqeeYrMu3dN+1mHG/sZcHp5cEPq8pDj3cfoGe9JO3t9/Gdn8Ti93PyRLbHZ63M/g8vPwV1fgpwq9NMa/xt4Ev0gEvFWyP37v8NYXcXgZz5LcHDqoJmdK4v54O21/OZYGz87FNl+b1F2DR9Z9zGO9xzj6YbfRFwzmo3c8ZkdOPtcHPnRyciH3fe/IcMBv/6wXnsf4wvAKvRsdvM1+HZCiIUk9fnCQggRhxYMMvTFP2XsRz/GtGQJBf/9IzJ3pn8S49V44VQH2VYTtyxLfbjM803PkpeRx46y1CUow52jnH22jhV3L6GgNi/y4miXXo9bsQ22/R4wDnwJKEU/Rlu8VQwOB/n/9zv0PvZ2Bv/wj8j/t+9N/mHok7uW0dzr4lsvXqS6MIubw/4/8mDNQ5zsOcF/nvs+awvXsSR36vCg0lVFrHloBWefrWPpzhpKVoTusxXBI/8K//NOeP1v4O7/FfU2GcDXgQ8Af4TeSSa9Q4yEEAufZLCFENOmBYMM/eEfMfajH2P/3U9R/PLuWQ+uXR4/b1zs4Z61ZVhMyX90tY22caz7GPfXPIDJkDyPoAU13ving5gyjNz0/g1RFzV45pPgdcHj3wejCb1rSCvwV0CcQ2jErLJs2EDOn/0p7hdexPnd702OGwyKv3piHUtKHPzF/5ymoXt08ppSis9s+iw5GTl8/chXGfONRay57QMbseVn8fq3D+H3hPW4XvMkbPwQ7Pt7uLIvztuUAl9B///DH6F3kxFCCAmwhRDTNBlc//RnOL7w++T8+Z+hLLN/NPhr57vx+IJplYf8uv6XmAwmHqx9OOXcc89fovNcDzd/ZAu2/KzIi6d+qLdsu/vLULQKeA34Ffqmxq1X8zXENWD7+MfIfOhBRv72fzH+4lQ7vawME19/7yasFiOf++Ex2gemAulsSzZ/sPWP6Rrr4p9OfCuiVtuSZeaO39vBUNswb/7gROTDHvw25NbAL98Prt44b7MV+P+Ao8DfAME4c4QQNxoJsIUQadM0jeG/+P8mg+vsP/hC6puu0XN/eaSF6oIs1lbmJJ076B7ktdZX2VV9N3mZeUnnjnQ7efMHJ6jcVMaKu5dEXuyv1zc2Vt+mt26jE/hf6HW309ucKa4tpRR53/4W5o0bGPz07+E9dWryWmmulW//9la8/iCf/cFR+sJOelxbuJbfXv0h9nfs46moeuyqTeWsfXgFZ5+po+1k59SFDAc8+VNw9cBP3wH+eK35HgY+DbyAntGWIFuIG50E2EKItLn+4/u4/vMH2D/1O29ZcA1wrGmA8+0jvO+WmpSnMT7b+DT+oJ/Hlz6RdF7AH+S1f9yPUoqdn94Rua7fAz9/t34c+hM/AoMPvQQggH5Utvn/b++8w+Qorr39Vk/emdmcg1arnCPKSCKKjACTbJKNAduYz4B9r23AF2McsI0DzgYbDAYMJoPIIIRAOeeslbQ578zu5ND1/VGjHIGVVgv1Pk8/E7q7+nTtbPevT50657OekuYzYrhc5PzrMYycHFpv+BqJmr2p9vrke/jdtWNoC8a4/d/L8If2iuJL+13GxKJJPL7+MTa07l/JccINo8kszWDOHxYQ9kf2rig5BWY+BlUfq4euQ6SfhK+i8qG/BPwaONQ2Go3mi4IW2BqN5piIzJ2L/8f34TxnBul333VCj/3veTvI8diPGh4SToR5c8cbTCiaSImn5IjbLn1qFQ0bmpn6rfF48w6IpX7v+1C/QsVdZ5ahvJKbgJ8CvT7DmWi6EkteHjlPPoGMRmm58ioStXV71g0rzeTXXx5NVWuQ7z69glAqtloIwe1j7iQ/rYBfL32A1nDrnn2sDitnfm8K0c4os387DzO5jyd6+Jdh6j2w4p8w96eHsEYAt6LCh15Ai2zN8aMGeB34LfB7VGXRZeiRk5MLLbA1Gs1RiW/bTts3b8U6cCBZf/ojwjhxl45NdX6WbG/l6km9cdgsR9z2/V3vEYgHuKz/l4643c7F1ax+eQNDzu1P/+kV+69c+wws/iNM+A4Muhh4EXUzuxmY+llORXMcsA0YQO7TT2G2tdNyxRUkamv3rBvXJ4efXTGSTXUdfP/ZlUTjSQDcNjd3jb+HUDzELxb/jGhybxhJbp9sTv3meGpXN7D0P6v3P9jp98PIG+DDH8PHDxzCGoHKLHMd8DxKAGmRrekKJDAP+BZwCXAfaj7IS8DDqLC1C4FnUSNtmu5GC2yNRnNEzPZ2Wr/6NYTNRs7jj2G4T2zmjH9/vAOP08plpxy5WEw0EeGlrS8wOHsIg7IHH3a79ho/c/6wgNy+2Uz6+gETFetXwqtfV3HXZz8IrAZ+A0xBCWzNyYh9zGhyn3kas91Hy+VX7ieypw8u4J6ZQ1lW2ca9L6whkfJK987ozXfH/g9bfVv488o/7jfpcdBZ/Rg0ox+rXlhP5YJ98mobBsx8FIZfA7PvVpUeDwoXEcB3gGtQYucXaMGj+WxUooT1HUAVcBvwX1SRo49Ty89RVWV/A9wI7OgOQzX7oAW2RqM5LDIep+2bt5KsqSH70X9gLS09ocevagkyZ2MjXxpXhtt55HR7L297mdZIK9cPueGw24Q7Irz90zlYrBZm/GAaVvs+HvFgMzx7CaTlwJUvgLUN+AEqFdtP0ZfLkxv76JTI9vlomXkp8U2b9qw7f1QJd543iLmbmrj/5bUkTSWKJxZP4prB1zG35kNe3Pr8fu2dess4Cgbm8sHv5lG3vnHvCsOiQoeGXwMf/Ahm3XKIQjQCJYZuRHkZ7wYONTlSozkSSeBR4MvAFuCHwKuoeP++wO7rlws4B/g7aiJ2HWo+wNITa65mP/QdQ6PRHBb/fT8hOm8emb/6JY5xJ7ZioZSSv76/BZvF4MqJ5Ufcti3SxktbX2By8RSG5g475DbJeJJ3H/iIYGuIc+6ZjrfAs3dlPAzPXKwyRVz9CnicKC9kGOURSu+is9IcT+yjRpH3wvNIadJ86ZeILli4Z91VE8u59az+vLu2gZ+/sm6PyL5ywFVMLZnGvzc8wZzqD/Zsb7FZOPdHp+Mt8PDOzz+kdefeypFYrHDpv2Haj1RM9lPnHSKF3+6Y7DuB2SjBHTw+J675HFIL3AL8DTgTFap2OUeuDyiAc4EngXxUuNI7R9heczzRAluj0RySwONPEHz8CTzf/Abuq6484cd/Y1UdH25s4qbT+pLjcRxx26c3PknCTHDD0K8dcr2ZNPng9/Np2NDEabdP3lutD8A04aXroGYxXPYUFA9FlcGuRsXQ9jtkm5qTE9vQIeS99iqWwkJarrmW0Msv71l3/dQ+3HJ6P95cXccvX1uPaco9kx6H5w7njyseYmXTij3bO9MdnH/fmdicNt64dzYtlW17D2QYcMZPYea/oGoe/H0U7Jx7CIuuQcXLLkcN87cfYhuNZjcSNefjK8B2lEf6F8AhUo521kPjWmhcB4GmfVYUoiqLjgDuBT46zjZrDoUW2BqN5iDCb76F///uxXHmmSc8YwhAbVuI3725kdG9s7hmSsURt93hr+T9Xe9xQZ+LKHIXHbReSsnHf19C5fwqJt04ln5Te++/wXvfh40vwowHYchM1HD+GlRYiC4m0xOxlpSQ9/KL2MeOof227+D/+S+QSRUHfeNpfblxeh9mrazl568qT7bdYufuCf9HmbcXv1zyC7a2b93TljfPzYX3n4nFZjDrnveoX9+0/8FGfxVuWgR2DzxxBrx/t0rzuB8Xosqqb0eFjVQfv5PX9GBaUOlA7wMGAs+gPNL7EA3A4j/Bo1Pgt8XwtxHwt+Hw2yL4z0WweVZqXoAHlWFkECq0ZNkJPA8NaIGt0WgOIDp/AW3fvg376NFk//2vCMuRM3d0NYmkyX0vrVWlry8djsU4fN7ruBnnL6v+hMfm4aqBVx20XkrJosdXsOndbYy+YhgjZh4w+XH+g7DwtzD+Nph0Jyod30eom9xZXXlamhOMkZlJ7n+exn3D9QT++jdar7se0+cD4ObT+3Hz6X15Y1UdP35RTXx029z8eNJP8NrTuXfBPfuJ7MzSDC7+5TmkZbl4477ZbHp/+36TIikaBbcsUxlG5j0AD4+F2gMFzTTUcH8HKj52zXE9f01PQqKKFF0FLABuR/1W9nEYSKkyHP15ELz1HYgF4IyfwxXPqWXKD6BumQp1e/YSCLcDbuAPQClqVG7diT2tLzhCHjJh/snLKaecIpct009iGs3xILZ2LS2XX4mluJi8l17AyDpyJcQuP37C5MHXNzBrZS33Xz6CGcMP9kjvyz/WPMKsylf54bi7mVwyZb91u8X1mlc2MvT8AUy5Zdz+xWRWPg6vfg2GXglfehqMh1BZH25Exc5qPi8E//MMvrvvwVJSTM5jj2IbOBCAJ+ft4C/vbWH6oHzuv3wEDpuFxmAjP5p/F4FYgPsm38/A7EF72gn7I8z+zTxq1zTQ/7QKpn5zPDbXAUWHtrwJs26GQCOc+gOYfi9Y9w1xqkIJqCbUKMkZx/nsNSc3LagH+w+B4cCPgd77b+Kvhle+BjtmQ9EYOPcPUH7qwU0l47DkL2pUzlsMV70IxWOBZuAmIAA8gpogqekKhBDLpZSHHOrUAluj0QAQW7GSluuux3C7yXvlZSzFRxa3XU1TR4S7/7uKdTV+vjatD984s/8Rt19QO59fLv0FF/WZyc0jbtlvnZSShY8uZ+2sTQy7YCCTbz5lf3G9eRY8eylUnA5feQ2sf0TlLf4yytNz5GqRmp5HdOky2m75BjIYJOuPD+E6Vw29P7doF797axOjyrP41dWjyEiz0xxq5p75d+GP+rhnwv8xIm/knnbMpMnK59ex7Nk1eHLSmHTjWCom99r/9xX2wTt3wqrHIX+YyjpSPHYfa9rZ61H8DnAt+jf3RSOKCgF5DEig8lhfw97MICiv9Zqn4c3bwEzAjN/A2JtVJhtAmpJoMIaZNDEsBk5v6kGuZgk8fwVEfHDdu1A6AVWc5ibU7+wx9vOOaz41WmBrNJojEpk7l7abbsHIyyX3mf9gLT9y1o6uJBCJ8/66Bh6Zs41ILMmPLh3GGUMKj7hPbaCW7314B6XeUh6Y+mtsxl4vYjJh8tGfF7FlTiXDLhrE5K+P3V/87JoHT56thM8N74PjL6hiDdehxI4WOp9XkvX1tN58C/GVq/De/h283/suwmLhvbX13P/yWkqy0/j9tWMpynTRGm7h3gU/oi5Qx80jvsH5FRfs11bDpmbm/X0JrTvaKR5ewJgrh1M8vGD/39qWN1Qav0AjnPpDmP5/+3izI6hY2/eB84B7AOeJ6AZNtxJHpdr7F9AITEdlmDkgz3+oFV7/Fmx4Hsomq6w12crz3NkUYPPs7WyeXUmgeW9mmuJhBQw6ux99pvTCEqqDx0+DUAtc9x6Ujge2ofL5Z6HS/53YEcrPI1pgazSawxJ65RXa7/gutv79yXn6SSz5+cftWElT0uALU90WoqolyNpqHx9taiKaMOlX4OGnl4+kIt9zxDa2+7bzk4X3kpQmv5v+EAXugj3rYqE47z/4MdUr6hh3zUhGXzFsf8HTsAb+NQ08BXDjR+B+BHWz+xoqLESL6887MhLBd8+PCD37X+yTJpL95z9hKSxkxc42fvDMSuxWg19cNYqRvbIIxoP8dtmDLGtcyrm9z+em4Tdjt9j3tGUmTTa8vZWVz68l1B6hYGAuo68cRq+xJXt/d+F2ePtOWP1Eypv9BBSP2W0NSuj8HRiCSgl5/P7/NN1JM+pB/iWgFZXh41YOmkgtJWx6Bd74thLHp98PU/4XDAuJaIIVz69j9csbMJMmpSOLKBtThMVmIdwRZeucSjoaAuT2yeKs708jI82XEtmt8NUP1VwBVgHfBiqAv6JTkH42tMDWaDQHISMR/D/7OcF/PY59wnhy/vUYRkZGl7XvC8bYUOdnY62fzfWdVLUGqW0LEU/uveZkpNk4a2gh548qZkhJxv5i+BCsalrJA0t+jtvm4SeT76fM22vPOn99J+/84kN8NR1Mu3UCg84+IL1e+w41814I+PqHkPkY8B5q2PQbaHH9xSL0/Av47rob4XKR9YeHcJ5xOjuaAvzvMyup94W549yBXD6+FyYmT234Ny9ufYESTynfHvX/GHZArvVELMnm97ex6qUNBJqD5FRkMfqKYVRMLMOwpHIJbH5debODTTD1Lpj2f2DdLdY/RKVTcwG/AkadqG7QHFcSwApUsaEPABNVFfZqYAIHXXNat8Hbt8PWNyF/OFz6BBSNBqBuXSNz/7SQjoYA/U+rYNy1o/Dm7V9VV5qSHYuq+egvi5Cm5PQ7JtN7oITHpqj47BvnQU4/YD7wP6gUpH9Bi+xPjxbYGo1mPxKVO2j71q3E163DfdPXybj7LoTjyLmmj4W69hBzNjQyZ0Mj62r8gNKzvXLc9M5z0yvHTVl2Gr1y1Wu2x35UUQ0QToR5aesLvLjlBUq8Jdw36X5yXLl71lctq2X27+YjDDjrf6dSOvKA+MJAk7rJhFrh629D3j9RN77bUaEhmi8i8W3baPvmt0hs3ETatdeSce+PCBp2fvLyWuZtbuacEUX8z/mD8bpsrGxawV9W/ZmmUCNnl8/gygFX7zd6Aio8advcHax8YR3+uk4yS9IZ9aWh9JtegcVqKG/2W7fDmieVgLrk8X282dtRoqcW+HpqOXL1Us3JSAKVEm82MAfwAV5gJqpQzCGq4bZth49+Dqv/DTaX8lqPvw0sNpLxJEufXs3qVzaQXuBh2rcnUjJChdAlzAR1gTqqOndhYDC6YAwuq4vOxgDvPfgxLdvbOOPOyfQbHIHHpoLDCzfOh/RiYB4qW1IfVKaR3IPt0hwVLbA1Gg2gvNadf/s7gT//BZxOsn7/O1wzzv5MbSaSJh9vbubFpVUsSxXiGFDk5bTBBYwqz2JgUTpux6cTCpFEhI9q5vL0xidpj7YztWQa3xr5bTx2FUaSjCdZ/MRK1s7aRHbvTM65azrphd79Gwn7VH7ilk3wteeg5AnUhJ/7UOWFNV9kZCRCx4O/IfDwI1h6lZH1u99iGz+Bxz+u5NEPt5PttvODi4Zw6sB8IokI/9n0FLO2v4ZEMqX4VGb2u4T+mQP2e1A0kyY7Flaz8oV1tO5ox5PvZtRlQxl0Vl8sNouaZDvrFhUCMPl/VWy2zYXK8vAg8AYqhOB+DinINCcRQWAtsDq1rEVVgE0DpqKqME7moPj6ZAK2vQXLH1Eea4sdxn5DZZ7xKgdBw6ZmPvrLItqr/Aw5tz8TvzYWm9NKc6iZ/2x6irk1H5IwE3uatBt2xhSM5cI+FzHYO5S3fzqH+g1NSmT3bYUnToeMcvjaR5CWjUoJ+AOUB/sP6KJanxwtsDWaLzhSSiJvv43//p+RrKrCecEFZN7348+UKaSpI8Kry2t4bXkNzZ1RCjKczBxbyjnDiyjJTvvU7QZinaxpXsP8unksaVhMNBllYNYgvj78JgZl781j3by9lbl/WkTrjnaGXjCQiTeMxnqgkI92wpMzoG45fPVv0Ot51OSy36CLyGj2JbpkCe133ElyVxVpV1xO+j13szVu56evrGN7Y4CzhxXyjTP7U5qdRnOomVmVr/LOzrcJJ8IUpBUwuXgKk4onMyBrIIZQYSFSSqqW17LyuXU0bm7Bk+/mlC+PoP/0CoyoD975rorNzu4PFz0CFaelrHkHeAAVo/1d4GJ0CNPJQhNKSK9KLVtRoR8GSqCOAsYDk4ADRgUTMaj6GDa8ABtehFAzeAph9Ndh/Lf3COtQe5jl/13Lhre34MlJY+qtE+g1toRwIsxzm59l1vbXMDE5u3wGg7IG0yu9nHAizIK6eSyom097pJ0rBlzF5RVX8u7P5tKwoZkz7pxCv9JKePo8lerv+vfB7gY2oSZZBoDvAZegf2vHjhbYGs0XFCklkXffpfP3fyC+di3WAQPIuP8nOKceIofqMRCJJ1mwtZl31tQzb3MzppRM6JvLZePKmDIg74hFYQ7bZiLCxrYNrG5exZrmNVT6tmNikm5PZ3LxFKaWTGNY7vA9HsJ4JMHyZ9ew5tWNuDIcTL11Ir3HH8LLFwupm0nVfLjpx1DyNpCJ9tRoDocZCtH5xz8R+PvDCJeL9O/eif0rX+GJxXU8NX8HCVNy/shibpjWh9LsNILxIAvq5rOgbj6rm1aRkAkyHJmcUjCO8YXjGZU/GpfVhZSSmlX1LHlyFS3b28gqy2DcNSPpPbEMUTkbXv8GtFfCmJvg7F+DKwuoR+VEXgGMRnka9e/2xGIClSghvdtDXZda50TlrR6JEtXDUNUTD8BXpTzVW99SeaxjAbClwYCLYNhVMOBCsKgsSP76Tja8tYUNb20hmTAZet4Axl07CnuajbXNa/jjyodoCjVxWtnpXDP4Ohxksr0pwLaGToSAcX1yKMy08PDah5ld9R7Dc0dwx7DvsvDXK2nY2MwZ351Cv9xV8NyXoHwaXP0KODNQDw33AUtQMeJ3clAubs0h0QJboznOSClJbN1KfP16ko1NmE1NyGgUIzcXS04OltJS7ONOwfB6j95YF9kTeecdOn/3EPH167H0Lsf7nf9H2mWXIWy2ozewD/GEyeLtLby3roGPNzURiiXJ9tg5f2Qxl55S9qm81ZFEhIX1C/iweg5rm9eQkAmswsqA7IGMzBvFiNwRDMwehNXY65GWpmTLnEqWPLmKUHuYQTP6MfGGMTg89oMPEI+oimY7Z8OtN0HucmAMyiuY84nt1XyxiG/bjv/ee4nO/QijsADvbbcRvuhSnlxSxyvLa4glTIaXZTJjeCHTBxeQn+4kEOtkeeNyljQsZkXjcoKJIDbDxoi8kUwrmc7k4snYLQ52LKhi6dOr8dV2kN8/h3HXjaJ0cAZ8eB8s/B2k5cAZP4PRN4IhgNeAPwGdKE/2N4C8buydzzMhYCN7xfQaVL+Dum7sFtMjUaXMDxgxSyagaR3ULITqheq1bZtal1EO/c+D/udDxRlgd5OIJWne1krjxmZ2LK6maXMLwhD0P62CMVcOJ6PISzAe5OmNT/J65SyK3MXcPuYOwh2F/GPOdlbtaj/oDAoznZw7opjyikoeXf8wOc4c7hv7E5Y8uI7GTSmRnbEAXrkBcgfDNW9CRinqYeJZ4GHUKN9FqMmY+qHuSGiBrdEcB6SUxOYvIDTrdaJz5pCsrd270ulAOJ1In3/vd4aBbcRwHFOnknb5l7D16/oLlzRNIm+/Q+fvHyK+YQOW3r3x3v4d0i67FGE99jjoRNJk+c423l/bwIcbG+mMJEh32Th9SAFnDytkdO/sT+WtrgvU8sq2V/iw+gMiyQj5rnymlJzKyLxRDMkZitN6cB7g3fGsK55bS9suH/kDcpl041gKBx9GZCRiykNT8zZ86wLw1qBKEN+JnjSmOVaklMQWLKTjt78ltngJRl4eaVddSejCy3in3cp7a+vZ3hQAlKgZXprJ8DK1VOS72OLbyJKGxSyuX0RjqBG31c30stM4v+ICSt1lbJlTyfJn1hBoCVEyopDx148i31OtymBXzVOTIM/8ufJwCj8qnd/zqFCEi1CTc3V89qcngAqP2L1sRFXZ3K2JKtgrpkcBJYBQafSCzUo4t22F1q1737dshngqL7W7AMomQa+pSljnDiLsj9KwsYmGTc00bGymZXsbZsIEILt3Jv2nV9BvWm88uW6SZpJ3d73DfzY+hT/m58I+FzE2/RL+OaeKlTvbyfM6uHRcGUNKMuib7yGeNFm0rZX5W5qZv6WZXjlpXH+Wg6cqH8Rj83DfKfez/DcbadzUzJnfO5W+RVvgv18CRzrMfBT67Z6P0gb8E3gFiKHmApwGnJrqEx0+si9aYGs0XYiMRAi98gqBfz5KYuMmhNuNY+qpOE8/Hfu4U7AUFiLS0xFCIONxzLY2Elu3EV24kOiCBcSWr4BkEvspp5D25atwzZyJ4XJ9NptMk8ibb9Hx0EMkNm7CUlFB+h2347pk5icS1juaA7y4pJrZ6xtoD8ZIc1g4bVABZw0rZFyfHGxW41PZt7ltEy9tfZFF9QuxGBaml57Omb3OYkjOkD3xqgcSDcTYMqeS9W9uVhkZSjMYe9Vw+k4tP3zmkXgYXrgakh/ClSPAngTuQgkSjeaTI6UkOm8+wcceIzL7A/W/O24czrPOpHb0ZFaKTNbV+FlT7aO5IwqAw2YwpDiDYWWZDCtNx5Fex/z62Syom0/cjDMybyQX9ZnJyOzRbH5nOyufX0ekI0rviWWcctVwcsIfwPs/hPbtKl526j0waCYY9cATwOuogiXjUNkpTkMXqTkSPmAzSkRvRgnq6n3WF6A80oOBQcBwkBng2wUNq6BxtZok3bpVCelox95dhQUye0NOf8gZACUToGwSSXcZbVV+mre30ZgS1B31yhtuWA3y+uVQODiPwsF5FAzKw5Wh/n51gTo+rv2ID6s/oDZQy9CcYVxacT2vL0ry7tp6cr0Orj+1gouH52FpaMBsaCDZ0IBwubANHoSlvJylO9r5xWvraPRHuGiilXXJf2C32Ll3zE9Y+/stNG5qUZ7s/h3wwlXq3EZcC2c+kPJm7+6zWcBbwJbUdyWoEJJJwFjURM4vNlpgazRdgIxECP7nGTr//GfMxiasgwfjufnrpM2ciXAe+80t2dRE6KWXCD37HImtWxGZmbivvQb39ddjLSn+ZDZFo0rsP/wIic1bsPbti/f27+CaefExC+tE0mTelmZeWFzFsh1t2K0GUwfmcfbwIib1y8Vhsxy9kUOQlEmWNyzjpW0vsqF1PW6bm/MrLuDCPheR5cw+tC3RBNUr66mcv4udi6tJRJPkD8hlxMzBVEzaJ6fwoYj44bmLYNBOGJ+PSj/1U9SNU6P57CQbGwk99zzhWa8TX78eACM7G9uoUdhHjcQ3aASbsnux3pdkbbWfzfUdJE2JxRCM7p3FhAFpJN2rmVv3Nq2RVgrTCrmgz0VMzz+NbW9WseaVjcTDcUpGFjL8wr6UWedgfPxzFZ+d2RvG3aqEkNeKKpA0C5XWzwOcDUxDie4vsthuY69Herd3un6f9cXsL6YHQcwBzRuVkG5Yvfc1unsEUkBWhZqMmt0PcvpjZvYl7upNxFJENCwJtIQINAVpr/bTsr2Vtir/Hu+0M91BwaC8PYLa3ctFS6KZtkgbreFWGkMNVHdWU91ZRW1AjYQOyRnK1MLz2L69iJeW1WBKyVfGFHJFcAu89w7ROR8iw+GDzl6kpeGYPBlx3fU8HMzj1RW1jBmQpDPraZIywQ9H3sOOv9TTsKGZEZcMZvzVg7As/BXMewCkqWLDR1yrqkem774fNaByZ89DxWlHUaOBI4GJwOl8UWO2tcDWfCakaZKo3EGyrg7T50P61UXHyMxEZGRgKSzAWl7eJXmUT0ZkOEzwv/8l8Oe/kqyvxz5xAt477sBx6pRjyuF82HalJLZ4MYFHHyPy9jsAOKZPI+2Ky3HNmIE4jFdbSkli82bCb7xJ8MmnMJubsQ4aiPe2b+O6+GKE5dgEcXswxmvLa3hpWTWN/giFGU4uG1fGRWNKyXIfIq75GM+pNlDDnOoP+KBqNq2RVvJceczsdylnl8/AZd3/nBLRxB4PT+3qBuo3NJGMJXGmO6iY1IvB5/Qjr+8xxEy374TZl8D0BOQ5gS8Dt3HQLH6NpotINjURnfuRGpVavZrElq0qfACwlJRgGzkSOXIUleVDWWpk8VGln10tQYSAkeXpDOjTQK2cx1bfJhwWB5OLT2V6zmmwzMb6N7YQagvjyXMz8MxyBvfaiHvLI7DrIxAG9DkLBl+mQg8ymlBi+0NUejgHyrt4KiqbRTmf32H9JCqLxxr2xkzvK6bL2COi472hwwO+duioUWEdTevU0l7JntAQmxtZMIJE5lA6RT9ao+W0hUsJ+CDYFiLUFibsjxALxg9pkcNjJ7dvNrl9s8npk0W8MEKdrZpt/u3s8FdSF6zDH/Xtt49FWChyF1HqLaPI2R9PYigrtyX4cGMjAsH0bJNr1r9F5juzIB7HKCzANWMG9jFjsBQVYRQWIgOdxDduIr5uHeE33lT3hb59mXvVbfyxJZ3C3CiZfV/FF2vlzpHfQ75tZ/2bW8jrl83Er46hqCSEWPEPWPmYKoYE4CmCjF4qu4mnUH1Oz4O8OGQ2grsSjK2psxiAesg7my9S6JIW2JpPTHzLFsJvvEls8RJiq1cjOzqOvINhYOlVhrVPH6x9+mDr2xdr375Y+/bBKCg4ZiEqpUSGw8hwGGG3K9Fus30mIftpMdvbCTzxb4KP/QuztRX7uHGk/8/3sE+Z3OX2JKqrCf3nGUIvvEiyrg6RloZt+DBsQ4di698fGYthdnSQbGgkOncuyZoaABxnnIHn5ptwTD31mG1aX+PjxSXVvLeunnhSckqfbK4Y34spA/KwHslDDJjSJBAPEIoHCcVDdMQ6lBcm0sp23zY2tK7HF/VhYDCmYAxn9ZrB+KIJWLDQ2RykbWc7bVV+2na107bLh7+2AzNV2TGrLIPSUUWUjS2meHihKsxxLOx4Ddr+B8Z4IZkO1l+iqqRpNCcOMxgkvnYtsVWria9eTWzVapJVVXvWW/v2pX70ZBaUj+ZDM5uqzgQWQzCiX5T0gvXsjCwnnAiR68pjQt5EBjQOIbgoRu2qBgBy+2YzaEyCCtdcXNUvI3w7VMO5g6B4HJSOgd4ZkNMElkXsDYHIQ6WkHI/ybheeuE45LnSg8jd/nHpNTUKUORDuBT4PNJlQH4S2eiWm/dUQOWBCoLAgcwaQSB9E0NoHX7yURn8J9bUe2qs6iIX2CmiL3YIry4kzy44904bNa8XqtmBJs2BJMzDSDGyZFqLeMK2ihcZQI5UpQR1NqrAhp8VJoascJ3mIRBYikUki6iYWdRMJOwlGJM2dETrCKq+11yI5p2MrZ895ltyGKjUH4NJLcF18EbaRIxHG4a+PMhYj/PobBB59lPiq1WweNZVfT7yeqDVGn5Hv0hLbyYV9Lmaq/3SW/HM1YV+E/P459JteQUH/dLLtlVialiMaVkFHLTJQD531iHDrAX1oQK+BcEpfNWDo3v1wMwoVunQWqjrp5xctsDVHZY9X9PU3CL/xJoktW0AIbEOGYBs9GvvokVh798bIylLltKXE9PsxfT6SdfUktm9PLZUkKiuRkcietoXbjaW0BMObjvC4EQ4HMp6AeBwZiWAGOpGdAczOTmRnJ5jm/sbZbFhKirH26oW1vBzr4MFKeA4ehOF205WYPh+R92cTnvU6kblzIR7HccYZeL/9LewTJhx3oS9Nk9iChYTffpv42nXEN2xAhkJ71ov0dBwTJ+A880ycZ5xxzHmsmzsivLeugbfX1LGlvpM0u4XzR5XwpfFlVOQdIrUU0BJuYVPbRja1baTSV0lzuInWcCsJmThoWyNhocQspb9lIKWyF8VmKXQIgm1hAk0B2qv9xCN79/Pmu8kqzySnPIv8ATkUDMzDlfkJh7XjPqj8FpRtBKcFoueB6weoqmkaTfeTbGvbI7bjq1cTW71GZRgCdvUazMIJ5/Nxdn8ak1YMI06fPg2kZW2lJbmZhIyTZk1jmG0kFdX9MNY76KhUE+hcGQ76DgpRkbuWLHMNzo61iJAS4hhWFQvcuz/0zYTCOHjrwLI7G0YpSmiPQwnvQ4drnTxIYBdKUH+M8lQnIZEGDW7Y3gGbdkJ93X57Je3ZxG2FxKwFRMglZOYSjOfQEcmkI5iFr8NLZ2ucZHzv/cbuteEosmPmxwlk+Wn2NlDvqqNJNhCTsWO22G44ybSWYEsUEw3m0dKcRVOrCzVBVY0nuK3gMSQe4rgTMdyxEOn+Fip2rqPfrg2Utddiy8/DecYZuM47D8f0aZ9oPg2kskm9P5uOBx6gqbqRP19wO6szixg4bAU+6xKyndl8dcCNZG8qYP2sLfjrOvfsKwyB1W4hmTD3hLoYIoHL6ifN5sPjaKcwu5F87y5yLBuwmX5kpgMxdSwMdYLTj4rRnoES28P4PI6kaIGtOSQymSS+ajWR998n/OZbJLZtA8PAPmECrgsvwHXeuVgKCo7e0IHtmibJ+gYluCuV6E7W1yMDQSWmI1GE3Yaw2cFux0j3IjxejHQvhsejJgg6nchYDCIRzECAZE0NiaoqEjt27glRQQjlLR86BNuQIVh6lWEpKlKTDN1u5QG32ZApIS8jEeUdT72abW2YzS0km5qIb95CfMN6kjt3AWApLsZ10YWkXXE5tsGDj3C2xxdpmpiNjQinE+H1HvoCG4+omevxMBgWsHuIGS421HWytLKVpZWtrK32ISUMLk7nglElnDeyGLdz/7biyTgb2tazrGEZK5qWUd2pPGCuRBr9xQByIwV4Ixk4Qy5Ep4HsEJh+SdyfIB48WHRbnVbc2S48uW6yemWQXZ5JdnkmWWUZ2NM+XQiK6pROaP01ON8AjwFNHsj8PdhHf/o2NZoTgJSSZG0tsUWLiS5aRHThIhI7d7I1r4KVfU9hVZ/RbE3LQxoJnOm7yM6rx+qpIUIzAJmxLIa1jya3oQBRZSXWsvv/TpLu6aAsr5qC9F1k2mvwiCqc8RoEShzJfBcMKUf0y1Wi27p7374o7/YpqFSWJ8MDahxYyV5RrUbs6EhDbulArNoGtUGSOPHLvvjCRbT4c2kLFuGPFtIZyyUp97nGCLCkGVjSLBhpgAukK0nMHSWQ0UGbp4Uqx058lrY9u1hxYjNzSUS9xKMeohEXsZgFKa0gLRgYGMLAwEAgiCYgEXeRjKUjkw5A4JIJSuMdlHY2UdxaS3HddkpbqinoaMJmJvfaZxgYOTlYK3pjHTAQ28AB2MePxzZ0SJc4dWQySeiFF/H/8Y+87B3EM+Muw+FtIr//xwRFAy6ri9H5YxhgDIRqK2YLxKMJwuEwEcKECRGSIQIESJgJLAkL1riNjGAm7k4v9mYbOfZd9M5cxcCCJXhELbI8AzFtOFTEwUigXNwXAxcAWZ/5nE4Wuk1gCyHORVV1sAD/lFL+8oD1DuDfqICxVuAqKeXOI7WpBfanxwwEiK9fT3ztOmKrVhGd+xFmWxsYBo5Jk3BdeAHO887Fkrc3/VnCTKhwgEQYm2HDYXHgtDr3y098IpFSkqyrU+exbr16Xb+BZHX10Xc+HEJgKe+Fbegw7MOGYp88GfuY0YccgpNS4gvF6QzHiSZMookk0bh6jSVMDCFwWA3sVgOb1Ui9t5CZZiPd9RlDXQJN0LASs3YF8Z1LoXkTlnAd1qT/oE2T0oIvmU1LMp9WSx9imUPJ6zeB7L5jcGSk43DbSdjj7PLtZEfzTjZWb6KqugpLhw13yENhvJj0YCb4DOKd+4tnYQjSsly4s12kZafhznHhzknDnZ1GWnbqfY4L22c93/3PCMyVEHgEXCvABlTHwXIrFH+ji46h0Zx4kvX1RBcvJrZoMbF162jbvott6cVszevDlsJ+bCvoQ9BpYvPW4PDU4EqvQ9raQYA97CS9PYv8jiIywlm4wi7sQQdGpxUREFjMOOmORrKcdWQ668hy1pLnqSLDUQ9FaVDhxexXgCi1I6wSpACGgNjt3R7FiZkwKVEhLYuAxSCXggghkwKqEoj1NbDVT8JnUB8YQF3nIOo7B9OQLCPojRH0BAh6Ogi7A8ScMWKOKHF7jLhDvU/Y44d0ngppw0h4SEY9hMMZJKLZJCLZJCPZGDEX+bEAhcFWMjvbcAU7cEWCWKRJ0jBICgtJw8BMvTrjUdyxEO5YiIKOZkp9DeTYJdaCfCz5BRj5+VjycjHy8rDk56saCXm5GPn5aj7TMc6d+Uy9nEgQfm0W6//5H17MGMy8fqdgyaghL7sSM6OKhCV40J/FMN0k427i0TSScTdSWtTvRJhYbEFszg6slg4yWzPIrSukuLoX5eFW+mUtpH/uEtLS2pHD8mFSBSI3BtIKYiKqjPxUIP+4n/fxpFsEthDCgsrtcjbq8XMp8GUp5YZ9trkVGCGl/KYQ4mrgUinlVUdq9/MgsKWUSL+fZHMzps8PsRgyFkXGYshoTIVOxGPqmmOaauJMaomaksaYoC5upT5u0BqT+OLgTwiSSRNpSjCTeBIRvPEw6dEgHl8znqZ6vO1NeCMBvNEAnkwP9kmTsJ92GokJ49iR7KDSV0VtZw0NoVpaY/V0JppIEDnEGQicIoMsRy4FaYX0zerNwJwKemeUk59WcNi0a8cTMxAgWVenloYGZDiCjEYhHlcx3E4nwuXa79XIzsKSl4eRk7OfZzhpShr9EWrbQ9S2hahpC1HbHlbv20OEoskjWHJ47FaDbI+d4kwXJVlplGSnUZLl2vO6R4AnotC6BZo3EN+1gkTVciyta7Anmve01RHNpT1SQiCWQ2cyg4hhI2pYEMLEQRSXCJNh+Mi0tZLlrMFuUX9HUxq0R4ppDZfTGu5Fa6iclnAvosm9XivDZuDJdZNe4MFb4FGvhR68+W7cOWm4MpxHzubRJSSBGkguh/B7YF8F9jhEk7AlCuJqGPQDsOpJjJrPFzKRIFFZqRwI69YRW7+B6qYONptp7MoqoSqrhOqcfPy5JoarHYujA8PeicUWRBhRhCWKYYkhjCj2uBVH2IUj7MQZduHqdOPxp5PTYaMi3kKhcyf57u0UeLfjqjChjxdZkQklaQgLYFrAHASWsSD6A/1RkyY/WbGqg9mdg3oDmOvAXAVW5T2WPhOxrRW2+olvi9LQ3o/6wGCqw/3ZkpZOW76P9rwW2jIihCwOzJgXM+FCmjakaUcm93mVVqQ0wLRgJMEwwUgYWGIGzkiStEgcbzRITtBHdqidvEArBYFWSkSUPJcFW3YmRnY2RlY2RmbGnlFRdr/abHu/s9kQDjtGbh6WwgIseXkn7cR/aZrEV66i+q3ZvLrFzxZrFjVZhbRmuBFGEiESWBNJMn1x8gLt5AbayAx3kBHpxBMJIgXELTYiVgdN3lzqM3KpLXMRyunE7q0hgzYK6vLJrypiWGcn/dKX0id7Ce6iCHJMAQzLR3hToTnmQDAmobK6DAaK6EmhJN0lsCcB90kpz0l9vgtASvnAPtu8k9pmoRDCisoFkyePYNTJILClaUIyCYkEMplUIQednZiBgIol3h1T7PORbGrCbGkh2dyC2dykQhJaWyEWw0SQsFhIGFa1WCyEbC6CjjQCdjet7iyavTk0e3Jo8ubS7MmmPS0TuY+ANcwk6ZFO0qNBLEgEEmkxCDrsdDocRK0GGEkMSxRhjWBYw1hsAXVBtndgcbZjsXcgxN4uT8Y8JCNZmLEsHMKLy5qGTThJmAkSMkYkGSQm/Gp/hw+Lfe9Tr5BWXOSTYcsn15lPkbeAHFcm6Q4PGQ4vmS4vWS4vmU4PdosVIQSGUENsxyu+2TQlkXgytZhE40nC8SSdkThtgRgtnVEa/WFq2sLUtoeo94VJJPf2h80iKM7aK4ZLs9LIcNtwWC04bMpL7bBasFsNTAmxlDc7Fk8Si8eIRUIEAp10+Dvo6Oik3ddB0N+GPdxEHm3kyjZyaSdPtFBq1JFrNGKk/h5KEJfQGu5FQ7yYnfYstnvcNKQLIhk27Jnp5GXlUpqZRe+cHNJdNhJmgrgZJ5wIE4wECHYGcTTXktG6g9zOOorCDeRF6/Ak9076Sdhzkd5yRE4Fltw+iKze4M4HR4YqpevIUAUJLHZV1tew7l2O+neTIKNqIQoyBjICCT8km9QiW8BsAlENtkZwdoAl9TcIJWBbB/grIPt6GHi1FtaaLxwyHidZW0uiqopkVTXhXdU0tnZSH0jQEY7RkRAEpUEsKYmbEJMQsxlEXAZRh8pEF3dA2GXB73EQ8SZIT4bICkuyOuz09kkGRFoose+iIGsb2QN9GH08UOFF5rsQqUnHMgnJoAsZ96qJhaIAjGyEcCKEE4QTYViBEJgBzEQnUvqQognD0orh6MBw7h0Vk+1RRF0IdnQQ3RKnqaaM+sBgtskyNme4ac7ppMVr0m534vS7yGmUlNUGKfb7yTSSZIoE6RZwOG3YnXbsDjsOhw2b1cBmtWK1WzAsVgxHSghbrUoUO51qTlFWJkZmpnqfmalCFI8wgfDzhpQSs7WVZFU1nTurSLa04hAqtSQW4wDHlAvhcqrQy3AYGQxhdnaQrG8gWVtLU10LG/1JNgg3G/tm0FiexO5upLDdoLCmiJGtIQamrabUu46sXm0wMAM5ICv1QKfuI2bURjKUAzIPQTHCWoawFmFYMsHIBEsmGB7UQ97uxUJ3ifLuEtiXA+dKKW9Kfb4OmCClvG2fbdaltqlJfd6e2qblcO12l8BumDSFZH09JBJ7UjEdE1YrRm4Oltw8jLxcLLm53J45lW0yDfMYfhAWAwrcdgq9dorS7RSmOyjOcFCS6aQ4w0l2tgeL04mwWLj69SsIJ8JIjm6fTbhIM7JItxaSaS2k0F1MmbcXfTJLyfWkk5lmw2W3HFb0hmMJGnwR6n1hdrW1sa19J/XBGtridYRkI0mjHcPegTDMQ+5/KKQUqEpZqdcu4dj/VkKQEvqpowuBSH1/LH267yYjO5r40fZFHOugXzSRRjCeRXu0iGYzjzojixpHBrXubMK5Luz5GeTlFDEot4JRxX0oy8rA+BSVFPcj2KKKKDSsVB5z387UsgvMQ6egOiTComK/IfW/Ife+jsuF88uOrR1Tgi8KzRHwCYjlAUMh93wonw5pJ/tkLI3m5EGa5p6MTDIU2vsaUt/FfH4amvxqZC4QYacIUe+IELRJrEkruWGTAbFGShM+Cow2CgpbyCjvwFUSR2TZwWsDrx3SbXC0jD+xJPhj4IuBP0a8TRKusuHf6aXBV0KVkcd2VwY709wE7SZSJsgJWSiPOOlrdVOe7aasMBNXcSFGYSGWwgKM7OwvlBDuSchEgmRNDdHKSio317C8sYVVhp9aTwi7lGQGbfTyJxgQbaVMNpLvqiGrvB137yhGiQtyHJBhh3Q7HPN97lm6o6z7kQR2j6gbLIS4Bbgl9TEghNjcnfZ8Yqp2HvDFQ8e6Zy5w2IcNzSfihPbly8B9n2iPUGqpPdqGJwMH9GUytRyKptTyadgGLESV7f3cov/Huw7dl13HCezL1SfmMN2H/l12DUfpx/4nzJADKD/ciuMpsGtRWd53U8rB6mH3NjWpEJEM1GTH/ZBSPgI8cpzsPGkRQiw73JOR5pOh+7Lr0H3Zdei+7Dp0X3Ydui+7Dt2XXUNP7MfjOb6yFOgvhKgQQtiBq4HXDtjmNeCG1PvLgQ+OFH+t0Wg0Go1Go9Gc7Bw3D7aUMiGEuA14BxWB/piUcr0Q4n5gmZTyNeBR4EkhxDagDSXCNRqNRqPRaDSaHstxjcGWUr4JvHnAd/fu8z4CXHE8bejhfOHCYo4jui+7Dt2XXYfuy65D92XXofuy69B92TX0uH7scZUcNRqNRqPRaDSakxmd40aj0Wg0Go1Go+lCtMA+CRFCXCGEWC+EMIUQpxyw7i4hxDYhxGYhxDndZWNPRAgxSgixSAixSgixTAgxvrtt6skIIf6fEGJT6rf66+62p6cjhPieEEIKIXK725aeiBDiwdTvcY0Q4mUhRGZ329TTEEKcm7q3bBNC/LC77empCCHKhBBzhBAbUtfH27vbpp6OEMIihFgphHi9u205VrTAPjlZB1wGfLTvl0KIIaiJoEOBc4G/pkrSa46NXwM/kVKOAu5NfdZ8CoQQpwMzgZFSyqHAb7rZpB6NEKIMmAFUdbctPZj3gGFSyhHAFuCubranR5G6l/wFOA8YAnw5dc/RfHISwPeklEOAicC3dV9+Zm4HNna3EZ8ELbBPQqSUG6WUhyqmMxN4VkoZlVLuQFXi0F7YY0cC6an3GUBdN9rS0/kW8EspZRRASvlpq8loFL8Hvs8nKT2q2Q8p5btSyt01uBehai9ojp3xwDYpZaWUMoYqjTezm23qkUgp66WUK1LvO1HCsKR7req5CCFKgQvoYVXHtMDuWZQA1ft8rkH/034S7gAeFEJUozyu2sP16RkATBVCLBZCzBVCjOtug3oqQoiZQK2U8nNf0u4EciPwVncb0cPQ95fjgBCiNzAaWNzNpvRkHkI5IMxutuMT0SNKpX8eEUK8DxQeYtU9UspXT7Q9nxeO1K/AmcCdUsoXhRBXovKwn3Ui7etJHKUvrUA2avhzHPCcEKKPLhR1aI7Sl3ejwkM0R+FYrptCiHtQQ/RPn0jbNJoDEUJ4gBeBO6SUHd1tT09ECHEh0CSlXC6EOK2bzflEaIHdTUgpP42wO5by819ojtSvQoh/o+K4AJ6nhw03nWiO0pffAl5KCeolQggTyAWaT5R9PYnD9aUQYjhQAawWQoD6n14hhBgvpWw4gSb2CI523RRCfBW4EDhTP+x9YvT9pQsRQthQ4vppKeVL3W1PD2YKcLEQ4nzACaQLIZ6SUl7bzXYdFR0i0rN4DbhaCOEQQlQA/YEl3WxTT6IOmJ56fwawtRtt6em8ApwOIIQYANiBlu40qCcipVwrpcyXUvaWUvZGDcuP0eL6kyOEOBc1jHyxlDLU3fb0QJYC/YUQFUIIO2pC/WvdbFOPRKin5UeBjVLK33W3PT0ZKeVdUsrS1PXxauCDniCuQXuwT0qEEJcCfwLygDeEEKuklOekSs0/B2xADYF+W0qZ7E5bexg3A38QQliBCHBLN9vTk3kMeEwIsQ6IATdoj6Gmm/kz4ADeS40GLJJSfrN7Teo5SCkTQojbgHcAC/CYlHJ9N5vVU5kCXAesFUKsSn13d6q6teYLgq7kqNFoNBqNRqPRdCE6RESj0Wg0Go1Go+lCtMDWaDQajUaj0Wi6EC2wNRqNRqPRaDSaLkQLbI1Go9FoNBqNpgvRAluj0Wg0Go1Go+lCtMDWaDSa44QQIvAZ939BCNEn9f5NIURmlxh2bMfOFELcegKPZxdCfJRKo6nRaDQ9Gi2wNRqN5iRECDEUsEgpKwGklOdLKX0n6NhWIBM4YQJbShkDZgNXnahjajQazfFCC2yNRqM5zgjFg0KIdUKItUKIq1LfG0KIvwohNgkh3kt5qS9P7XYN8Oo+bewUQuQKIXqntn9cCLFFCPG0EOIsIcR8IcRWIcT41Pb3CSGeFEIsTH1/81FsOU0I8bEQ4jVUMatfAn2FEKtS23uEELOFECtS+81M7ddbCLFRCPEPIcR6IcS7QghXal0/IcT7QojVqf36pr7/XyHEUiHEGiHET/bpqldS563RaDQ9Gj0Up9FoNMefy4BRwEggF1gqhPgIVfGtNzAEyAc2oqpkklr3zGHa6wdcAdyIKnH9FeBU4GLgbuCS1HYjgImAG1gphHgDmHQYWwDGAMOklDuEEL1T70fBHq/2pVLKDiFELrAoJcYB+gNfllLenKo2+yXgKeBp4JdSypeFEE7AEELMSG0/HhDAa0KIaVLKj4B1wLhj61KNRqM5edECW6PRaI4/pwLPSCmTQKMQYi5KSJ4KPC+lNIEGIcScffYpApoP094OKeVaACHEemC2lFIKIdaiBPtuXpVShoFwqu3xR7ClA1gipdxxmGMK4BdCiGmACZQABfvYsyr1fjnQWwjhBUqklC8DSCkjKXtnADOAlantPSjB/ZGUMimEiAkhvFLKzsPYodFoNCc9WmBrNBrNyUkYcB5mXXSf9+Y+n032v67LA/Y78POBBI+w7hogDxgrpYwLIXbuY9++9iQB1xHaEcADUsqHD7PeAUSOYqdGo9Gc1OgYbI1Gozn+fAxcJYSwCCHygGnAEmA+8KVULHYBcNo++2xEhYJ8FmYKIZxCiJxU20uPYMuBdALefT5nAE0pcX06UH6kA6c80DVCiEsAhBAOIUQa8A5woxDCk/q+RAiRn3qfA7RIKeOf+ow1Go3mJEB7sDUajeb48zIq9nk1yov8fSllgxDiReBM1KTCamAF4E/t8wZKFL//GY67BpiDirX+qZSyTghxOFsG7bujlLI1NXFyHfAW8CtgVioMZRmw6RiOfx3wsBDifiAOXCGlfFcIMRhYKIQACADXAk3A6anz1mg0mh6NkPJoI4YajUajOV4IITxSykDKe7sEmJISvC6UOJ6Sipf+pO3eBwSklL/pWouPH0KIl4AfSim3dLctGo1G81nQHmyNRqPpXl5PFZCxo7zMDQBSyrAQ4seoyYRV3WjfCUEIYQde0eJao9F8HtAebI1Go9FoNBqNpgvRkxw1Go1Go9FoNJouRAtsjUaj0Wg0Go2mC9ECW6PRaDQajUaj6UK0wNZoNBqNRqPRaLoQLbA1Go1Go9FoNJouRAtsjUaj0Wg0Go2mC/n/cWKpbX92V90AAAAASUVORK5CYII=\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtgAAAFwCAYAAACCdAwbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAARL0lEQVR4nO3dX4hn9XnH8c/T3Qj51xjiNqSrEikmZgtakonJRUNMQxv1olJIQRMilcAi1ZBLvUouvGkuAiFEsywikpt40Uhiion0JrFgpI5gNBsxLEp1a8A1CSkkUFl9ejGTMp2OMz/HZ3Zn3NcLBvac852ZB+bL7Juzv/2d6u4AAAAz/uhMDwAAAG8kAhsAAAYJbAAAGCSwAQBgkMAGAIBBAhsAAAZtGdhVdVdVvVBVP3uV61VVX6+q41X1eFV9cH5MAADYGxa5g313kis3uX5VkotXPw4n+ebrHwsAAPamLQO7ux9M8utNllyT5Fu94uEk51bVe6YGBACAvWTiNdgHkzy35vjE6jkAADjr7B/4GrXBuQ2fv15Vh7PyMpK89a1v/dAll1wy8O0BAGDWo48++mJ3H9jO504E9okkF6w5Pj/J8xst7O6jSY4mydLSUi8vLw98ewAAmFVV/7Hdz514ich9Sa5ffTeRjyb5bXf/cuDrAgDAnrPlHeyq+naSK5KcV1Unknw5yZuSpLuPJLk/ydVJjif5fZIbdmpYAADY7bYM7O6+bovrneSmsYkAAGAP8yRHAAAYJLABAGCQwAYAgEECGwAABglsAAAYJLABAGCQwAYAgEECGwAABglsAAAYJLABAGCQwAYAgEECGwAABglsAAAYJLABAGCQwAYAgEECGwAABglsAAAYJLABAGCQwAYAgEECGwAABglsAAAYJLABAGCQwAYAgEECGwAABglsAAAYJLABAGCQwAYAgEECGwAABglsAAAYJLABAGCQwAYAgEECGwAABglsAAAYJLABAGCQwAYAgEECGwAABglsAAAYJLABAGCQwAYAgEECGwAABglsAAAYJLABAGCQwAYAgEECGwAABglsAAAYJLABAGCQwAYAgEECGwAABglsAAAYJLABAGCQwAYAgEECGwAABglsAAAYJLABAGCQwAYAgEECGwAABglsAAAYJLABAGDQQoFdVVdW1VNVdbyqbt3g+juq6vtV9dOqOlZVN8yPCgAAu9+WgV1V+5LcnuSqJIeSXFdVh9YtuynJz7v7siRXJPlqVZ0zPCsAAOx6i9zBvjzJ8e5+urtfSnJPkmvWrekkb6+qSvK2JL9Ocmp0UgAA2AMWCeyDSZ5bc3xi9dxa30jygSTPJ3kiyRe7+5X1X6iqDlfVclUtnzx5cpsjAwDA7rVIYNcG53rd8aeSPJbkT5P8RZJvVNUf/79P6j7a3UvdvXTgwIHXOCoAAOx+iwT2iSQXrDk+Pyt3qte6Icm9veJ4kmeSXDIzIgAA7B2LBPYjSS6uqotW/+PitUnuW7fm2SSfTJKqeneS9yd5enJQAADYC/ZvtaC7T1XVzUkeSLIvyV3dfayqbly9fiTJbUnurqonsvKSklu6+8UdnBsAAHalLQM7Sbr7/iT3rzt3ZM2fn0/yN7OjAQDA3uNJjgAAMEhgAwDAIIENAACDBDYAAAwS2AAAMEhgAwDAIIENAACDBDYAAAwS2AAAMEhgAwDAIIENAACDBDYAAAwS2AAAMEhgAwDAIIENAACDBDYAAAwS2AAAMEhgAwDAIIENAACDBDYAAAwS2AAAMEhgAwDAIIENAACDBDYAAAwS2AAAMEhgAwDAIIENAACDBDYAAAwS2AAAMEhgAwDAIIENAACDBDYAAAwS2AAAMEhgAwDAIIENAACDBDYAAAwS2AAAMEhgAwDAIIENAACDBDYAAAwS2AAAMEhgAwDAIIENAACDBDYAAAwS2AAAMEhgAwDAIIENAACDBDYAAAwS2AAAMEhgAwDAIIENAACDBDYAAAwS2AAAMEhgAwDAIIENAACDBDYAAAwS2AAAMGihwK6qK6vqqao6XlW3vsqaK6rqsao6VlU/nh0TAAD2hv1bLaiqfUluT/LXSU4keaSq7uvun69Zc26SO5Jc2d3PVtWf7NC8AACwqy1yB/vyJMe7++nufinJPUmuWbfmM0nu7e5nk6S7X5gdEwAA9oZFAvtgkufWHJ9YPbfW+5K8s6p+VFWPVtX1UwMCAMBesuVLRJLUBud6g6/zoSSfTPLmJD+pqoe7+xf/5wtVHU5yOEkuvPDC1z4tAADscovcwT6R5II1x+cneX6DNT/s7t9194tJHkxy2fov1N1Hu3upu5cOHDiw3ZkBAGDXWiSwH0lycVVdVFXnJLk2yX3r1nwvyceqan9VvSXJR5I8OTsqAADsflu+RKS7T1XVzUkeSLIvyV3dfayqbly9fqS7n6yqHyZ5PMkrSe7s7p/t5OAAALAbVff6l1OfHktLS728vHxGvjcAAGymqh7t7qXtfK4nOQIAwCCBDQAAgwQ2AAAMEtgAADBIYAMAwCCBDQAAgwQ2AAAMEtgAADBIYAMAwCCBDQAAgwQ2AAAMEtgAADBIYAMAwCCBDQAAgwQ2AAAMEtgAADBIYAMAwCCBDQAAgwQ2AAAMEtgAADBIYAMAwCCBDQAAgwQ2AAAMEtgAADBIYAMAwCCBDQAAgwQ2AAAMEtgAADBIYAMAwCCBDQAAgwQ2AAAMEtgAADBIYAMAwCCBDQAAgwQ2AAAMEtgAADBIYAMAwCCBDQAAgwQ2AAAMEtgAADBIYAMAwCCBDQAAgwQ2AAAMEtgAADBIYAMAwCCBDQAAgwQ2AAAMEtgAADBIYAMAwCCBDQAAgwQ2AAAMEtgAADBIYAMAwCCBDQAAgwQ2AAAMEtgAADBIYAMAwCCBDQAAgxYK7Kq6sqqeqqrjVXXrJus+XFUvV9Wn50YEAIC9Y8vArqp9SW5PclWSQ0muq6pDr7LuK0kemB4SAAD2ikXuYF+e5Hh3P93dLyW5J8k1G6z7QpLvJHlhcD4AANhTFgnsg0meW3N8YvXc/6qqg0n+LsmRudEAAGDvWSSwa4Nzve74a0lu6e6XN/1CVYerarmqlk+ePLngiAAAsHfsX2DNiSQXrDk+P8nz69YsJbmnqpLkvCRXV9Wp7v7u2kXdfTTJ0SRZWlpaH+kAALDnLRLYjyS5uKouSvKfSa5N8pm1C7r7oj/8uaruTvIv6+MaAADOBlsGdnefqqqbs/LuIPuS3NXdx6rqxtXrXncNAACrFrmDne6+P8n9685tGNbd/Q+vfywAANibPMkRAAAGCWwAABgksAEAYJDABgCAQQIbAAAGCWwAABgksAEAYJDABgCAQQIbAAAGCWwAABgksAEAYJDABgCAQQIbAAAGCWwAABgksAEAYJDABgCAQQIbAAAGCWwAABgksAEAYJDABgCAQQIbAAAGCWwAABgksAEAYJDABgCAQQIbAAAGCWwAABgksAEAYJDABgCAQQIbAAAGCWwAABgksAEAYJDABgCAQQIbAAAGCWwAABgksAEAYJDABgCAQQIbAAAGCWwAABgksAEAYJDABgCAQQIbAAAGCWwAABgksAEAYJDABgCAQQIbAAAGCWwAABgksAEAYJDABgCAQQIbAAAGCWwAABgksAEAYJDABgCAQQIbAAAGCWwAABgksAEAYJDABgCAQQIbAAAGCWwAABi0UGBX1ZVV9VRVHa+qWze4/tmqenz146Gqumx+VAAA2P22DOyq2pfk9iRXJTmU5LqqOrRu2TNJPt7dlya5LcnR6UEBAGAvWOQO9uVJjnf30939UpJ7klyzdkF3P9Tdv1k9fDjJ+bNjAgDA3rBIYB9M8tya4xOr517N55P8YKMLVXW4qparavnkyZOLTwkAAHvEIoFdG5zrDRdWfSIrgX3LRte7+2h3L3X30oEDBxafEgAA9oj9C6w5keSCNcfnJ3l+/aKqujTJnUmu6u5fzYwHAAB7yyJ3sB9JcnFVXVRV5yS5Nsl9axdU1YVJ7k3yue7+xfyYAACwN2x5B7u7T1XVzUkeSLIvyV3dfayqbly9fiTJl5K8K8kdVZUkp7p7aefGBgCA3am6N3w59Y5bWlrq5eXlM/K9AQBgM1X16HZvGHuSIwAADBLYAAAwSGADAMAggQ0AAIMENgAADBLYAAAwSGADAMAggQ0AAIMENgAADBLYAAAwSGADAMAggQ0AAIMENgAADBLYAAAwSGADAMAggQ0AAIMENgAADBLYAAAwSGADAMAggQ0AAIMENgAADBLYAAAwSGADAMAggQ0AAIMENgAADBLYAAAwSGADAMAggQ0AAIMENgAADBLYAAAwSGADAMAggQ0AAIMENgAADBLYAAAwSGADAMAggQ0AAIMENgAADBLYAAAwSGADAMAggQ0AAIMENgAADBLYAAAwSGADAMAggQ0AAIMENgAADBLYAAAwSGADAMAggQ0AAIMENgAADBLYAAAwSGADAMAggQ0AAIMENgAADBLYAAAwSGADAMAggQ0AAIMENgAADFoosKvqyqp6qqqOV9WtG1yvqvr66vXHq+qD86MCAMDut2VgV9W+JLcnuSrJoSTXVdWhdcuuSnLx6sfhJN8cnhMAAPaERe5gX57keHc/3d0vJbknyTXr1lyT5Fu94uEk51bVe4ZnBQCAXW+RwD6Y5Lk1xydWz73WNQAA8Ia3f4E1tcG53saaVNXhrLyEJEn+u6p+tsD35+x1XpIXz/QQ7Fr2B1uxR9iKPcJm3r/dT1wksE8kuWDN8flJnt/GmnT30SRHk6Sqlrt76TVNy1nFHmEz9gdbsUfYij3CZqpqebufu8hLRB5JcnFVXVRV5yS5Nsl969bcl+T61XcT+WiS33b3L7c7FAAA7FVb3sHu7lNVdXOSB5LsS3JXdx+rqhtXrx9Jcn+Sq5McT/L7JDfs3MgAALB7LfISkXT3/VmJ6LXnjqz5cye56TV+76OvcT1nH3uEzdgfbMUeYSv2CJvZ9v6olTYGAAAmeFQ6AAAM2vHA9ph1NrPA/vjs6r54vKoeqqrLzsScnDlb7ZE16z5cVS9X1adP53yceYvskaq6oqoeq6pjVfXj0z0jZ84Cf8+8o6q+X1U/Xd0f/h/ZWaSq7qqqF17traO326k7Gtges85mFtwfzyT5eHdfmuS2eL3cWWXBPfKHdV/Jyn/G5iyyyB6pqnOT3JHkb7v7z5P8/emekzNjwd8hNyX5eXdfluSKJF9dfdc0zg53J7lyk+vb6tSdvoPtMetsZsv90d0PdfdvVg8fzsp7rHP2WOR3SJJ8Icl3krxwOodjV1hkj3wmyb3d/WySdLd9cvZYZH90krdXVSV5W5JfJzl1esfkTOnuB7PyM3812+rUnQ5sj1lnM6/1Z//5JD/Y0YnYbbbcI1V1MMnfJTkSzkaL/B55X5J3VtWPqurRqrr+tE3HmbbI/vhGkg9k5QF5TyT5Yne/cnrGYw/YVqcu9DZ9r8PYY9Z5Q1r4Z19Vn8hKYP/ljk7EbrPIHvlaklu6++WVG1CcZRbZI/uTfCjJJ5O8OclPqurh7v7FTg/HGbfI/vhUkseS/FWSP0vyr1X1b939Xzs8G3vDtjp1pwN77DHrvCEt9LOvqkuT3Jnkqu7+1Wmajd1hkT2ylOSe1bg+L8nVVXWqu797WibkTFv075kXu/t3SX5XVQ8muSyJwH7jW2R/3JDkn1af6XG8qp5JckmSfz89I7LLbatTd/olIh6zzma23B9VdWGSe5N8zt2ms9KWe6S7L+ru93b3e5P8c5J/FNdnlUX+nvleko9V1f6qekuSjyR58jTPyZmxyP54Niv/upGqeneS9yd5+rROyW62rU7d0TvYHrPOZhbcH19K8q4kd6zeoTzV3UtnamZOrwX3CGexRfZIdz9ZVT9M8niSV5Lc2d0bviUXbywL/g65LcndVfVEVl4OcEt3v3jGhua0qqpvZ+XdY86rqhNJvpzkTcnr61RPcgQAgEGe5AgAAIMENgAADBLYAAAwSGADAMAggQ0AAIMENgAADBLYAAAwSGADAMCg/wFfAMmPXDgmbwAAAABJRU5ErkJggg==\n",
       "text/plain": [
        "<Figure size 720x360 with 1 Axes>"
       ]
@@ -389,23 +394,10 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 9,
+   "execution_count": null,
    "id": "c95c8a44",
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtgAAAFwCAYAAACCdAwbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAg7UlEQVR4nO3dfbRdd1kn8O9DmwtoQyhtvDYtbZqCOvHt1olXHRyHF8WKDqCigsrg4Bh1WhfMuFTQtRzUcQZfo8tWl1UQVMZXqEHEUawo1qVAC4fQQ7UwgVaSkhaVEGYMt8n9zR/3EPJyb3La7HP2ffl81jorZ//O3mc/d9/Tc7/d53eeXa21AAAA3XhE3wUAAMB6ImADAECHBGwAAOiQgA0AAB0SsAEAoEMCNgAAdOjCvgsYx6WXXtq2b9/edxkAAJA77rjjw621rSs9viYC9vbt23P77bf3XQYAAKSq7jnb46aIAABAhwRsAADo0MQDdlVdUFXvrKo3jJavrqq3VtX7qup3qmpm0jUAAMC0TOMM9ouS3HXS8k8k2dNae0KSf07y7VOoAQAApmKiAbuqrkjy1Ul+dbRcSZ6a5PdHq7w6ybMnWQMAAEzTpM9g/1yS70+yOFq+JMlHWmvHRssfTHL5chtW1e6qur2qbn/ggQcmXCYAAHRjYgG7qr4myf2ttTsezvattZtba7taa7u2bl2xzSAAAKwqk+yD/aQkz6yqZyR5VJLHJPn5JI+tqgtHZ7GvSHJggjUAAMBUTewMdmvtpa21K1pr25M8N8mft9a+JcmbkzxntNoLkuydVA0AADBtffTB/oEk/7Wq3pelOdmv6KEGAACYiKlcKr219hdJ/mJ0f3+S+WnsFwAAps2VHAEAoENTOYMNsNEsLCxkMBgs+9jc3FxmZlzEFmC9ErABJmAwGOSGm/Zmy7Ydp4wfPrg/N16fzM+bKQewXgnYABOyZduOXHL1zr7LAGDKzMEGAIAOCdgAANAhARsAADokYAMAQIcEbAAA6JAuIgBr2Er9tvXaBuiPgA2whi3Xb1uvbYB+CdgAa5x+2wCriznYAADQIQEbAAA6JGADAECHBGwAAOiQgA0AAB3SRQSgZ8v1sn7wwQeTJJs2bTplXH9rgNVPwAbo2XK9rA/suy0XXvS4zO74ZPs9/a0B1gYBG2AVOL2X9eGD+7Npy6z+1gBrkDnYAADQIQEbAAA6JGADAECHBGwAAOiQgA0AAB0SsAEAoEMCNgAAdEjABgCADgnYAADQIQEbAAA6NLGAXVWPqqq3VdW7qmpYVT8yGn9VVb2/qgaj29ykagAAgGm7cILP/fEkT22tfayqNiW5rar+ePTY97XWfn+C+wYAgF5MLGC31lqSj40WN41ubVL7AwCA1WCSZ7BTVRckuSPJE5Lc1Fp7a1V9d5Ifr6ofTnJrkpe01j4+yToA1oPF48cyHA5PGRsOh1k6nwHAajHRgN1aO55krqoem+SWqvqcJC9N8qEkM0luTvIDSX709G2raneS3Uly5ZVXTrJMgDXhyKF7s+eeo5m9e/HE2IF9t+Xia67tsSoATjeVLiKttY8keXOS61pr97UlH0/ya0nmV9jm5tbartbarq1bt06jTIBVb/PsVbnk6p0nbhdduq3vkgA4zSS7iGwdnblOVT06yVck+buqumw0VkmeneTOSdUAAADTNskpIpclefVoHvYjkvxua+0NVfXnVbU1SSUZJPmuCdYAAABTNckuIvuSnDExsLX21EntEwAA+uZKjgAA0CEBGwAAOjTRNn0A683CwkIGg8EZ43Nzc5mZmZl+QQCsOgI2wEMwGAxyw017s2XbjhNjhw/uz43XJ/Pzy3YdBWCDEbABHqIt23bkkqt39l0GAKuUOdgAANAhARsAADokYAMAQIcEbAAA6JCADQAAHdJFBOA8LR4/luFweMrYcDhMa62nigDok4ANcJ6OHLo3e+45mtm7F0+MHdh3Wy6+5toeqwKgLwI2QAc2z151Sm/swwf391gNAH0yBxsAADokYAMAQIcEbAAA6JCADQAAHfIlR4Ap0tIPYP0TsAGmSEs/gPVPwAaYMi39ANY3c7ABAKBDAjYAAHRIwAYAgA4J2AAA0CEBGwAAOiRgAwBAhwRsAADokIANAAAdErABAKBDAjYAAHRIwAYAgA5NLGBX1aOq6m1V9a6qGlbVj4zGr66qt1bV+6rqd6pqZlI1AADAtE3yDPbHkzy1tfb5SeaSXFdVX5zkJ5Lsaa09Ick/J/n2CdYAAABTdeGknri11pJ8bLS4aXRrSZ6a5JtH469O8rIkvzSpOgA2msXjxzIcDs8Yn5uby8yMDw0BJm1iATtJquqCJHckeUKSm5L8nyQfaa0dG63ywSSXr7Dt7iS7k+TKK6+cZJkA68qRQ/dmzz1HM3v34omxwwf358brk/n5+R4rA9gYJhqwW2vHk8xV1WOT3JLksx7CtjcnuTlJdu3a1SZSIMA6tXn2qlxy9c6+ywDYkKbSRaS19pEkb07yJUkeW1WfCPZXJDkwjRoAAGAaJtlFZOvozHWq6tFJviLJXVkK2s8ZrfaCJHsnVQMAAEzbJKeIXJbk1aN52I9I8ruttTdU1XuS/HZV/fck70zyignWAAAAUzXJLiL7kly7zPj+JL5lAwDAuuRKjgAA0CEBGwAAOiRgAwBAhwRsAADokIANAAAdErABAKBDAjYAAHRIwAYAgA4J2AAA0CEBGwAAOiRgAwBAhwRsAADokIANAAAdErABAKBDAjYAAHRIwAYAgA4J2AAA0KEL+y4AYNoWFhYyGAzOGJ+bm8vMzMz0CwJgXRGwgQ1nMBjkhpv2Zsu2HSfGDh/cnxuvT+bn53usDID1QMAGNqQt23bkkqt39l0GAOuQOdgAANAhARsAADokYAMAQIcEbAAA6JCADQAAHRKwAQCgQwI2AAB0SMAGAIAOCdgAANAhARsAADo0sYBdVY+vqjdX1XuqalhVLxqNv6yqDlTVYHR7xqRqAACAabtwgs99LMn3ttbeUVWbk9xRVW8aPbantfbTE9w3AAD0YmIBu7V2X5L7RvePVNVdSS6f1P4AAGA1mOQZ7BOqanuSa5O8NcmTktxQVf8hye1ZOsv9z9OoA4BTLSwsZDAYnDE+NzeXmZmZ6RcEsA5MPGBX1UVJXpvkxa21j1bVLyX5sSRt9O/PJHnhMtvtTrI7Sa688spJlwmwIQ0Gg9xw095s2bbjxNjhg/tz4/XJ/Px8j5UBrF0TDdhVtSlL4fo1rbXXJUlr7dBJj/9Kkjcst21r7eYkNyfJrl272iTrBNjItmzbkUuu3tl3GQDrxiS7iFSSVyS5q7X2syeNX3bSal+b5M5J1QAAANM2yTPYT0ry/CTvrqrBaOwHkzyvquayNEXkA0m+c4I1AADAVE2yi8htSWqZh944qX0CAEDfXMkRAAA6NJU2fQCsHYvHj2U4HJ4y9uCDDyZJNm3adMq4dn4AZxKwATjFkUP3Zs89RzN79+KJsQP7bsuFFz0uszs+2W1EOz+A5QnYAJxh8+xVp7TuO3xwfzZtmdXOD2AM5mADAECHBGwAAOiQgA0AAB0SsAEAoEMCNgAAdEgXEYAVLCwsZDAYnDI2HA7TWuunIADWBAEbYAWDwSA33LQ3W7btODF2YN9tufiaa3usCoDVTsAGOIst23ac0Q8aAM7GHGwAAOiQgA0AAB0SsAEAoEMCNgAAdEjABgCADukiArABLB4/luFweMa4vt4A3ROwATaAI4fuzZ57jmb27sVTxvX1BujeWAG7qm5trT3tXGMArF6bZ686pad3oq83wCScNWBX1aOSfEqSS6vq4iQ1eugxSS6fcG0AALDmnOsM9ncmeXGSbUnuyCcD9keT3Di5sgAAYG06a8Burf18kp+vqu9prf3ClGoCAIA1a6w52K21X6iqf5Nk+8nbtNZ+fUJ1AQDAmjTulxx/I8k1SQZJjo+GWxIBGwAATjJum75dSXY2zVIBAOCsxr2S451JPn2ShQAAwHow7hnsS5O8p6reluTjnxhsrT1zIlUBAMAaNW7AftkkiwAAgPVi3C4ifznpQgAAYD0Yaw52VR2pqo+Obker6nhVffQc2zy+qt5cVe+pqmFVvWg0/riqelNVvXf078Vd/CAAALAajBWwW2ubW2uPaa09Jsmjk3x9kl88x2bHknxva21nki9Ocn1V7UzykiS3ttaemOTW0TIAAKwL43YROaEt+YMkX3mO9e5rrb1jdP9IkruSXJ7kWUlePVrt1Ume/VBrAACA1WrcC8183UmLj8hSX+yj4+6kqrYnuTbJW5PMttbuGz30oSSz4z4PAKvH4vFjGQ6HZ4zPzc1lZmamh4oAVodxu4j8+5PuH0vygSydiT6nqrooyWuTvLi19tGqOvFYa61V1bIXr6mq3Ul2J8mVV145ZpkATMuRQ/dmzz1HM3v34omxwwf358brk/n5+R4rA+jXuF1E/uPDefKq2pSlcP2a1trrRsOHquqy1tp9VXVZkvtX2OfNSW5Okl27drmCJMAqtHn2qlxy9c6+ywBYVcbtInJFVd1SVfePbq+tqivOsU0leUWSu1prP3vSQ69P8oLR/Rck2ftwCgcAgNVo3C85/lqWgvG20e0PR2Nn86Qkz0/y1KoajG7PSPLyJF9RVe9N8uWjZQAAWBfGnYO9tbV2cqB+VVW9+GwbtNZuS1IrPPy0MfcLAABryrhnsP+xqr61qi4Y3b41yT9OsjAAAFiLxg3YL0zyjVlqq3dfkuck+bYJ1QQAAGvWuFNEfjTJC1pr/5wsXe48yU9nKXgDAAAj457B/rxPhOskaa39U5YuHAMAAJxk3ID9iKq6+BMLozPY4579BgCADWPckPwzSf6mqn5vtPwNSX58MiUBAMDaNe6VHH+9qm5P8tTR0Ne11t4zubIAAGBtGnuaxyhQC9UAAHAW487BBgAAxiBgAwBAhwRsAADokIANAAAdErABAKBDAjYAAHRIwAYAgA4J2AAA0CEBGwAAOiRgAwBAh8a+VDrAerZ4/FiGw+EpY8PhMK21nioCYK0SsAGSHDl0b/bcczSzdy+eGDuw77ZcfM21PVYFwFokYAOMbJ69KpdcvfPE8uGD+3usBoC1yhxsAADokIANAAAdErABAKBDAjYAAHRIwAYAgA7pIgKsOQsLCxkMBmeMz83NZWZm5pzr6m8NwCQJ2MCaMxgMcsNNe7Nl244TY4cP7s+N1yfz8/PnXFd/awAmScAG1qQt23ac0rP6oayrvzUAk2QONgAAdEjABgCADk0sYFfVK6vq/qq686Sxl1XVgaoajG7PmNT+AQCgD5M8g/2qJNctM76ntTY3ur1xgvsHAICpm1jAbq29Jck/Ter5AQBgNepjDvYNVbVvNIXk4pVWqqrdVXV7Vd3+wAMPTLM+AAB42KYdsH8pyTVJ5pLcl+RnVlqxtXZza21Xa23X1q1bp1QeAACcn6kG7Nbaodba8dbaYpJfSTJ/rm0AAGAtmWrArqrLTlr82iR3rrQuAACsRRO7kmNV/VaSJye5tKo+mOS/JXlyVc0laUk+kOQ7J7V/AADow8QCdmvtecsMv2JS+wMAgNXAlRwBAKBDAjYAAHRIwAYAgA4J2AAA0CEBGwAAOiRgAwBAhwRsAADokIANAAAdErABAKBDE7uSI8A0LR4/luFweMb4cDhMa62HigDYqARsYF04cuje7LnnaGbvXjxl/MC+23LxNdf2VBUAG5GADawbm2evyiVX7zxl7PDB/T1VA8BGZQ42AAB0SMAGAIAOCdgAANAhARsAADokYAMAQId0EQFWtYWFhQwGg1PG9LYGYDUTsIFVbTAY5Iab9mbLth0nxvS2BmA1E7CBVW/Lth2n9LfW2xqA1cwcbAAA6JCADQAAHRKwAQCgQwI2AAB0SMAGAIAO6SICQGcWjx/LcDg8Y3xubi4zMzM9VAQwfQI2AJ05cuje7LnnaGbvXjwxdvjg/tx4fTI/P99jZQDTI2AD0KnNs1ed0rccYKMxBxsAADokYAMAQIcmFrCr6pVVdX9V3XnS2OOq6k1V9d7RvxdPav8AANCHSZ7BflWS604be0mSW1trT0xy62gZAADWjYkF7NbaW5L802nDz0ry6tH9Vyd59qT2DwAAfZh2F5HZ1tp9o/sfSjI75f0DMGV6YwMbTW9t+lprraraSo9X1e4ku5PkyiuvnFpdAHRLb2xgo5l2wD5UVZe11u6rqsuS3L/Siq21m5PcnCS7du1aMYgDsPrpjQ1sJNNu0/f6JC8Y3X9Bkr1T3j8AAEzUJNv0/VaSv0nymVX1war69iQvT/IVVfXeJF8+WgYAgHVjYlNEWmvPW+Ghp01qnwAA0DdXcgQAgA4J2AAA0KHe2vQBG9vCwkIGg8EZ43ojA7DWCdhALwaDQW64aW+2bNtxYkxvZADWAwEb6M2WbTv0RgZg3TEHGwAAOiRgAwBAhwRsAADokIANAAAdErABAKBDuogAq8bi8WMZDoenjA2Hw7TWeqqISVnud50kDz74YJJk06ZNp4zrjw6sJQI2sGocOXRv9txzNLN3L54YO7Dvtlx8zbU9VsUkLPe7TpZ+3xde9LjM7vhk+0b90YG1RsAGVpXNs1ed0hv78MH9PVbDJJ3+u06Wft+btszqjw6saeZgAwBAhwRsAADokIANAAAdErABAKBDAjYAAHRIFxEA1oWFhYUMBoMzxvXQBqZNwAZgXRgMBrnhpr3Zsm3HiTE9tIE+CNgArBtbtu3QQxvonTnYAADQIQEbAAA6JGADAECHBGwAAOiQLzkCE7dc+7ThcJjWWj8FsaYsHj+W4XB4xrj2e8BqJWADE7dc+7QD+27Lxddc22NVrBVHDt2bPfcczezdiyfGtN8DVjMBG5iK09unHT64v8dqWGs2z16l/R6wZpiDDQAAHRKwAQCgQwI2AAB0qJc52FX1gSRHkhxPcqy1tquPOgAAoGt9fsnxKa21D/e4fwAA6JwpIgAA0KG+AnZL8qdVdUdV7V5uharaXVW3V9XtDzzwwJTLAwCAh6evgP2lrbUvSPJVSa6vqi87fYXW2s2ttV2ttV1bt26dfoUAAPAw9BKwW2sHRv/en+SWJC7FBQDAujD1gF1Vn1pVmz9xP8nTk9w57ToAAGAS+ugiMpvklqr6xP7/V2vtf/dQBwAAdG7qAbu1tj/J5097vwAAMA3a9AEAQIf6vNAMAABrwMLCQgaDwRnjc3NzmZmZmX5Bq5yADQDAWQ0Gg9xw095s2bbjxNjhg/tz4/XJ/LxmcKcTsAEAOKct23bkkqt39l3GmmAONgAAdEjABgCADgnYAADQIQEbAAA6JGADAECHdBGBDWK5HqYPPvhgkmTTpk2njJ/e11T/U1abxePHMhwOTxkbDodprZ1zvWT5167XOdAVARs2iOV6mB7Yd1suvOhxmd3xybZLy/U11f+U1ebIoXuz556jmb178cTYgX235eJrrj3neiu9dr3Oga4I2LCBnN7D9PDB/dm0ZXasvqb6n7LabJ696ozX8zjrnY3XOdAFc7ABAKBDAjYAAHRIwAYAgA4J2AAA0CEBGwAAOqSLCKwRK/XoHbeX9bjG7S8Ma9VKvbHPp4/2uD209dpmLbwGlqvR34GHRsCGNWK5Hr3J+L2sxzVuf2FYq5Z7jSfn10d73B7aem2zFl4DK103wd+B8QnYsIYs16P3ofSyHte4/YVhrVquN/b59tEet4e2XtushdfActdNYHzmYAMAQIcEbAAA6JCADQAAHRKwAQCgQwI2AAB0SBeRs5hWr8q10BOzT+dzfPo8tuu9L+5K/YGX68utfyob0fn2lJ/Ge8haff85X5M4ZuNufz6W2/dK10IY9xoJq63n9UP5GVfz61TAPotp9apcCz0x+3Q+x6fPY7ve++KerZfw6X259U9lIzrfnvLTeA9Zq+8/56vrY/ZQtj8fK/WnPv09d6XxcV8/fb5nj/szrvbXqYB9DtPqVbkWemL26XyOT5/Hdr33xV2pl/Dpfbn1T2WjOt+e8tN4D1mr7z/na60es+X6Uy93LYSHco2E1dbzetyfcTUzBxsAADokYAMAQId6CdhVdV1V/X1Vva+qXtJHDQAAMAlTD9hVdUGSm5J8VZKdSZ5XVWtnUg0AAJxFH2ew55O8r7W2v7W2kOS3kzyrhzoAAKBzfXQRuTzJP5y0/MEkX9RDHWM5/Zu0hw/uz3DY7f+XDIfDqexnrTqf49PnsR133+ezXpJ87MMHc+HRo/nHT/3Uh7z9ctuez9gknlM96llt++76v6+V3pO6fg9Zzkb9+9P1MTvf7c9n24fyep7Wa/d8jFvP0jqf2+m+u1TTbiReVc9Jcl1r7T+Nlp+f5Itaazectt7uJLtHi5+Z5O/PY7eXJvnweWzPw+O498ex74fj3h/Hvh+Oe38c+3584rhf1VrbutJKfZzBPpDk8SctXzEaO0Vr7eYkN3exw6q6vbW2q4vnYnyOe38c+3447v1x7PvhuPfHse/HuMe9j8+A3p7kiVV1dVXNJHluktf3UAcAAHRu6mewW2vHquqGJH+S5IIkr2ytDaddBwAATEIvl0pvrb0xyRunuMtOpprwkDnu/XHs++G498ex74fj3h/Hvh9jHfepf8kRAADWs/XdhwcAAKZsXQfsqvqGqhpW1WJV7TrtsZeOLtX+91X1lX3VuN5V1VxV/W1VDarq9qqa77umjaSqvqeq/m7038FP9l3PRlJV31tVraou7buWjaCqfmr0Wt9XVbdU1WP7rmm9q6rrRn9D31dVL+m7no2gqh5fVW+uqveM3tdf1HdNG0lVXVBV76yqN5xr3XUdsJPcmeTrkrzl5MHRpdmfm+Szk1yX5BdHl3Cnez+Z5Edaa3NJfni0zBRU1VOydJXUz2+tfXaSn+65pA2jqh6f5OlJ7u27lg3kTUk+p7X2eUnuTvLSnutZ10Z/M29K8lVJdiZ53uhvK5N1LMn3ttZ2JvniJNc77lP1oiR3jbPiug7YrbW7WmvLXaDmWUl+u7X28dba+5O8L0uXcKd7LcljRve3JDnYYy0bzXcneXlr7eNJ0lq7v+d6NpI9Sb4/S69/pqC19qettWOjxb/N0jUWmJz5JO9rre1vrS0k+e0s/W1lglpr97XW3jG6fyRLYe/yfqvaGKrqiiRfneRXx1l/XQfss1jucu1eoJPx4iQ/VVX/kKUzqM4qTc9nJPm3VfXWqvrLqvrCvgvaCKrqWUkOtNbe1XctG9gLk/xx30Wsc/6O9qyqtie5Nslbey5lo/i5LJ04WRxn5V7a9HWpqv4syacv89APtdb2Truejehsv4MkT0vyX1prr62qb0zyiiRfPs361rNzHPsLkzwuSx8jfmGS362qHU3roPN2juP+g1maHkLHxnm/r6ofytLH6K+ZZm0wTVV1UZLXJnlxa+2jfdez3lXV1yS5v7V2R1U9eZxt1nzAbq09nLA21uXaGc/ZfgdV9etZmrOUJL+XMT9aYTznOPbfneR1o0D9tqpaTHJpkgemVd96tdJxr6rPTXJ1kndVVbL03vKOqppvrX1oiiWuS+d6v6+qb0vyNUme5n8kJ87f0Z5U1aYshevXtNZe13c9G8STkjyzqp6R5FFJHlNVv9la+9aVNtioU0Ren+S5VfXIqro6yROTvK3nmtarg0n+3ej+U5O8t8daNpo/SPKUJKmqz0gyk+TDfRa03rXW3t1a+7TW2vbW2vYsfWz+BcL15FXVdVn6+PaZrbX/13c9G8Dbkzyxqq6uqpksNQ54fc81rXu19H/ur0hyV2vtZ/uuZ6Norb20tXbF6H39uUn+/GzhOlkHZ7DPpqq+NskvJNma5I+qatBa+8rW2rCqfjfJe7L0UeL1rbXjfda6jn1Hkp+vqguTHE2yu+d6NpJXJnllVd2ZZCHJC5zVYx27Mckjk7xp9OnB37bWvqvfktav1tqxqrohyZ8kuSDJK1trw57L2gielOT5Sd5dVYPR2A+OrpDNKuJKjgAA0KGNOkUEAAAmQsAGAIAOCdgAANAhARsAADokYAMAQIcEbICOVdXHznP736+qHaP7b6yqx3ZS2Hj7fmxV/ecp7m+mqt4yauUJsC4I2ACrSFV9dpILWmv7k6S19ozW2kemtO8Lkzw2ydQCdmttIcmtSb5pWvsEmDQBG2BCaslPVdWdVfXuqvqm0fgjquoXq+rvqupNo7PUzxlt9i1J9p70HB+oqkuravto/VdV1d1V9Zqq+vKq+uuqem9VzY/Wf1lV/UZV/c1o/DvOUcuTq+qvqur1Wbr41suTXFNVg9H6F1XVrVX1jtF2zxptt72q7qqqX6mqYVX9aVU9evTYE6rqz6rqXaPtrhmNf19Vvb2q9lXVj5x0qP5g9HMDrAs+kgOYnK9LMpfk85NcmuTtVfWWLF2NbXuSnUk+LcldWbryZkaP/dYKz/eEJN+Q5IVZulT1Nyf50iTPTPKDSZ49Wu/zknxxkk9N8s6q+qMkX7JCLUnyBUk+p7X2/qraPro/l5w4q/21rbWPVtWlSf52FMaT5IlJntda+47R1XG/PslvJnlNkpe31m6pqkcleURVPX20/nySSvL6qvqy1tpbktyZ5AvHO6QAq5+ADTA5X5rkt1prx5Mcqqq/zFKQ/NIkv9daW0zyoap680nbXJbkgRWe7/2ttXcnSVUNk9zaWmtV9e4sBfZP2Nta+5ck/zJ67vmz1PLRJG9rrb1/hX1Wkv9RVV+WZDHJ5UlmT6pnMLp/R5LtVbU5yeWttVuSpLV2dFTv05M8Pck7R+tflKXA/ZbW2vGqWqiqza21IyvUAbBmCNgAq8u/JHnUCo99/KT7iyctL+bU9/N22nanL5/u/57lsW9JsjXJv26tPVhVHzipvpPrOZ7k0Wd5nkryP1trv7zC449McvQcdQKsCeZgA0zOXyX5pqq6oKq2JvmyJG9L8tdJvn40F3s2yZNP2uauLE0FOR/PqqpHVdUlo+d++1lqOd2RJJtPWt6S5P5RuH5KkqvOtuPRGegPVtWzk6SqHllVn5LkT5K8sKouGo1fXlWfNrp/SZIPt9YefNg/McAq4gw2wOTckqW5z+/K0lnk72+tfaiqXpvkaVn6UuE/JHlHksOjbf4oS6H4z85jv/uSvDlLc61/rLV2sKpWquWzTt6wtfaPoy9O3pnkj5P8RJI/HE1DuT3J342x/+cn+eWq+tEkDyb5htban1bVv0ryN1WVJB9L8q1J7k/ylNHPDbAuVGvn+uQQgK5V1UWttY+Nzt6+LcmTRoH30VkKx08azZd+qM/7siQfa639dLcVT05VvS7JS1prd/ddC0AXnMEG6McbRheQmcnSWeYPJUlr7V+q6r9l6cuE9/ZY31RU1UySPxCugfXEGWwAAOiQLzkCAECHBGwAAOiQgA0AAB0SsAEAoEMCNgAAdEjABgCADv1/dBDFDoLpe+8AAAAASUVORK5CYII=\n",
-      "text/plain": [
-       "<Figure size 720x360 with 1 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    }
-   ],
+   "outputs": [],
    "source": [
     "fig, ax2 = plt.subplots(figsize=(10, 5), layout='constrained')\n",
     "fdrCalc.plot_log_hist(ax2, split_count=2)\n",
@@ -422,35 +414,10 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 10,
+   "execution_count": null,
    "id": "771a23e0",
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "(           variant_id  logImportance        pvalue  is_significant\n",
-       " 0     22_17705196_C_G      -9.685114  1.000000e+00           False\n",
-       " 1     22_17685358_C_T      -9.134216  1.000000e+00           False\n",
-       " 2    22_17774329_TC_T      -7.530889  9.999952e-01           False\n",
-       " 3     22_17763349_T_A      -7.214255  9.999780e-01           False\n",
-       " 4     22_17691887_C_T      -6.603883  9.996942e-01           False\n",
-       " ..                ...            ...           ...             ...\n",
-       " 682   22_16052838_T_A       2.698982  0.000000e+00            True\n",
-       " 683   22_16053509_A_G       2.703196  2.220446e-16            True\n",
-       " 684   22_16051480_T_C       2.732347  2.220446e-16            True\n",
-       " 685   22_16050678_C_T       3.224218  1.110223e-16            True\n",
-       " 686   22_16050408_T_C       3.387460  1.110223e-16            True\n",
-       " \n",
-       " [687 rows x 4 columns],\n",
-       " 0.000997620934933333)"
-      ]
-     },
-     "execution_count": 10,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
+   "outputs": [],
    "source": [
     "pvalsDF, fdr = fdrCalc.compute_fdr(countThreshold = 2, local_fdr_cutoff = 0.05)\n",
     "pvalsDF, fdr"
@@ -466,23 +433,10 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 11,
+   "execution_count": null,
    "id": "c854b79d",
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtgAAAFwCAYAAACCdAwbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB4gklEQVR4nO3deXiU1fXA8e/JRkISCPsSlgAGZE2AJGyCCCIoCnXXulel2mq1tlhtrVuXn1sXrUvFXYt1wQUqKIqCiCKrARKQRQiYsCaBJISEbPf3x52EEBLIMjPvzOR8nmeemXnnnXcOw2TmzJ1zzxVjDEoppZRSSin3CHI6AKWUUkoppQKJJthKKaWUUkq5kSbYSimllFJKuZEm2EoppZRSSrmRJthKKaWUUkq5kSbYSimllFJKuVGI0wE0VVBQkImIiHA6DKWUat7Ki+15cLizcSilAsKRI0eMMcZvB4L9PsGOiIigsLDQ6TCUUqp5WzTenp+9xMkolFIBQkSKnI6hKfz2m4FSSimllFK+SBNspZRSSiml3EgTbKWUUkoppdzI72uwlVJKKeWc0tJSMjMzKS4udjoU5YfCw8Pp1q0boaGhTofiVppgK6WUUqrRMjMziY6OJi4uDhFxOhzlR4wx5OTkkJmZSa9evZwOx620REQppZRSjVZcXEy7du00uVYNJiK0a9cuIH/90ARbKaWUUk2iybVqrEB97WiCrZRSSim/9tRTT9G/f3+uuuoq5s2bxyOPPALAhx9+yMaNG6v2e/XVV9m9e3eDjp2RkcGgQYPcGq8KfFqDrZRSSim/9uyzz7Jo0SK6desGwLRp0wCbYJ9//vkMGDAAsAn2oEGD6Nq1q2OxApSVlRESoilYINMRbKWUUkr5rVtuuYXt27dz7rnn8o9//INXX32V2267jW+++YZ58+Yxc+ZMEhMTefTRR1m9ejVXXXUViYmJFBUVsWbNGs4880yGDx/O5MmT2bNnDwBr1qwhISGBhIQEnnnmmTof+9FHH2Xw4MEkJCRwzz33ADB+/HhWr14NQHZ2NnFxcYBN7qdNm8aECROYOHEiV1xxBfPnz6861vXXX8+cOXMoLy9n5syZJCcnM2TIEJ5//nkPPXP+TUReFpH9IpJWx+0iIk+JyDYRWS8iw7wZn359UkoppZR73HknpKa695iJifDPf9Z587///W8++eQTFi9eTPv27Xn11VcBGD16NNOmTeP888/nkksuAeDjjz/miSeeICkpidLSUm6//Xbmzp1Lhw4dePvtt/nDH/7Ayy+/zA033MDTTz/NuHHjmDlzZq2P+/HHHzN37lxWrFhBy5Ytyc3NPeU/Ze3ataxfv562bdvywQcf8M477zB16lRKSkr4/PPPee6553jppZdo3bo1q1at4ujRo4wZM4Zzzjkn4LpsuMGrwNPA63Xcfi4Q7zqNAJ5znXuFJthKqSqZmfDuu1BR4XQk3teyJVx9NURHu//YxsCGDXDgABQUHDsVFbn/sRyz5TIAzu0Krl/jlfJpmzdvJi0tjUmTJgFQXl5Oly5dOHToEIcOHWLcuHEAXHPNNXz88ccn3H/RokXccMMNtGzZEoC2bdue8jEnTZpUtd+5557LHXfcwdGjR/nkk08YN24cERERfPrpp6xfv545c+YAkJeXx9atWzXBrsEYs1RE4k6yy3TgdWOMAb4VkRgR6WKM2eON+DTBVkpV+fOfoTn/GvnEE/D66zBmzPHbS0pKSK0xKpeYmEhYWNgpj1lcDDfeCG++6cZAfdIvAJj3PXz5pcOhKOecZKTZ1xhjGDhwIMuXLz9u+6FDh5p03JCQECpcoxQ1289FRkZWXQ4PD2f8+PEsXLiQt99+myuuuKIqrn/9619Mnjy5SXEEgBARWV3t+ixjzKwG3D8W+LHa9UzXNk2wlVLetWwZnHMOuAZOmpW1a+H662HcOLjnHnjgAajMn1NTU5l17SxiI2MByCrMYsbrM0hJSTnpMfftg5/8BL79Fv74R5g4EVq1sqPk0dEQEQEB06Fq8bn8efY1/O29n3LwILRp43RASkF0dDQFBQW1Xu/Xrx8HDhxg+fLljBo1itLSUrZs2cLAgQOJiYlh2bJlnHHGGcyePbvWY0+aNImHH36Yq666qqpEpG3btsTFxbFmzRpSUlKqRqHrcvnll/Piiy+yevXqqtKWyZMn89xzzzFhwgRCQ0PZsmULsbGxxyXnzUSZMSbJ6SAaSxNspRQABw9CejpccYVnyiR83Zlnwrp18Otfw1//Ch9/DG+8AQMH2ttjI2Pp3ap3vY+3fj1ccIEtC5kzBy6+2EOB+4qWRUwf/TWPvfNTPv0ULr/c6YCUgiuuuIKbb76Zp556ijlz5nD99ddzyy23EBERwfLly5kzZw6/+tWvyMvLo6ysjDvvvJOBAwfyyiuv8LOf/QwR4Zxzzqn12FOmTCE1NZWkpCTCwsI477zz+Otf/8pvf/tbLrvsMmbNmsXUqVNPGt8555zDNddcw/Tp06t+EbvpppvIyMhg2LBhGGPo0KEDH374obufmuYgC+he7Xo31zavEFua4r8iIyNNYWGh02Eo5fcWLICpU+GLL+Css5yOxlkffgg33wz5+fC738HZZ6/i819/VJVgb8/fztTnptY5gv2//8FPf2pHq//3Pxjm1bnrDlk0nvLyIDpd9QXnnmu/nKjmYdOmTfTv39/pMJQfq+01JCJHjDEnHbZ31WB/ZIw5oVG5iEwFbgPOw05ufMoYc/KfHd1I2/QppQD4+msIDoZTVD00Cz/5CaSlwSWXwJ/+BFddNZhteaed9D7GwCefwNlnw7Rp0K8frFzZTJJrl+DgCs49147+l5c7HY1SKpCJyH+B5UA/EckUkRtF5BYRucW1ywJgO7ANeIHKiSJeogm2UgqAb76BoUOh+ZX51a5TJ5g9GxYtguBgw5s/XMPT6WeyI78ducVtOXAglEOH4PBhePVVGDIEzj0XNm2CRx6BpUshNtbpf4X3TZ0KOTn2y4VSSnmKMeZKY0wXY0yoMaabMeYlY8y/jTH/dt1ujDG/NMb0McYMNsasPtUx3UlrsJVSlJbCihW2LEIdb+JE+M9/0rj/snyW7TuT1QfiAHj6/OP3GzLEdiC5/PJjkyObo8mT7S8h8+fDqFFOR6OUUs7QBFspRWqq7clcsz2dssLCDGO7LOX8nrlsz+9AVmEOp185jE6delFUBElJtjQkYDqCNEGbNjB6NHz0kW37qJRSzZEm2Eopvv7anmuCfXLtwo/QLnwn7fK3M/XC7qSkuGfhh6b02fZF559vJ4dmZkK3bk5Ho5RS3qc12EopvvkGevZsnjXDvqCyz/b8W+cz/9b5zLp21gkJtz+p7Ey2YIGzcSillFO8mmCLyBQR2Swi20Tknlpuv15EDohIqut0kzfjU6o5MsaOYOvotbMq+2z3btW7akEbfzVggP3CNn++05Go5mLv3r1cccUV9OnTh+HDh3PeeeexZcsWp8NSzZjXSkREJBh4BpiEXa5ylYjMM8ZsrLHr28aY27wVl1LN3c6dsHu3rZtVyh1E7Cj2q6/apeLDw52OSAUyYwwXXngh1113HW+99RYA69atY9++ffTt29fh6FRz5c0R7BRgmzFmuzGmBHgLmO7Fx1dK1ULrr5UnnH8+HDkCS5Y4HYkKdIsXLyY0NJRbbrmlaltCQgJjx451MCrV3HlzkmMs8GO165nYlXVqulhExgFbgF8bY36suYOIzABmAH47CUgpX/HNN3Zp9MGDnY5EBZLx4yEiwpaJTJnidDTKa9bcCQdT3XvMNokw/J913pyWlsbw4cPd+5hKNZGvTXL8HxBnjBkCfAa8VttOxphZxpgkY0xSSIg2QlGqKb7+GkaOtL2LlXKXiAjbQ3z+fFvnr5RSzYk3s9MsoHu1691c26oYY3KqXX0ReMwLcSnVbOXnw4YN8Mc/Oh2JCkRTp9p+2Js22YmPqhk4yUizpwwcOJA5c+Z4/XGVOhlvJtirgHgR6YVNrK8Aflp9BxHpYozZ47o6DdjkxfiUana+/RYqKrT+2h1q62VdWloKQGho6HHb/bnHdUNUtuv7+GNNsJXnTJgwgd///vfMmjWLGTNmALB+/Xry8vK0Dls5xmsJtjGmTERuAxYCwcDLxph0EXkYWG2MmQf8SkSmAWVALnC9t+JTqjn6+msICrIlIqppKntZV2+xl5qdSpREcVq706q2ZRVmMeP1GaSkpDgRpld17w59+sCyZfCb3zgdjQpUIsIHH3zAnXfeyaOPPkp4eDhxcXH885//dDo01Yx5tYDZGLMAWFBj2/3VLt8L3OvNmJRqzr75BoYMsZMcVdPFRsbSNzKWQbs+IqS8hCHFOVQEt6H90bYUhHfgYHRPp0P0ujFj7Ai2MbqUvPKcrl278s477zgdhlJVdIagUs1UWZktEbnuOqcjCRyh5SVMXP93OuVtoSwojIEVR+0N+z4DYMVpV7O9VW8HI/S+MWPg9ddh2zaIj3c6GqWU8g5NsJVqpjZsgMOHdYEZdwk6coSrf3iTjod/5Kv+P2dHp5F8m7WYruUtSGjbjcQdH5C8bTbbel8GTHU6XK854wx7vmyZJthKqebD19r0KaW8ZPVqe671125QUEC/O+6g++Ef+WrALezoZJ/U0qAQ8kKjORjVg68G3EJudByXZrxPy03NZ/726adDmzbHFjRSSqnmQBNspZqp9eshKgri4pyOxM/l58PkyUSlpzOn18VkdKxt/SwoC27B54PuoDCkJX1/8xvYtcvLgTojKMiWiSxb5nQkSinlPZpgK9VMbdhgV28M0neBxjMGfvITWLWKbX/+MxvbnLwXXXGLGGb3uZKgo0dtD7u8PO/E6bAxY2DzZsjOdjoSpZTyDv1oVaoZMsaOYA8Z4nQkfm7+fFi8GJ56ioMTJtTrLgciOrLtkUfg++/h8subxTKHlX3Wv/nG2TiUUspbNMFWqhnavRsOHrQj2KqRjIEHH4TeveGmmxp01/zkZHjiCVi40CboAS45GcLCtExEeU5UVJRbj/fggw/yxBNPnLD9wIEDjBgxgqFDh/LVV18dd9urr77Kbbfd5tY4lP/SBFupZmj9enuuI9iNF/PVV7BmDdx3H9RYqbFefv5z6NQJHn/c/cH5mPBwGD5cJzoq//f5558zePBgvvvuu3qvEllWVubhqJQv0gRbqWZowwZ7PmiQs3H4LWOIffFFu0zhNdc07hjh4fCrX8EnnxCxbZt74/NBY8bYzjXFxU5HogKZMYaZM2cyaNAgBg8ezNtvv11126OPPsrgwYNJSEjgnnvuAeCFF14gOTmZhIQELr74Yo4cOVLnsVNTU7n77ruZO3cuiYmJFBUV8corr9C3b19SUlL4uto3yOuvv55bbrmFESNGcPfdd3vuH6x8lvbBVqoZWr/eLmPdpo3Tkfin0/M2E7l9M7z6KoQ04W301lvhr3+ly+zZQJK7wvNJZ5xhq2JWrz7WG1sFnjvvhNRU9x4zMRHqu+r5+++/T2pqKuvWrSM7O5vk5GTGjRtHamoqc+fOZcWKFbRs2ZLc3FwALrroIm6++WYA7rvvPl566SVuv/32OuJI5OGHH2b16tU8/fTT7NmzhwceeIA1a9bQunVrzjrrLIYOHVq1f2ZmJt988w3BwcFN+ecrP6Uj2Eo1Q5UdRFQjGMP4PUsp7t4drrqqacdq0wZuuom2CxfSqiTfPfH5qMoFjbRMRHnSsmXLuPLKKwkODqZTp06ceeaZrFq1ikWLFnHDDTfQsmVLANq2bQtAWloaY8eOZfDgwcyePZv09PR6P9aKFSsYP348HTp0ICwsjMsvv/y42y+99FJNrpsxHcFWqpkpKYFNm+C885yOxD/1yF5Ll6K9/PCzB+jTlNHrSr/+NfL004zcv4Jt7RObfjwf1aED9OtnJzr+7ndOR6M8pb4jzb7i+uuv58MPPyQhIYFXX32VJUuWuO3YkZGRbjuW8j86gq1UM7N5M5SW6gh2o5gKEjI+JLtFW3LOOadRhyivKCc9PZ2VK1fa0759bE9KYnj2GkLL6q7/DARjxthWfRUVTkeiAtXYsWN5++23KS8v58CBAyxdupSUlBQmTZrEK6+8UlVjXVkiUlBQQJcuXSgtLWX27NkNeqwRI0bw5ZdfkpOTQ2lpKe+++67b/z3Kf+kItlLNTOUER+0g0nA9stfQtvBH3uv5E7o3cvR6b9Fedjy0g4x2GVXb8naH88+KEvruXkJ6j8D9aWHMGHj5Zfslr39/p6NRgejCCy9k+fLlJCQkICI89thjdO7cmSlTppCamkpSUhJhYWGcd955/PWvf+VPf/oTI0aMoEOHDowYMYKCgoJ6P1aXLl148MEHGTVqFDExMSQmJnruH6b8jibYSjUz69fbrnL9+jkdif8ZkPkZeRGd2NB2EN2bcJwu4V3o3ap31fWvCrPYkr+D/pmfsalb40bG/UHl5MZlyzTBVu51+PBhAESExx9/nMdraX95zz33VHUPqXTrrbdy6623nrDvgw8+WOvjXH/99Vx//fVV12+44QZuuOGGE/Z79dVX6x+8CkhaIqJUM7Nhg01uGtO6uTlrXZJHp7wt/ND5DIy4/61zSdtkIksO0mv/t24/tq+Ij7e12DrRUSkV6DTBVqqZ0SXSG2dQbhoAOzqO8Mjxt7TsSW5kN07P+twjx/cFIrZMRBNspVSg0wRbqWbk4EHIzNQJjo0x+GA6B6J7cziio2ceQITtnUbTvmAHrY8e8sxj+IAxY2DbNti3z+lIlFLKczTBVqoZ0QmOjRO+YwddivayvdMojz7OrvbDAeif971HH8dJlf2wv/nG2TiUUsqTNMFWqhlZv96e6wh2w7T79FMqEDI6JHv0cQpadiI3sjsDDm7y6OM4aehQu/jlqlVOR6KUUp6jXUSUakY2bIC2baFrV6cj8Q0lJSWk1rKuc2JiImFhYfaKMbT79FN2RMdR3CLG4zHt7JBEQsYH5ObkePyxnBARYX9BWbnS6UiUUspzdARbqWZk/Xo7ei3idCS+ITU1lVnXzmL+rfOrTrOunXV80r1mDeGZmaS1GeSVmHa1H04QEPPll155PCekpNgRbF1wRrlLVFSUW4/34IMP8sQTT5yw/cCBA4wYMYKhQ4fy1VdfHXfbq6++ym233ebWOACWLFnCN/WoqaoZ27vvvkv//v0566yzmvT4ubm5TJo0ifj4eCZNmsTBgwdr3e+1114jPj6e+Ph4Xnvttart48ePp1+/fiQmJpKYmMj+/fubFI+/0ARbqWaiogLS0rT+uqbYyFh6t+pddYqNjD1+hzffpCIkhI0xp3slnkORsWS3aEtbNy7Z7GtSUiA/H7ZscToSpRrm888/Z/DgwXz33XeMHTu2XvcpKytr0mPWN8GuGdtLL73ECy+8wOLFi5v0+I888ggTJ05k69atTJw4kUceeeSEfXJzc3nooYdYsWIFK1eu5KGHHjouEZ89ezapqamkpqbSsaOHJor7GE2wlWomMjLg8GFNsBukvBzefpu80aMpDonwzmOKsCnmdKJXr7ZtXwJQSoo91zIR5W7GGGbOnMmgQYMYPHgwb7/9dtVtjz76KIMHDyYhIaFqwZkXXniB5ORkEhISuPjii6uWUq9Namoqd999N3PnziUxMZGioiJeeeUV+vbtS0pKCl9X6z95/fXXc8sttzBixAjuvvvu445TXl7Ob3/7WwYNGsSQIUP417/+BUBcXBzZ2dkArF69mvHjx5ORkcG///1v/vGPf5CYmMhXX31FRkYGEyZMYMiQIUycOJFdu3adENtDDz3EsmXLuPHGG5k5c2aTntO5c+dy3XXXAXDdddfx4YcfnrDPwoULmTRpEm3btqVNmzZMmjSJTz75pEmP6++0BlupZqKyg4hOcGyAr76C3bvJ+cUv4P0Srz3sppj+jN33Dfzvf3DttV57XG85/XSIirIJdgD+85q1O++8s9Z5DU2RmJjIP//5z3rt+/7775Oamsq6devIzs4mOTmZcePGkZqayty5c1mxYgUtW7YkNzcXgIsuuoibb74ZgPvuu4+XXnqJ22+/vc44Hn74YVavXs3TTz/Nnj17eOCBB1izZg2tW7fmrLPOYujQoVX7Z2Zm8s033xAcHHzccWbNmkVGRgapqamEhIRUxVKbuLg4brnlFqKiovjtb38LwAUXXMB1113Hddddx8svv8yvfvUrPvzww+NiA1i8eDFPPPEESUlJxx2zoKCgztH3N998kwEDBhy3bd++fXTp0gWAzp07s6+WHptZWVl0735sfdtu3bqRlZVVdf2GG24gODiYiy++mPvuuw9pBnWKmmAr1UysX29rrwcOdDoSP/Lf/0JkJIfGjoX3vbcATFbLrhzt2JEW778fkBlocDAkJekItnK/ZcuWceWVVxIcHEynTp0488wzWbVqFV9++SU33HADLVu2BKBt27YApKWlcd9993Ho0CEOHz7M5MmT6/1YK1asYPz48XTo0AGAyy+/nC3V6p4uvfTSE5JrgEWLFnHLLbcQEhJyXCz1tXz5ct5//30ArrnmmhNGyE8lOjq60V+CRKTByfHs2bOJjY2loKCAiy++mDfeeINrA/B9rSZNsJVqJjZsgN697cihqoeSEnj3XZg+nYrwcO8+tggHx4+n87x5tq4nAP/TUlLgH/+Ao0ehRQuno1HuUt+RZl9x/fXX8+GHH5KQkMCrr77KEjfOfYiMjGzQ/iEhIVS4Zv4WFxe7LY6aGjqC3alTJ/bs2UOXLl3Ys2dPrTXUsbGxxz13mZmZjB8/vuo2sIn9T3/6U1auXNksEmytwVaqmdAl0hvo009tDfSVVzry8AfPOguKi+Hjjx15fE9LSYHSUli3zulIVCAZO3Ysb7/9NuXl5Rw4cIClS5eSkpLCpEmTeOWVV6pqrCvLMgoKCujSpQulpaXMnj27QY81YsQIvvzyS3JycigtLeXdd9+t1/0mTZrE888/XzX5sTKWuLg41qxZA8B7771XtX90dDQFBQVV10ePHs1bb70F2NHh+k62rH68ygmHNU81k2uAadOmVXUFee2115g+ffoJ+0yePJlPP/2UgwcPcvDgQT799FMmT55MWVlZVV15aWkpH330EYMGeacjk9M0wVaqGSgqgq1btf66PsoryklPT2f/iy9SFhnJqjZtSE9Pp8J4t6dcQUICdOgArp+CA41OdFSecOGFFzJkyBASEhKYMGECjz32GJ07d2bKlClMmzaNpKQkEhMTq1rw/elPf2LEiBGMGTOG009vWKegLl268OCDDzJq1CjGjBlD//7963W/m266iR49elTF+eabbwLwwAMPcMcdd5CUlHRcackFF1zABx98UDXJ8V//+hevvPIKQ4YM4Y033uDJJ59sUNwNdc899/DZZ58RHx/PokWLqiaIrl69mptuugmwZS5//OMfSU5OJjk5mfvvv5+2bdty9OhRJk+ezJAhQ0hMTCQ2Nraq5j3QiTHG6RiaJDIy0hQWFjodhlI+be1aGD7cVjxcconT0fiOlStXMv/W+fRu1btq21d7vqKo6AjP7JnP7siuvN37MlKzU4mPiGdwF/sNZXv+dqY+N5WUyizxJMeKIabqfvXdVnX8F1+0deAHDoC3y1QaatF4e372knrtboxd8GjSJHj9dY9Fpbxg06ZN9U4ulapNba8hETlijGlYnY0P0RFspZoB7SDSMAlBLYgpzedQx5H0btWbDhEdnAnkootsDfaiRc48vgeJ2FFsHcFWSgUiTbCVagbS0uxEsj59nI7EP/QrzABgd1uHawUnTIBWrWy7vgCUkgKbN8OhQ05HopRS7qUJtlLNQFoaDBgAIdo3qF76FWaQF9GZwvD2zgYSFgZnnglffOFsHB5SWWGzerWzcSillLtpgq1UM5CWBs1k4naThVaU0acok6y2PlJPM2ECbNsGu3Y5HYnbVa5/oWUiSqlAowm2UgHu4EHIzNQEu77ii/YSasrY7UsJNsDixc7G4QFt2kDfvppgK6UCjybYSgW49HR7rgl2/QwqzKJUgtkb08/pUKxBg6B9+4BMsMGWiaxYYbuKKKVUoNCKTKUCXFqaPdcOIvUzsDCTHRGxlAfXvbxgZa/s6jzWKzsoCM46y9ZhG2PbbwSQlBT4z38gKwu6dXM6GtVUJSUljV6Guy6JiYmEhYWddJ/g4GAGDx6MMYbg4GCefvppRo8eze7du/nVr37FnDlz3BpTTXFxcaxevZr27Y+ft3Heeefx5ptvEhMT49HHr3To0CHefPNNfvGLX3jl8ZwmIlOAJ4Fg4EVjzCM1bu8BvAbEuPa5xxizwBuxaYKtVIDbsME2otDk5dRaFucSW3KI/7VOOOl+e4v2suOhHWS0y6jaVtkrm9YeCGzCBNvE/Icf4LTTPPAAzqm+4Iy+Rv1famoqs66dRWxkrFuOl1WYxYzXZxzXc742ERERVYn9woULuffee/nyyy/p2rWrx5Prk1mwwCu5HABlZWUcOnSIZ599tlkk2CISDDwDTAIygVUiMs8Ys7HabvcB7xhjnhORAcACIM4b8WmJiFIBrnKCY4ANfHpE14O2YfjmyLhT7tslvAu9W/WuOnm0V3ZlHXYAdhNJSIDQUK3DDiSxkbHH/W005dSYRD0/P582bdoAkJGRUbU096uvvspFF13ElClTiI+P5+677666T1RUFH/4wx9ISEhg5MiR7Nu3D4ADBw5w8cUXV61Q+PXXXwOQk5PDOeecw8CBA7npppuoa9G+uLg4srOzycjI4PTTT+f666+nb9++XHXVVSxatIgxY8YQHx/PStcfwIMPPsg111zDqFGjiI+P54UXXgDAGMPMmTMZNGgQgwcP5u233wZgyZIljB07lmnTpjFgwADuuecefvjhBxITE5k5cyaHDx9m4sSJDBs2jMGDBzN37tyq56V///7cfPPNDBw4kHPOOYeioiIAtm3bxtlnn01CQgLDhg3jhx9+AODxxx8nOTmZIUOG8MADDwBQWFjI1KlTSUhIYNCgQVVxeUkKsM0Ys90YUwK8BdRcx90ArVyXWwO7vRWcjmArFcCMsQm2rt5YP7G5aeSGtGRvWDscWlqmdvHxdtnDL76AGTOcjsatwsNtkq0JtmqKoqIiEhMTKS4uZs+ePXxRx5fR1NRUvvvuO1q0aEG/fv24/fbb6d69O4WFhYwcOZK//OUv3H333bzwwgvcd9993HHHHfz617/mjDPOYNeuXUyePJlNmzbx0EMPccYZZ3D//fczf/58XnrppVPGuG3bNt59911efvllkpOTefPNN1m2bBnz5s3jr3/9Kx9++CEA69ev59tvv6WwsJChQ4cydepUli9fTmpqKuvWrSM7O5vk5GTGjRsHwNq1a0lLS6NXr15kZGSQlpZWNZpfVlbGBx98QKtWrcjOzmbkyJFMmzYNgK1bt/Lf//6XF154gcsuu4z33nuPq6++mquuuop77rmHCy+8kOLiYioqKvj000/ZunUrK1euxBjDtGnTWLp0KQcOHKBr167Mnz8fgLy8vCb+Tx4nRESqN/GcZYyZVe16LPBjteuZwIgax3gQ+FREbgcigbPdGeDJaIKtVADbuxdyc7X+uj7EVNDl4EZWtYz1veF+ETuKvXBhwNZhv/46lJdDcLDT0Sh/VL1EZPny5Vx77bWkVU5AqWbixIm0bm3ruAYMGMDOnTvp3r07YWFhnH/++QAMHz6czz77DIBFixaxceOxioP8/HwOHz7M0qVLef/99wGYOnVq1Yj5yfTq1YvBrjfjgQMHMnHiRESEwYMHk5GRUbXf9OnTiYiIICIigrPOOouVK1eybNkyrrzySoKDg+nUqRNnnnkmq1atolWrVqSkpNCrV69aH9MYw+9//3uWLl1KUFAQWVlZVaPzvXr1IjExserfnJGRQUFBAVlZWVx44YUAhIeHA/Dpp5/y6aefMnToUAAOHz7M1q1bGTt2LL/5zW/43e9+x/nnn8/YsWNP+Tw0QJkxJqmJx7gSeNUY8zcRGQW8ISKDjPHEhJnjaYKtVACrXCJdO4icWrv87bQoKyQt0kcLgSdMsLMB09MD7j80ORmefRa2boXTT3c6GuXvRo0aRXZ2NgcOHDjhthYtjk1eDg4OpqysDIDQ0FDE9cW1+vaKigq+/fbbqkSzKao/dlBQUNX1oKCgqscDquKo63pNkZGRdd42e/ZsDhw4wJo1awgNDSUuLo7i4uIT4gkODq4qEamNMYZ7772Xn//85yfctnbtWhYsWMB9993HxIkTuf/++08arxtlAd2rXe/m2lbdjcAUAGPMchEJB9oD+z0dnNZgKxXAKgdwAiwf84jYg2lUIGxy0+QstwvgftjDh9vzNWucjUMFhu+//57y8nLatWvX5GOdc845/Otf/6q6XjlKPm7cON58800APv74Yw4ePNjkx6o0d+5ciouLycnJYcmSJSQnJzN27FjefvttysvLOXDgAEuXLq114md0dDQFBQVV1/Py8ujYsSOhoaEsXryYnTt3nvSxo6Oj6datW1W5ytGjRzly5AiTJ0/m5Zdf5vDhwwBkZWWxf/9+du/eTcuWLbn66quZOXMma9euddvzUA+rgHgR6SUiYcAVwLwa++wCJgKISH8gHDjxm5cH6Ai2UgEsLQ06d7ZtlNXJdc3dQE50LwqDWxDjdDC16dkTeve2ddi33+50NG7Vvz9ERNgl06+6yuloVFNlFdYcRPT8sSprsMGOtr722msEu6He6KmnnuKXv/wlQ4YMoaysjHHjxvHvf/+bBx54gCuvvJKBAwcyevRoevTo0eTHqjRkyBDOOusssrOz+eMf/0jXrl258MILWb58OQkJCYgIjz32GJ07d+b7778/7r7t2rVjzJgxDBo0iHPPPZff/e53XHDBBQwePJikpCROr8dPRG+88QY///nPuf/++wkNDeXdd9/lnHPOYdOmTYwaNQqwk0L/85//sG3bNmbOnElQUBChoaE899xzbnseTsUYUyYitwELsS34XjbGpIvIw8BqY8w84DfACyLya+yEx+tNXTNS3Uy89DgeExkZaQoLC50OQymflJICrVuDq5xQ1bBy5Urm3zqf0yM6cfnXt7G+5zSeDm9PDDEM7nKscP2rPV8dt63mdXdv256/nanPTT1xhOrmm2HOHMjO9r1i5UXj7fnZSxp191GjbDeRpUvdFpHykk2bNtG/f3/AuT7YgeLBBx8kKiqK3/72t06H4lXVX0OVROSIMabu+hcfpyPYSgWoigpbrhtgTSc8ovOhTQRh2N12EBzZ63Q4dZswAV58EVJTj9VVBIjhw+G11+zrNkiLF/1WWFjYKXtWK9Uc6NuYUgFqxw44ckTrr+uj06HNlAWFkRNd+0x8nzF+vD0PwH7YSUlw+DBs2eJ0JEo558EHH2x2o9eBShNspQKULpFef53ytnCgVR8qgnz8R70uXWzBcgAm2DrRUSkVSDTBVipAVbboGzDA2Th8XYvyYtoc3sW+mH5Oh1I/EybAV19BaanTkbhV5URHTbD9k7/P51LOCdTXjlcTbBGZIiKbRWSbiNxzkv0uFhEjIk1tMK5Us5WWBr16QVSU05H4tu6HfyQIw77WfpRgFxYG3NKHISF2RUdNsP1PeHg4OTk5AZsoKc8xxpCTk+OWPuO+xmu/h4pIMPAMMAm7nOUqEZlnjNlYY79o4A5ghbdiUyoQpaVp/XV9xB3eRbkEc6BVb6dDqR/X8sgsWwZjxjgbi5vpREf/1K1bNzIzM2td2EWpUwkPD6dbNx9d4KsJvFlwmAJsM8ZsBxCRt4DpwMYa+/0JeBSY6cXYlAooJSWweTNMn+50JL6v5+Gd5ET3ojy4xal39pLyinLS09NP2J6YmEhY+/YQHw/LlzsQmWcNHw7PPGMnOuqKjv4jNDS0zqW6lWquvJlgxwI/VrueCYyovoOIDAO6G2Pmi4gm2Eo10ubNUFamI9inElRcTNcju9nUbYrToRxnb9Fedjy0g4x2GVXbsgqzmPH6DNsCbfRoWLAAjIFTLKPsT6pPdNQEWynlz3zmRzgRCQL+jl1151T7zhCR1SKyuqyszPPBKeVndIn0+olMSyPEVPjkBMcu4V3o3ap31Sm2+hLuo0bBgQOwfbtzAXrAgAEQHq512Eop/+fNBDsL6F7tejfXtkrRwCBgiYhkACOBebVNdDTGzDLGJBljkkJCfLytllIOSEuzk8b6+V7e6FOiU1OpAPa3jnc6lIZxLVccaGUiISGQmKgJtlLK/3kzwV4FxItILxEJA64A5lXeaIzJM8a0N8bEGWPigG+BacaY1V6MUamAkJZmk+tmsrpwo0V/9x17IzpTGtLS6VAaZuBAiI4OuAQbbJnI2rV2oqNSSvkrryXYxpgy4DZgIbAJeMcYky4iD4vING/FoVRzsGGDzcHUSZSUELVhAzujejodScMFB8OIEQGbYOuKjkopf+fVGmxjzAJjTF9jTB9jzF9c2+43xsyrZd/xOnqtVMMVFNhl0nUFx1NYu5bgo0fZGdXD6UgaZ9QoWLfOZqMBRFd0VEoFAp+Z5KiUco+NrsaXmmCfwtKlAOzy5wS7ogJWrXI6ErfSiY5KqUCgCbZSAaZyiXRNsE9h6VKK4uIoDI10OpLGGTnSngdYmYiu6KiUCgSaYCsVYDZsgMhIiItzOhIfVl4Oy5ZRkJjodCSN16aNbRYdYAk2QFISfPedTnRUSvkvTbCVCjCVExx1qemT2LAB8vIoGDrU6UiaZvRom2Ab43QkbjV8uJ1LsHWr05EopVTj6EewUgEmLU3LQ07JVX/t9wn2qFGQkxNwmahOdFRK+TtNsJUKIPv22QX+NME+haVLIS6Okk6dnI6kaQJ0wZnKiY6rtY+UUspPaYKtVACpnOCoS6SfhDE2wR43zulImq5/f2jdOuASbJ3oqJTyd5pgKxVA0tLsuY5gn8TWrXaY/4wznI6k6YKCbDeRAEuwwZaJ6ERHpZS/0gRbqQCyYQN07GhPqg7ffmvPK8sr/N2oUfY/Pj/f6UjcatgwO9Hxhx+cjkQppRpOE2ylAsiGDTp6fUrLl0OrVrbQNxCMGmXLXlaudDoStxo2zJ6vXetsHEop1RiaYCsVICoqID1d669PaflyGDEicPoYjhgBIgFXJjJwIISGaoKtlPJPAfIJo5TasQOOHNER7JMqKLDD/IFSHgJ2kuPAgQGXYIeF2deyJthKKX+kCbZSAUKXSK+HVavsUH8gJdhg/z3LlwfcjMBhw2yCHWDr6CilmgFNsJUKEJUJdqCUFntE5SjviBHOxuFuo0bBoUOwZYvTkbjVsGGQmwu7djkdiVJKNYwm2EoFiLQ06N0boqKcjsSHLV9ue0e3aeN0JO6VnGzPV61yNg4304mOSil/pQm2UgFCO4icgjG2RV+glYeA/dIQGRlwCfaQIRAcrAm2Usr/hDgdgFKq6Y4etdUBF1/sdCTOKCkpITU19YTtiYmJhIWF2Stbt0JOTmAm2MHBdrg3wNYWj4iw3x00wVZK+RtNsJUKAJs2QXl5823Rl5qayqxrZxEbGVu1LaswixmvzyAlJcVuqKy/DsQEG2yZyLPPQmmp7W8XIIYPh4ULnY5CKaUaRktElAoAukQ6xEbG0rtV76pT9WQbsAl269Z2SDQQJSVBcbFthh5Ahg2DvXthzx6nI1FKqfrTBFupALBhg+0bHB/vdCQ+LNAWmKlJJzoqpZTPCNBPGqWalw0b4PTTA6oywL0KCuwwf6CWhwD06WO7owRYgp2QYBeq1ARbKeVPNMFWKgBoB5FTWLnSLsIycqTTkXiOiC0TCbCJjtHR0LevJthKKf+iCbZSfu7QIcjM1AT7pAJ1gZmakpLst63iYqcjcavKFR2VUspfaIKtlJ/TCY71EKgLzNSUnAxlZVBLy0J/NmyYXc0xO9vpSJRSqn40wVbKz1Uukd5cW/SdUiAvMFNTgE90/O47Z+NQSqn60gRbKT+Xlma7z3Xv7nQkPmrrVsjNbR4JdmwsdO4ccAn20KH2XMtElFL+QhNspfzc+vV29FrE6Uh8VKAvMFNdgE50bNMGevXSBFsp5T80wVbKjxljE+yEBKcj8WGBvsBMTcnJ8P33tjVhANGJjkopf6IJtlJ+bOdOyM+HIUOcjsSHBfoCMzUlJ9tvXmvWOB2JWw0bBtu2QV6e05EopdSpNZNPHKUC07p19lxHsGsXdOSILVIP5P7XNSUl2fMAq8OunOgYYA1SlFIBShNspfzYunW27FZb9NUu8vvv7QIzgd7/uroOHaBnz4Crw9aJjkopf6IJtlJ+bP16OO00iIx0OhLfFJmebi+kpDgbiLclJwfcCHanTrZJSoBVviilAlSI0wEopRpv3TotDzmZqLQ06NMH2rd3OhSPKCkpIbWWmolhQ4cSMmeOXZklgP7tOtFRKeUvNMFWyk8dPgw//ADXXut0JL4rKj0dJk1yOgyPSU1NZda1s4iNjK3allWYxW9+NYz+YMtEpkxxLD53Gz4cPvrIvvajopyORiml6qYlIkr5qbQ02yxCR7BrF12ST9iBAwFfHhIbGUvvVr2rTrGRsRw5/XR7Y4CViQwbZl/zlZN7lVLKV2mCrZSfqkwytEVf7boVZtkLzWmCo0t5VBT06xdwEx2HD7fnWoetlPImEUkSkU8ach9NsJXyU+vW2fVTevZ0OhLf1O1IFhUhIZCY6HQozgjAiY5dutjJjlqHrZQCEJEpIrJZRLaJyD117HOZiGwUkXQRefMkx5okIo+LyF9FpLdrW18RmQusaGhsmmAr5afWr7ej17pEeu1iC7M40rcvhIc7HYozhg+HPXvsKUCI2H+WjmArpUQkGHgGOBcYAFwpIgNq7BMP3AuMMcYMBO6s41jXAQuBG4B7gOUicgWwCsgFEo0xDZrQogm2Un6oouJYgq1OJKaCrkd2UzhwoNOhOCdA6ymGDYONG+HIEacjUUo5LAXYZozZbowpAd4CptfY52bgGWPMQQBjzP46jvVr4PfGmPbAFUAHYCYwzBhzgzFmQ0OD0wRbKT+UkQEFBTrBsS4xhVm0qCjlcHNOsIcOtUO+AZZgDx9+7AumUiqghYjI6mqnGTVujwV+rHY907Wtur5AXxH5WkS+FZG6RqH7AG+7Ls8ByoG7jDE/NDr4xt5RKeWcyuRCE+zatc+374nNMcEurygn3bXAzuCePSn+/HM2nn02AKGhoVX7JSYmEhYW5kiMTVG5ZPratTBypLOxKKU8qswYk9TEY4QA8cB4oBuwVEQGG2MO1dgvEigEMMZUiEgxxyfvjXpgpZSfqVwivRnmj/XSPn87R4IjONq9u9OheN3eor3seGgHGe0yaJEXTa+sVB776WNESRSntTsNsL2yZ7w+gxQ/bGHYvbtdOyfABuaVUg2XBVR/k+/m2lZdJrDCGFMK7BCRLdiEu7YZ4FNFJM91OQiYLCL7qu9gjHm/vsFpgq2UH1q3DuLjdYn0unQo2E5WZNdmOwO0S3gXerfqTUnbQbQ6uIE+oZEEhdht/k5EV3RUSgE2SY4XkV7YxPoK4Kc19vkQuBJ4RUTaY0tGttdxvJdqXH+mxnUDBNc3OK3BVsoPrV+v5SF1CSkrIqYwi8yWNUvxmp+c6DgAehZnOxuImw0fbhdaKi52OhKllFOMMWXAbdjuH5uAd4wx6SLysIhMc+22EMgRkY3AYmCmMSanlmMF1eNU7+QaGphgi4iOeCvlsIICu0S6dhCpXfuCDARDZqQm2DlRPTAIPYtP+Dzxa8OGQVmZTbKVUs2XMWaBMaavMaaPMeYvrm33G2PmuS4bY8xdxpgBxpjBxpi3vBVbQ0ew94jIEyLS3yPRKKVOaYOrWZCOYNeucoJjlibYlIVEkB/RiZ5HA28EG7QOWynlXiJypog8JSIficj/RORJERnbmGM1NMH+PTAaSBOR5SJyo4hENeaBlVKNU7lEuibYtetQsJ38iE4UhbR0OhSfkBMdF3AlInFx0KaN1mErpdxHRJ7ClpFcBbTD9sK+BlgiIv9s6PEalGAbY14wxowGBgHLgD9jR7VfFpExDX1wpVTDrV8PMTG2m4KqwRja528nO7qX05H4jJzoONqWHSG6rNDpUNymcqKjjmArpdxBRM4HbgV+DnQwxowyxowE2gO/AH4hIlMbcsxG1VQbYzYBM13rvv8CeBy4TkS2Av8EZhljKhpzbKXUya1bp0uk16Xl0VxalhziQKs+J9xWUlJCamrqcdvS09OpCPC3qsqJjt2K9518Rz8zbBg8+SSUlIAftvNWSvmWnwFPGWNeqL7Rlcs+LyKnAzcC8+t7wEYl2CISBlzkCmgCdjT7JaAr8EdsQ+8rarnfFOBJbJuTF40xj9S4/Rbgl9gVdA4DM4wxGxsTo1KBqHIFu5/9zOlIfFOHfNt9KbuWdnSpqanMunYWsdVqs1OzU4mPiIfWXgvR63KjegI2wd7rcCzuNHy4Ta43boTERKejUUr5uSTsYHFd3uHYSo/10qAEW0SGYZPqK4FS4HXgNmPMlmr7fASsruW+wdiegpOwjb9Xici8Ggn0m8aYf7v2nwb8HahrWUulmp0dO6CwUOuv69K+4AfKJYTcqB5w+MRFuGIjY4/rBZ1VWHNNgsBTGhLB3tDWxB4NvAQbbJmIJthKqSbqwMlXbvzRtU+9NXSS4yrseu0zgG7GmLurJ9cuGUBtbVBSgG3GmO3GmBLXPtOr72CMya92NRLb1Fsp5VI5wVFb9NWuQ/52cqN6UBEUeuqdm5Gd4e0CrkSkd29o1UonOiql3KIFUHKS20uBBhWjNbREpLcxZufJdjDGFAI31HJTLMd/O8gERtTcSUR+CdyF/YdMaGB8SgW0desgKEiXSK9NkKmgbUEG27qMczoUn7MzvD0jCrYTXpJHcVhg1MMEBelER6WUW90iIofruC26oQdraIK9WESSa66CIyIxwFpjTJPX4TXGPAM8IyI/Be4Drqu5j4jMwI6iE6azW1QzsnYt9O8PLbUD3Qk6FO0ntKKEAwGwHLi77QxvD0C7ggyy2gVOfdGwYfDss3bRmRBdBk0p1Xi7qH1wuOY+9dbQt6Q4al+HvQV2hPpksoDqjcW6ubbV5S3gudpuMMbMAmYBREZGahmJajbWroWJE52Owjd1O2LfTrKjT+wg0tztatEOCLwEe/hwu1z6pk0weLDT0Sil/JUxJs7dx6xXgi0iF1W7OlVE8qpdDwYmYmuvT2YVEC8ivbCJ9RXAT2s8TrwxZmvl4wBbUUoBsHcv7N5tR+3UiboVZlEcEkVBREenQ/GI8opy0tPTj9tW3zaDRcFhHAhtQ7uCDA9F54zKv4U1azTBVkr5lvqOYM9xnRtsO77qSrHJ9W9OdgBjTJmI3AYsxCblLxtj0kXkYWC1a93420TkbNcxD1JLeYhSzdV339lzTbBrF1uYZdvzBWiD8L1Fe9nx0A4y2mVUbWtIm8HM8I70PXzSKTR+p29fiIqC1avh+uudjkYp5a9EJBfoa4zJdl2/B/i3MeZQY49ZrwTbGBPkesAdQHJlAA1ljFkALKix7f5ql+9ozHGVag4quyVoS7ITBR0+TIfiA6zvHNgLynYJ79LoNoOZ4Z0YWrCZ8JL8U+/sJ4KCbJnI6hMawyqlVIPEcHxnvd9je18fauwBG7pUeq/GJtdKqaZZswbi421rMnW8yO+/Jwg4EK0THOuSGd4JIODKRJKTITUVSkudjkQpFUCa/FPoKUewReQu4FljTLHrcp2MMX9vakBKqdqtXQujRjkdhW+KSksDal/BUVlZLaol2G0HORuMGyUlwdGjkJYGQ4c6HY1SSln1KRG5HXgNKHZdrovBrryolHKznBzYuRN++UunI/FNUenpZLdoS0lolNOh+Kzi4BbkRXSi3eGMgEuwwZaJaIKtlGqC6n2wQ4AbReS4ttQNGUg+ZYJtjOlV22WllPfoBMeTMIbI9HQ2RZ6qU6jKjY6jQ15gNWfq3RvatIFVq+Dmm52ORinlp2r2wd5LjU53NHAgucmt+UUk1Bij1W9KeVDlBEcdoavFjz8SlpNDZrdkpyPxeTlRcfTav4KWpYVOh+I2InYUWyc6KqUayxN9sBs0yVFEfiUiF1e7/jJQJCKbRaSfu4NTSllr10JcHLRt63QkPmjFCgAydQT7lLKj4wDoemSPs4G4WXIybNhgF51RSilf0KAEG/gVcABARMYBl2KH0FOBv7k1MqVUlbVrtTykTitWUBEWxr6Izk5H4vNyo3sC0PXIbocjca+kJLtc+rp1TkeilFJWQxPsWGCH6/IFwLvGmHeAB4GRboxLKeWSnw9bt2qCXacVKzjSty/lQcFOR+LzSkNakhfRKeBGsKtPdFRKKV/Q0AQ7H6hch3gS8LnrcikQ7q6glFLHpKbac02wa1FaCmvWcHjgQKcj8Rs50b3oEmAJdrdu0KmTneiolFK+oKEJ9qfACyLyInAa8LFr+0COjWwrpdyocoKjJti1SEuDoiJNsBsgJ7onMaX5hOTmOh2K2+hER6WUr2logv1L4GugA3CJMabyHXoY8F93BqaUstauha5d7QidqsE1wbFwUOD0dfa0nKg4wK5+GUiSkmDTJjh8+NT7KqWUpzWoTZ8xJp9aFpsxxjzgtoiUUsdZs0ZHr+u0YgW0b8/Rrl2xc63VqeS6OokEWoKdnAwVFbZn/NixTkejlPIXIlKA7XF9SsaYVvU9bqP6YItIV2wt9nEj4MaYtY05nlKqdoWF8P33cMklTkfio1asgBEjbI2AqpfSkAiyW7QjctMmp0Nxq+oTHTXBVko1wG2eOGiDEmwRGQr8BzgdqPmJZgCdxq+UG61fb0flhg93OhIflJdnv31ceaXTkfidrJadOW3DBlauXHnc9sTERMLCwhyKqmk6dYLu3XWio1KqYYwxr3niuA0dwZ4F/AjcDOymnkPqSqnG0QmOJ7FqFRhjR7BVg3wfEknCgYMsueltCkOjAMgqzGLG6zNISUlxOLrG04mOSilf0dAEewAw1BizxRPBKKWOt3YtdOgAsbpI4YlcExxJTraNwlW97QxvD8AwDFmtejscjfskJcEHH8ChQxAT43Q0Sil/IyJhwB+AK4EeQGj1240x9a7UaGgXkQ2ALpemlJdUruCoJca1WL4c+veHNm2cjsTv7GrRjgqgXUGG06G4VXKyPV+zxtk4lFJ+60/AddjVySuAmcAzQA7wi4YcqKEJ9u+Bx0TkbBHpJCJtq58aeCyl1EkcPWrbPGt5SC2MgW+/hVGjnI7ELxUHh5Ed1ibgEuzKuQpah62UaqTLgFuMMc8D5cBcY8yvgAewCyzWW0NLRBa5zj/l+PprQSc5KuVWaWlQVqYJdq22bYOcHBg50ulI/FZmi070C7AEu21b6N1b67CVUo3WCdjounwYiHFd/gR4tCEHamiCfVYD91dKNVJlg4fK9mOqmuXL7bmOYDfaj+GdGVbwPeEleRSHtXY6HLdJTrY/biilVCPsArq6zrcBk4E1wCigqCEHauhCM182ZH+lVOOtWAEdO0LPnk5H4oOWL4dWrWDAAKcj8VtZ4XZp0HYFGWS1S3A4GvdJSoK334b9++3fj1JKNcAHwETgW+BJ4L8icjMQCzzekAM1tAYbERksIk+LyMci0sW17SeuHtlKKTfRNVRO4ttv7ZMT1OC3MOWSFd4RgwRcHXZll0Gtw1ZKNZQx5l5jzF9cl+cAZwD/Ai4yxvyhIcdq0KeTiJwDrMJm8hOACNdNfbAF4EopNzh0yK6hoi2ea3H4sF2BR+uvm+RoUBh5LTsHXII9fDgEB2uZiFKq6YwxK4wxfzfGfNTQ+zZ0+OdPwF3GmAuBkmrblwD+uzqBUj6msv5aE+xarFpll7fU+usmy4mKC7gEOzISBg/WBFsp1XAi8hcRuaWW7beIyJ8acqyGJtiDgAW1bM8FtE2fUm6yYoUtDans66uqqZzgqCPYTZYTHUdkyUHCjx5yOhS3GjnSfkmtqHA6EqWUn7kG+K6W7WuAaxtyoIYm2LnY8pCahgGZDTyWUqoOK1bA6adD68Bp7uA+335rnxxdYKbJcqLjAGh3OMPRONxt5EjIz7dlVkop1QAdgQO1bM/BtvCrt4Ym2G8Cj4tIN2zf6xARORN4Ani9gcdSStXCmGMTHFUNxtgRbB29dovcqJ4YhPYBViZS+fLQMhGlVAPtAsbWsn0cDRxIbmiCfR+wA9gJRGGbcS8GlgF/aeCxlFK12LEDsrM1wa7VDz/YJ0frr92iLCScvJZdaJe/w+lQ3Co+3v7AoQm2UqqBngf+ISI3i0gf12kGdun0WQ05UEP7YJcCV4nIH7FlIUHAd8aYrQ05jlKqbitW2HNNsGuhC8y4XXar3sTmrLe/DgSIoCD796MJtlKqIYwxfxOR9sBTQJhrcwnwpDHmsYYcq94j2CISISIPiMh6YD3wCvAH4HIRiTj5vZVS9bViBURE2E4IqoZvv4XoaF1gxo2yo3sTUZpP65I8p0NxqxEjIC0NCgqcjkQp5U+MMfcC7YGRrlMHY8w9DT1OvRJsEQkBvgB+jy0R+RfwDLZU5H5gkWsfpVQTrVhhe/mG6F/UiZYvtyuJBAc7HUnAyI7uBUDskd0OR+JeI0faQfnVq52ORCnlh8qxS6MfAcoac4D6jmDPAE4DhhljprtWurnHGDMNWyrSF7i5MQEopY4pKYHvvtPykFoVFtoFZrQ8xK0ORnWnXEKILcxyOhS3qlzRUctElFL1JSIhIvI4cBBYB2wADorIYyIS2pBj1TfBvgT4izEmveYNxpg04P+ASxvywEqpE61bB0ePapOMWq1aBeXlmmC7WUVQCLlRPQJuBLttW+jXTxNspVSDPAZcDdyCHTyOB27F9sf+v4YcqL4J9kBsiUhdFmEXoVFKNYFOcDyJykxJnxy3y27Vi65H9tgvMAFk5Ej7sgmg+ZtKKc/6KXCjMeY1Y8wPrtOrwE3AVQ05UH0T7DbU3ni70gEgpiEPrJQ60YoV0KULdOvmdCQ+aPly6NsX2rVzOpKAkx3dmxYVJUTs3Ol0KG41ciTs3w8ZGU5HopTyE62BH2rZ/gMNzHPrm2AHc/Ii7wrXPkqpJqhcYEbE6Uh8TOUCM1oe4hGVEx0jN250OBL30gVnlFINtA74VS3b7wBSG3Kg+vYpEOA/InK0jttbNORBlVInys2FrVvhZz9zOhIftH07HDjQoAS7vKKc9PRj00bS09OpMBWeiM7v5bfsTHFQi4BLsAcNgpYtbYJ95ZVOR6OUcjcRmQI8iR3kfdEY80gd+10MzAGSjTEn6y10N7BARM4GKr+ajwS6Auc2JLb6Jtiv1WMfXSpdqSZYudKea4lxLb7+2p43IMHeW7SXHQ/tIKNdBgCp2anER8TbHwDV8SSI3ZFd6BhgCXZICCQlHZvboJQKHCISjG0ZPQm7jPkqEZlnjNlYY79o7Aj0Kd8JjDFLRaQv8EvgdNfmd4FnjTENmglerwTbGHNDQw6qlGq4FStsaUhSktOR+KBlyyAmxg5JNkCX8C70btUbgKwAa0PnblktY4nbugKKiyE83Olw3GbkSPjnP213nhb6W6tSgSQF2GaM2Q4gIm8B04GaIwV/Ah4FZtbnoK5E+g/Vt4lITxF5xxhzWX2Dq/dKjkopz1qxAgYOtAsVqhqWLYMxY+wa2Mojslp2JaiszPaKDCAjRx7rL6+U8ishIrK62mlGjdtjgR+rXc90basiIsOA7saY+U2MJQa4uCF30E8rpXyAMbZERMtDapGdDZs2wRlnOB1JQMuKdH0urVrlbCBuVvk3pRMdlfI7ZcaYpGqnWQ25s4gEAX8HfuOZ8E5OE2ylfMCWLZCTowvM1Kqy/loTbI/KD42mpF27Y5MBAkTXrtCjhybYSgWgLKB7tevdXNsqRWPXaFkiIhnYyYrzRMQrhZiaYCvlA5Yutefjxjkbh09atswWzyYnOx1JYBOhcMCAgBvBhmMLziilAsoqIF5EeolIGHAFMK/yRmNMnjGmvTEmzhgTh+0KMu0UXUTcpr5dRJRSHrR0KXTqBPHxTkfig776yibXOkPN4woHDKDN889DXh60Dpx2K6NGwTvvQFYWxMaeen+llO8zxpSJyG3AQmybvpeNMeki8jCw2hgz7+RHOEZETrVvq4bGpwm2Uj5g6VI7et2cF5gpKSkhNTX1uG1BxcUMX7MG+e1vT7qf9rh2j8MDBtgLa9bAhAnOBuNGY8fa86++giuucDYWpZT7GGMWAAtqbLu/jn3Hn+RQOad4qBxgR0Ni0wRbKYft3Am7dsHMejUQClypqanMunYWsZHHhhijDqwiqazsWIZUx37a49o9Cvv3txdWrgyoBDshAaKiNMFWStXOE+2oNcFWymFaf31MbGRsVd9qgO57lmJEkNGjT7qf9rh2j/LWreG00wKuDjskBEaPtgm2Ukp5g05yVMphX33VqDVUmoUeh3dR1KePfYKUd6SkBFwnEbA/gqSlwcGDTkeilGoONMFWymFLl9oOdLqGyvGkopzuhZkUJCQ4HUrzkpwMmZmwZ4/TkbjV2LG233xl10ellPIk/UhXykH79sHmzVoeUps2hT/SoqJEE2xvS0mx5wE2ip2SAqGhx0qylFLKk7yaYIvIFBHZLCLbROSeWm6/S0Q2ish6EflcRHp6Mz6lvK2yJlQT7BN1zNsKQEFiorOBNDfDhtlMdPlypyNxq4gIOzivddhKKW/wWoItIsHAM8C5wADgShEZUGO374AkY8wQYA7wmLfiU8oJS5dCy5Y2p1HH65S3mYNhrSnt1MnpUJqX8HD7gvzmG6cjcbuxY2H1ajhyxOlIlFKBzpsj2CnANmPMdmNMCfAWML36DsaYxcaYyre+b7HLXioVsJYutd0NQkOdjsTHGEPHvK3siuzhdCTN0+jRtpNISYnTkbjVuHFQVgYrVjgdiVIq0HkzwY4Ffqx2PdO1rS43Ah/XdoOIzBCR1SKyuqyszI0hKuU9Bw/C+vVaHlKb6OIDtCzJY1eUJtiOGD0aioth3TqnI3Gr0aPtYk5aJqKU8jSfnOQoIlcDScDjtd1ujJlljEkyxiSFhGgrb+Wfvv7adjXQBPtEHQ9tBmBnVHeHI2mmRo2y5wFWJhITA0OGaIKtlPI8bybYWUD1T8turm3HEZGzgT8A04wxR70Um1Jet3QphIUda9qgjumYt5WjIZFkh3dwOpTmKTYWevQIuAQbbB328uW2VEQppTzFmwn2KiBeRHqJSBhwBTCv+g4iMhR4Hptc7/dibEp53dKltqtBRITTkfieTnlb2N86HiPidCjN1+jRAddJBGyCXVgI333ndCRKqUDmtQTbGFMG3AYsBDYB7xhj0kXkYRGZ5trtcSAKeFdEUkVkXh2HU8qvFRbCmjVaHlKb8KOHaF20l32t+zodSvM2ahT8+KNddCaAjB1rz7VMRCnlSV4tYDbGLAAW1Nh2f7XLZ3szHqWc8u239idqTbBP1OXQ9wDsjekPGGeDac5Gj7bny5fDpZc6G4sbdekCffrYX5DuusvpaJRSgconJzkqFeiWLrVLo1fmMOqYzoc2URIcQW60rjPlqIQEW78UoHXYy5ZBRYXTkSilApUm2Eo5YOlSGDoUWrVyOhLf0/ngJvbGnI4RfXtyVGionSQQoAl2Tg58/73TkSilApV+ginlZYWFNmcZP97pSHxP66OHaFW8n71t+jsdigL7E8t330FRkdORuFVlaZbWYSulPEUTbKW8bMkSu0De5MlOR+J7eh3OAGBPjCbYPmH0aCgttTNyA0ifPtC5sybYSinP0QRbKS9buNCWtlZ2M1DH9CrIoCg0mkORJ1vkVXnNyJH2PMDKRETgzDNh8WK72JNSSrmbJthKedmnn9oP9/BwpyPxMcbQqyCDfTGng9Zf+4YOHSA+PiD7YZ99NuzeDZs2OR2JUioQ6aeYUl60cyds3qzlIbVp8eOPtC7N1/IQXzN6tB3BDrCh3rNdTWEXLXI2DqVUYNIEWykvWrjQnmuCfaJWq1cDsLfNAIcjUccZNQr274ft252OxK3i4uC00+Czz5yORCkViDTBVsqLFi6E7t3h9NOdjsT3tFqzhvzQaPIjOjkdiqqu+oIzAWbSJDvpuLTU6UiUUoFGE2ylvKSsDD7/3I5eizgdjY8xhlZr1rAjOu64J6e8opz09HRWrlxZdUpPT6fC6AohXjNggG3YHmATHcGWiRw+DCtWOB2JUirQeHWpdKWasxUrIC9Py0NqlZ5O6MGDbO95fGuVvUV72fHQDjLaZVRtS81OJT4iHlp7OcbmKjgYRowIyAT7rLPsiqqffQZnnOF0NEqpQKIj2Ep5ycKF9sN84kSnI/FBX3wBwI6ouBNu6hLehd6teledOkR08HJwitGjYcMGyM93OhK3atMGkpJ0oqNSyv00wVbKSxYutAOBbdo4HYkPWryY4q5dyWsR43QkqjZjx0JFBXz9tdORuN2kScd+XVJKKXfRBFspL8jJgVWrtDykVuXlsGQJ+UlJTkei6jJqFISG2hmBAebss+1L8MsvnY5EKRVINMFWygsWLbJthM85x+lIfFBqKhw6RIEm2L6rZUv780sAJtijRtl/nrbrU0q5kybYSnnBwoUQEwPJyU5H4oNc9df5w4c7HIg6qfHjYc2agKvDbtHCrqyqddhKKXfSBFspDzPGJthnnw0h2renSklJCStXruTQBx9QFBdH6r592n7Pl40fb2spArAO++yz4fvvITPT6UiUUoFCE2ylPCw9HXbv1vrrmlJTU3nl6mdp+e0q1hV25MMHP6ToSJHTYam6BHAd9qRJ9lzLRJRS7qIJtlIepsuj1210RSlhpozDnc/Q9nu+LoDrsAcNgk6dtExEKeU+mmAr5WEffWQXw+ve3elIfE98/jbKgkLZG6Nrx/uFAK3DFrFlIosW2W6ESinVVJpgK+VBBw7A0qVw0UVOR+KbTsvfxt6Y/pQHhzkdiqqPAK/D3r8f0tKcjkQpFQg0wVbKg+bOtSNiF1/sdCS+p8WPP9L+aC5ZbQc7HYqqL63DVkqpetEEWykPeu896N0bEhKcjsT3xCxfDkBW2yEOR6LqLYDrsGNjbS32Rx85HYlSKhBogq2Uhxw6BJ9/bstDRJyOxve0/uYbslu0paBlJ6dDUQ0RoHXYANOmwVdfQW6u05EopfydJthKecj//gelpVoeUquiIlqtXcu2Vqc5HYlyKa8oJz09nZUrVx53KikpOX7HAK7Dnj7d/tMWLHA6EqWUv9NlL5TykPfesz87p6Q4HYkPWrKEoKNH2dJaE2xfsbdoLzse2kFGu4yqbVmFWcx4fQYp1V/E1euwzz3X63F6UlISdOli505cfbXT0Sil/Jkm2Ep5wOHDtv/1zTdDkP5OdKKPP6a8RQt2RsXRw+lYVJUu4V3o3ar3yXcK4DrsoCBbJjJ7Nhw9apdRV0qpxtCPfqU8YMECKC7W8pA6LVhAwfDhlAXpd3y/FMB12NOn2y/IX3zhdCRKKX+mCbZSHvD++9ChA5xxhtOR+KCtW+GHHzg0erTTkajGCuA67LPOgshIWyailFKNpQm2Um5WXAzz58NPfgLBwU5H44M+/hiAPE2w/VcA98MOD4cpU2DePF3VUSnVeJpgK+Vmn35qf2LW8pA6LFgA/fpxNDbW6UhUY1XWYS9e7HQkHjF9OuzZA6tXOx2JUspfaYKtlJu99x7ExNifmlUNR44EZPeJZunss20Gmp3tdCRuN3Wq/fVp3jynI1FK+StNsJVyo5IS+6E8bRqEhTkdjQ9assS2Z9AE2y+ctDf2ueeCMfYnmwDTti2MHat12EqpxtMp/Eq50eLFdgVHLQ+pw/z5trxg3DhYv97paNQpnLQ3dlIStG9va+p/+lPngvSQ6dPh17+G7duh9yk6FyqlVE06gq2UG/3nP9CqFUya5HQkPqiiwrZXOfdcO5NM+YXK3tiVp9hIV+18UBBMngyffBKQswGnTbPnOoqtlGoMTbCVcpNDh2DOHDuYFxHhdDQ+6JtvYO9euOQSpyNR7nLuubYGOwBnA/buDYMGaYKtlC8TkSkisllEtonIPbXcfpeIbBSR9SLyuYj09FZsmmAr5SZvvWVb9N14o9OR+Kg5c+zSeFOnOh2JcpfJk0GkqvVioJk+Hb76CnJynI5EKVWTiAQDzwDnAgOAK0VkQI3dvgOSjDFDgDnAY96KTxNspdzk5Zdh8GAYPtzpSHxQRYVtrzJ5MkRHOx2Ncpf27SElJWAT7J/8xL50tZuIUj4pBdhmjNlujCkB3gKmV9/BGLPYGHPEdfVboJu3gtMEWyk32LABVq2Cn/3MDuipGlatgsxMLQ8JROeeCytXQmmp05G43fDh0KePnVuhlPK6EBFZXe00o8btscCP1a5nurbV5UbAa6MBmmAr5QYvv2wXtrv6aqcj8VFz5tgn6IILnI5EuVtlu76DB52OxO1E7N/04sX2+6FSyqvKjDFJ1U6zGnsgEbkaSAIed194J6cJtlJNVFICb7xh6zXbt3c6GueVlJQc3zd5xQqK33yTigkT7Ao8KrBUtusL0ELlq6+23x/efNPpSJRSNWQB3atd7+badhwRORv4AzDNGHPUS7FpH2ylmup//7O5xc9+5nQkviE1NZVZ186qaufW5cgeUnbvZvsNN6DthANQZbu+3LfBOB2M+512GowaZb9Ez5ypJWBK+ZBVQLyI9MIm1lcAxzXlF5GhwPPAFGPMfm8GpyPYSjXRyy9DbCycc47TkfiO2MjYqr7Jo4/soRzh0JlnOh2W8pTzzoPSMigocDoSj7jmGkhLg3XrnI5EKVXJGFMG3AYsBDYB7xhj0kXkYRFxdbLncSAKeFdEUkXEa1OWdQRbqSbIyrLrbNx7LwQHOx2NDzKGngdWkREdR1nr1k5HozzlnHPsx1tuYJaJXHYZ3HGHneyYmOh0NEqpSsaYBcCCGtvur3b5bK8H5aIj2Eo1wWuv2TZeN9zgdCS+KaYwk9ZF+9gYU7M1qQoo7dvb9ou5uU5H4hHt2tlB+jffhPJyp6NRSvkDTbCVaiRjbHnI+PG2lZc6Uc8DqzEIm2L6OR2K8rS2bW2JyIEDTkfiEddcA3v2wOefOx2JUsofaIKtVCN9/jn88INObjyZngdWs691XwpDo5wORXla23Z2kuOnnzodiUdMnWqb4LzxhtORKKX8gdZgK9VIjz8OnTvDpZc6HYlval24mzZHslhx2tWUV5STnp5+3O3p6elUmAqHolONVdv/ZWlpKYNMBdGhIRx8/XV+iI8nMTGRsLAwh6J0v/Bw+7c+ezY89xxE6XdGpdRJaIKtVCOkptqBuv/7P/vBq07Ua/+3GISdHYazNzeNHQ/tIKNdRtXtqdmpxEfEg8599Ct7i/bW+n/5fzfvpjvhRC1awis7nuWG//yClJQU5wL1gGuugRdegA8/1EWllFIn59USERGZIiKbRWSbiNxTy+3jRGStiJSJiK6prHzWY4/ZOV233OJ0JL5JTAV99i5jd5uBFLVoA0CX8C5Vrft6t+pNh4gODkepGqu2/8sWQWGUtoihRUUJ48qLnA7RI8aMgbg4LRNRSp2a1xJsEQkGngHOBQYAV4pIzdYCu4DrAV0zS/msHTvgnXfg5z/XhQnr0qtgB1FHc9nWZazToSgvKgmJpDgkioEHNzodikcEBdmR60WLdOl0pdTJeXMEOwXYZozZbowpAd4CplffwRiTYYxZD2hhpvJZ//iH/aC94w6nI/FdQ3PWcTQkkl3thjodivKynR2S6Je3GSkudjoUj6ic1Pzcc87GoZTybd5MsGOBH6tdz3RtazARmSEiq0VkdVlZmVuCU6o+srPhxRfhqqugWzeno/FNwfn59D+0iR0dR1IRHDiT3FT9ZHRMoUVFKTHLlzsdikf06gXTpsHzz0NRYFbCKKXcwC/b9BljZhljkowxSSEhOk9Tec8zz9gP1ZkznY7Ed7X77DNCTTlbtTykWdrXuh+HQ1rSdtEip0PxmDvvhJwc21FEKaVq480EOwvoXu16N9c2pfzCkSPwr3/BBRfAAF2YsE7tP/qIvRGdyI3q6XQoygEmKJhNMf2JWbbM/tEEoHHjICEBnnzSLjillFI1eTPBXgXEi0gvEQkDrgDmefHxlWqSl1+2o1a/+53TkfiwtDSiNm7ku3YJIOJ0NMohaW0GEFxcDAsWnHS/kpISVq5cecKppKTES5E2joidg5GWBl984XQ0Silf5LUE2xhTBtwGLAQ2Ae8YY9JF5GERmQYgIskikglcCjwvIul1H1Ep7ykpgb/9DUaPtq26VB1eeYWK4GDWtxnsdCTKQTujelLapo1tt3MSqampzLp2FvNvnV91mnXtLFJTU70TaBNceSV06GBHsZVSqiavFjAbYxYAC2psu7/a5VXY0hGlfMpzz0FGBjz7rNOR+LDSUnjjDQ6NHcuR/Eino1EOMhJE7oQJdProIygshMi6Xw+xkbH0btXbi9G5R3i47YP/5z/Dtm1w2mlOR6SU8iV+OclRKW/KzYWHHoJzzoEpU5yOxofNnw8HDpB9wQVOR6J8QO7ZZ9sZwfPnOx2Kx9x6K4SE2LkZSilVnSbYSp3Cn/4EeXnwxBNaVnxSr7wCnTtzaORIpyNRPqAgIQE6dz5lmYg/69IFLr/cvvTz852ORinlSzTBVuoktm61rfluvBEGa1lx3fbssSOV115rh/SUCg6GSy6xr4vDh52OxmPuuAMKCmySrZRSlTTBVuokfvc7aNECHn7Y6Uh83DPPQEUF3HST05EoX3LZZVBcDPMCt2FUUpKd/Pzkk3YaglJKgSbYStVp6VL44AO45x77S7eqQ2GhnQU6fTrExzsdjfIlY8ZAXBy89JLTkXjU738PO3bYVp5KKQWaYCtVq4oKuOsu6N7dnqvalZSUkPHgg5Cby8bzzmPlypWkp6dTYSqcDk05qLyinPT0dFauXs2P554LX3zB+jlzfL6/dWOddx6ccYadDB2ga+sopRpIiyWVqsXs2bBmDfznPxAR4XQ0vit1zRrinnyeH1vG8vZzP4JkkpqdSnxEPLR2OjrllL1Fe9nx0A4y2mUQVRrBXQSxZ8ZDFPfoQUpKitPhuZ0I/N//wdix8NRT9lcvpVTzpiPYStWQkwN3321rK6+80ulofFubr76iY2kBP8T9hN6t+9C7VW86RHRwOizlA7qEd6F3q950bDeEHzsMZ2z+D8jRo06H5TFnnAHnnw+PPgoHDzodjVLKaZpgK1XDL35hk+wXX4Qg/Qs5qc6zZ5MbFsOuDsOdDkX5sM1dz6JleRFtA3xd8b/+1bb0fPRRpyNRSjlN0welqnnrLdu296GHICHB6Wh83PLlRK9fz7cdR2BE30pU3fbG9Ce7RVs6vv++06F41ODBcPXVtqNIVpbT0SilnKSfikq57N5tR69HjoSZM52Oxg/87W+URUfzXbuhTkeifJ0Ia9oPJ3r9ekhLczoaj3roISgvtwtUKaWaL02wlQKMsYvJFBfD66/rWimntH07fPAB+y+8kJLgMKejUX4gtV0CFWFh8PzzTofiUb16wS232BKzrVudjkYp5RRNsJUCXngBPvkEHntMWznXyz//CcHB7LvsMqcjUX7iSEhLcidMsN9gCwudDsej/vAHCA+3k6WVUs2TJtiq2du+3fa6njjRloioU9izxy4c8tOfUtpBO4ao+tt/4YWQn28nOwSwTp3gj3+EDz+0czqUUs2PJtiqWSsshEsvheBgeOUV7RpSLw8+aNeE/uMfnY5E+ZnDCQkwcCD8+99Oh+Jxv/kNJCfDL38J+/c7HY1Syts0nVDNVkUFXHstpKbCm2/aVRvVKWzaZItLb70V+vRxOhrlb0RsgfLq1bBihdPReFRIiP3Snp9vk2ylVPOiCbZqtv74R3j/fXjiCZg61elo/MS990JUFNx3n9ORKH913XXQtm2zaLMxcKD9wWfOHC0VUaq50QRbNUtvvGEXhbjpJrjzTqej8RPLlsHcufC734HWXqvGio6G3/4W5s8nMj3d6Wg8buZMLRVRqjnSBFs1O19/bRPr8ePhmWfsr9bqFIyxmULXrvqNRDXdbbdBu3bEvvii05F4nJaKKNU8aYKtmpUffoALL4QePeC99yBMWzjXz/vvw7ffwsMPQ8uWTkej/J1rFDvmm2+ILcx0OhqPq14qMnu209EopbxBE2zVbHz/PYwbZ1dZ++gjWwaq6qG01NZeDxxo62eVcofbbqO0dWvG71nqdCReMXMmnHGGXdDq22+djkYp5Wm6Xp1qFtavh7PPtm34vvwS+vVzOiI/8sILdkm6//1Pl7hU7hMVxd6rr6bvM8+wNW8b2a1PczoijwoJgQ8+gJEjYdo020SlVy+no1K+rqSkhNTU1BO2JyYmEqY/wfo0HcFWAW/1altvHRZmk+tBg5yOyI/s3m2XpRs/XlutKLfbd8klFIa0JGHnXKdD8Yr27WH+fCgrs39Ohw45HZHydampqcy6dhbzb51fdZp17axak27lW8QY43QMTRIcHGzGjh3rdBjKR+XlDWLDhkcIDc1nyJC7iIjY63RI/mXDBpsFJCVBRMQJNxcUFJCzJYfw4PCqbXkleYQQQmRYZIO2NfZ+Thzfn2L11vF7dM4lWILJzelR6z7F5cW069uO6Ojoqm0FBQWUpW2nTckhcqN6UBIcUet+gebQoUTWr3+c1q3XM3jw3QQFlTsdkvJRtb3HNoe/EYAvv/zyiDEm8tR7+iYdwVYBa//+Caxf/zhhYbkkJt6hyXVD7d0Lubn2d+xakmul3CE/NJoKCSayONvpULwmJiaVvn0f59Ch4Wzdehd+Ps6llKqF349gR0ZGmsLCQqfDUD7k6FH49a/huedgzBjbLaRTJ6ej8jOZmbaWZsgQWLKkzjXkV65cyfxb59O7Ve+qbV/t+YoYYhjcZXCDtjX2fk4c359i9dbx7712IZFhkSycf2+t+2zP387U56aSkpJSta3y9XN+3haSf3iLLwbdwZdhrU/YL1Ddf79db+fWW+Gpp3SKgzpRbe+xtf0tBSIR0RFspXzFjh12pv5zz9m1LBYv1uS6wYyBm2+23UNeeaXO5Fopd/k+9mxyI7sxYsvrtCg/6nQ4XvPQQ3D33fb96sILQceKlAoc+smpAsbcuTBsmG148eGH8PjjEBrqdFR+6OWX4ZNP4NFHoU8fp6NRzUBFUAjL+91Ay5JDTNz9hdPheI2I/TN75hlYsMDOJd6rlWxKBQT9QUr5vR074K67bFI9fDi88w707n3KuwWc2to5lZaWAhBa45tGzRZPlfcN27ePQXfcwZFhw/g+KYnEkhJtBaXcoryinPQaS6Onp6dTYSoAyG7Vh02xZ5Oc9Rkfz53Lymr71fV6rclfW5f94hfQvTtccQWMGgUffwynn+50VEqpptAEW/mtI0fs6M9jj0FwMDzyiF3Fu0ULpyNzRmU7p9jI2GPbslOJkihOa3esx3BWYRYzXp9xXP1eamoqr1z9LL/PWkR5cQkvHx1D2vUvnrCfUo21t2gvOx7aQUa7jKptqdmpxEfEQ2t7/bteF9Np3zckPv40Ly2A8qCQOl+vNV/rte3nTy64wE53OP982yv773+HG26wo9xKKf+jCbbyO2Vl8O67dnHBnTvhyittOUhs7KnvG+hiI2OPmwyTVZhFDDHHbauVMdyavYbuR7JYPPA22nQYTmz+dg9Hq5qbLuFdTnh9VlcWEs5/Oo3hjqxPmXZoI+viflLnsWq+1gNBcrJd5fG66+yKj2+8Ac8/D337Oh2ZUqqhtAZb+Y2CAvjHP+C00+CnP4VWreyIz5tvanLdVF1ffpkhB9NY0+sSdnVIcjoc1YxtiOrO2ujTGbzzI1oX7nY6HK/r1cu+r82aBd99Zxv5/PnPUFLidGRKqYbQBFv5vG3b7Ez7bt1srXWPHnZCY2oqnHmm09EFgHffpdusWaS2HUJaD12tUTlvXsezKA1uwZjvXySkoszpcLwuKMg28tm0CaZPhz/+EQYOhGef1U4jSvkLTbCVT9q2Df7v/2DoUIiPt/WI554LK1fC0qUwbZp2j3OL1avhuusoGDKEeT3O14JP5RMOh7Rkeb8b6FCwnQt2fURzXYmlSxd4+227vHrbtvDLX9qBht/9Dnbtcjo6pdTJaIqifEJuLsybBzNnHkuqf/97u4Dg3/8OGRnw1lu2RlG5yc6d9ptKx45sffRRyoN0SobyHbs6JPFd3IUk5q6n83/+43Q4jjrvPFub/c03MGkSPPGE7ZR03nm2xd+OHU5HqJSqST9RlVcZAwcOQHo6bNwIGzbA119DWpq9PSwMUlJsUn3JJbZ1lXK/8J077RN85AgsXEhZUZHTISl1gvU9pxGSt4VBzzxjM8tp05wOyTEitoXfqFH2u/Gzz8L778Ntt9nb+/e3CfeoUZCQYBNw/ZVPBToRmQI8CQQDLxpjHqlxewvgdWA4kANcbozJ8EZsmmArtykttSPRubmQkwP79sGPP9pVtzMz7eXNm+1tlVq3ti2prrgCxo61yXV4uHP/Bl/QlH7W9dHxcBbxN/6D0pAQvn/6aYqKio7rR6yUzxDhve5T6dy6kLZXXsnGF16g6LTTan291tZnG+rXQ9vf+mz37GlblD76KGzZYhepmT/fLrf+t7/ZfaKiYPBgO0kyLs6WllSeunSBli2bb0WYr/7/1haXvjfXTUSCgWeASUAmsEpE5hljNlbb7UbgoDHmNBG5AngUuNwb8WmC3UhffmnLVz2pPmWHte1Tua36bcbUfqqogPJye155ubzctsIrK7OXS0rg6FF7KimB4mI70ab6qaDAnmoTHn7sjf2ii2DAADthZ+BA+0bfXN/k69KUftan0iFvK5due4NCCeHNfteS84+twNYT+hEr5Ssyj+bwYGki/1f6Od1u+CWz+t3IN3lbT3i91tZnuz49tP29z3bfvvZ0551QVGR/HVy37tjp3XftoEdNoaEQE3PsFBVlS/LCw4+dh4VBSIjdNyTEnoKD7ch45Unk+BOceLlSfd7rvfF5sGvXXr79bwatw469gPJK8hh5ZWd69Ojh+QAaEFdWoaFDaApb8ztXbcst7syh2Z356ivPxxQWBrff7vnHaaQUYJsxZjuAiLwFTAeqJ9jTgQddl+cAT4uIGOP5iR2aYDfSRx/ZOrhAERxs39iCg4+9iVaet2hh/8hatDh2OTLSTrqJjLSn6Gh7vW1baNfOnnfoYEs82rXTJLqhGt3P+iS65m7grLR/kR0cwYvdL6N7x+Sq/KRmP2KlfElEVB+WdhrClNT/4+bt77C/85ha96vZZ7su9emh7Y99tiMiICnJnqorLISsrGO/Ju7ZA4cOHX8qKID8fDuAUlxsk/WSkmODLaWl9lQ5OOPferhOx1v5lPcjOV7tcQFw4Pirn3kp1latHE2wQ0Sk+lDmLGPMrGrXY4Efq13PBEbUOEbVPsaYMhHJA9oB2R6I9ziaYDfSn/4E99/v+cdp7Df+ukYPap4qE2sVuMQYBvz4McO2zyGvZVce6zyWoJBWaHm78ic5rXrzxaA7OCv9ae7d+REvdb/U6ZD8RmTksZFud6j+C2hFxfFJd83L1e9Tn+N6w+rVq1n464XERcdVbcsoyGDyPyaTVPPbiRfVFtc3+74hhhgGdBpQtc0XYvWSMmOM3/4jNcFupPBwrRVWvq9VWRE37vmc049ksKv9MJb1u5H87LXEOB2YUo2wp+0gPkm8hzNTH+G2Xf9lSZtuZLfq43RYzU7lAI2/TqKMjKygRXAJESHHeqy3CC4hMrKC6Gjfiiss6ChhHPW5WH1EFhw3VtTNta22fTJFJARbWJaDF/jpn4dS6lS65m7gwYz36VOUyfL4a1k88HZKQyOdDkupJsmNjuORHhdQFNSCc1IfJTZnndMhKaWcsQqIF5FeIhIGXAHMq7HPPOA61+VLgC+8UX8NmmArFXBCSwtJ3jqbSev/RkFwOE/2vIotsRO0FkgFjP1hrXi6x5Xkt+zChA1PMmjXfIK004JSzYoxpgy4DVgIbALeMcaki8jDIlLZ0/MloJ2IbAPuAu7xVnxaIqJUgJDSUkbsX8mEvctoUVbI910n8GRkdyKD2tPB6eCUcrPDIZF8kngPZ3z/IsO3v8u94e15r/NUp8NSSnmRMWYBsKDGtvurXS4GHJmwoQl2A3m6f6av9ud0QmOfCyeew/o+Zn168DaYMfDhhwy+4w7CM39kT0x/Vve5nNzoOEr3NL6PU82+wrX14tYercpJZSERLBl4Gz0PrGL45pe5M+MNNpDPhh5TMfVcmbS2/tn1fV3X5+++Ke9HzeHzwN3Pj7ff52t7X6zPugW+0vPa0+suNGeaYDeQp/uj+lP/VU9r7HPhxHNY38esTw/e+gqtKKX9//4Ht94Ka9dS0asX/+lzJeXdznFLOUjNvsK19eLW/tnKcSLs7JjCh0cPcd3+NQzN+ICeB1aT2usidoS2OuXda+ufXd/XdX3+7pvyftQcPg/c+fw48T5f1/viqdYtqOtY3n4/9eS6C82dJtiN4On+qP7Yf9VTGvtcOPEc1vcxmxpb9JF99Nv9BZfu+ZKWqcV2xZ4XXiBtwAC23r6Q3m6sta7eV7i2XtzaP1v5isMhEczuej4HQ84h+Yf/MiHtSQaGd+DwgiAYOtSullKHmv2zG/K69nRP7ebweeBPz0991iio77oFtR3LCZ5Yd0Fpgq2U7zOGLkcPMfLwZpL3zKVj/jYqJJiNrfsR/Miv6D9jhh2xXrnS6UiVctyPHYaT2S6RuAMr6bvjA/o89BC88grccQdc7pUVkpVSShNspXxRy9JCumd/R6dDm+mW8x2ti/YBkB0Vx9peF7Ot81jSj+YydehQ7Q6iVA0mKJgdnUbxeXhHfnp1DP3efx9+8xv4zW/oP2QIuTmdOBzWisLw9k6HqpQKUF5NsEVkCvAkEAy8aIx5pMbtLYDXgeHYRuCXG2MyvBmjUl5lDCG5ubBkCWzcCCtWMOSLL0jJzASgXELYG3M6/4vuw46oQfToMfrYfY/mOhOzUv5ChLwzzoC77oJNm+C99wh64w2mZH0GWZ+RG9mNuJBI9kTE0aJ1e/IjOusXVqWUW3gtwRaRYOAZYBJ2vfhVIjLPGLOx2m43AgeNMaeJyBXAo4D+pqf8lzFw8CDs3Qu7dtFh6VLO2r2M2N2LaXVkL9GFmbQ8t+jY/p06ceT001lqTqe8Qwo50XGUB4fx1Z6viEGX7VKq0fr3h/vuI/2cc1h+wxucUbyPzgc3kZy3hZZ5m2HvQopDIjkU2Y04ID+sE5GhpeRHdOJIi7beW8dbKRUQvDmCnQJsM8ZsBxCRt4DpQPUEezrwoOvyHOBpERFvrbqjAowxgEGAIFOOlJRAURFUVEB5uT1Vv1xWZk+lpcfOS0rg6FF7Xnn/I0eOnRcWQkEBPbdu5cKMLbSVYMLKjtCi9DAhJYeIGvMXe2yXXkBPoDgshoKIjqS3GUDHa8bRc8oUmwB068a2Vav4+tb5OsFEKQ/JDW9LWsck0npMZdnupfQtqWB0C6FD/g/EFO5maGEmrco3w4GlVfcpCQql4qKXIS4OOnWCNm3oXlTEmXt2E5n/A6XB4ZQFtyCkOIdWqzrav/sWLYj44QfaFWcTFRpNRVAIFRJEy7IjBBcUwOHDEBxs1xyvftJRdKX8njcT7Fjgx2rXM4ERde1jjCkTkTygHZDtlQjrKaswiwm7v2DkfjupzBhD8LhHKQ8ObvKxh5aXM6SkAqn2BuvO43tMY78D1XY/17ZhxpBQWo4gVHs2kDF/pSIoyO7nOknl/YwhxRhqbSQ09i+Ni/EUTHAwrcPDCSoRykMiKQ5uQW5oNAdCo4g54zRi4uMpa9uWo506kZaXx+cvbqJzVHfAvpbGDB7MwJgY2LMH9uwhPT39hNnkB4oOUCRFROYfW+o8qzDruP699b1fY7e581j+fnx/itVbxz9aUUJQeTDb87f7TKw1/0bgxL+T/cXZHJEoDkeeBpH27zI1O5WOFWEkR7am7dFcoksLkCN76dMtkg7FxYR89x0hhw/TPj+fCUePcoLb3q66ONh1OsHZT9S2tYoRIQkYbgAEI65zsO+BwcHU+q5bW3Je34TdgcS+KZ95Ne/b2PvV97613e8yUw4IQVuDTrqt5vHdeaymOFUcR4Nb8LfBv9aOUY0g3hocFpFLgCnGmJtc168BRhhjbqu2T5prn0zX9R9c+2TXONYMYIbr6jCgiMYJAcoaeV91avr8epY+v56lz69n6fPrWfr8epY+v54VAoQaY4JOuaeP8uYIdhbQvdr1bq5tte2TKSIh2HbrOTUPZIyZBcxqakAistoYk9TU46ja6fPrWfr8epY+v56lz69n6fPrWfr8elYgPL/e/GawCogXkV4iEgZcAcyrsc884DrX5UuAL7T+WimllFJK+ROvjWC7aqpvAxZi2/S9bIxJF5GHgdXGmHnAS8AbIrINyMUm4UoppZRSSvkNr/bBNsYsABbU2HZ/tcvFwKVeDKnJZSbqpPT59Sx9fj1Ln1/P0ufXs/T59Sx9fj3L759fr01yVEoppZRSqjnw29mZSimllFJK+aJmmWCLyKUiki4iFSKSVOO2e0Vkm4hsFpHJTsUYKEQkUUS+FZFUEVktIrW2qFaNJyK3i8j3rtf0Y07HE4hE5DciYkSkvdOxBAoRedz1ul0vIh+ISIzTMQUCEZni+vzaJiL3OB1PIBGR7iKyWEQ2ut5v73A6pkAkIsEi8p2IfOR0LE3RLBNsIA24CFhafaOIDMBOrBwITAGedS3xrhrvMeAhY0wicL/runITETkLuwJqgjFmIHDy1StUg4lId+AcYJfTsQSYz4BBxpghwBbgXofj8Xuuz6tngHOBAcCVrs815R5lwG+MMQOAkcAv9fn1iDuATU4H0VTNMsE2xmwyxmyu5abpwFvGmKPGmB3ANqh9UUBVbwZo5brcGtjtYCyB6FbgEWPMUQBjzH6H4wlE/wDuhtoXzlONY4z51BhTuVDHt9i1EVTTpADbjDHbjTElwFvYzzXlBsaYPcaYta7LBdgkMNbZqAKLiHQDpgIvOh1LUzXLBPskalvOXf94muZO4HER+RE7uqqjVO7VFxgrIitE5EsRSXY6oEAiItOBLGPMOqdjCXA/Az52OogAoJ9hXiIiccBQYIXDoQSaf2IHNCocjqPJvNqmz5tEZBHQuZab/mCMmevteALZyZ5rYCLwa2PMeyJyGbbX+dnejM/fneL5DQHaYn+uTAbeEZHeukBT/Z3i+f09tjxENUJ93odF5A/Yn95nezM2pRpLRKKA94A7jTH5TscTKETkfGC/MWaNiIx3OJwmC9gE2xjTmCSuPsu5qxpO9lyLyOvYeiqAdwmAn3287RTP763A+66EeqWIVADtgQPeis/f1fX8ishgoBewTkTAvh+sFZEUY8xeL4bot071Piwi1wPnAxP1S6Fb6GeYh4lIKDa5nm2Med/peALMGGCaiJwHhAOtROQ/xpirHY6rUbRE5HjzgCtEpIWI9ALigZUOx+TvdgNnui5PALY6GEsg+hA4C0BE+gJhQLaTAQUKY8wGY0xHY0ycMSYO+3P7ME2u3UNEpmB/Cp5mjDnidDwBYhUQLyK9RCQMO2l/nsMxBQyx37RfAjYZY/7udDyBxhhzrzGmm+v99grgC39NriGAR7BPRkQuBP4FdADmi0iqMWaya+n2d4CN2J8sf2mMKXcy1gBwM/CkiIQAxcAMh+MJNC8DL4tIGlACXKcjgcpPPA20AD5z/ULwrTHmFmdD8m/GmDIRuQ1YCAQDLxtj0h0OK5CMAa4BNohIqmvb712rVCt1HF3JUSmllFJKKTfSEhGllFJKKaXcSBNspZRSSiml3EgTbKWUUkoppdxIE2yllFJKKaXcSBNspZRSSiml3EgTbKWUUkoppdxIE2ylVLMnIq+KyEdOx1EXEckQkd86HYdSSqn60QRbKaV8lGs1PqWUUn5GE2yllKqmcjRbRH4nIntFJE9EHhGRIBF5UET2u7b/rsb9jIjcJiLzReSIiOwUkatr7DNYRBaJSJGI5Loeq3Udj50JZIrIEqAn8LjrMYxr33Yi8l8RyXQdL11EbqjxeEtE5FkR+auIZLtif0JEgqrtE+a6faeIHBWR7SLyq2q3D3D9mwpc9/+viHSu8W/6XETyReSwiKwTkbPc87+hlFL+SRNspZQ60TigFzAeuAW4G1iAXdr7DOBB4BERGV7jfg8B84BEYBbwuogkAYhIJHYJ68NACnAhMBq73H11ZwJDgCnAROAiIBN4GOjiOgGEA2uB84GBwJPA8yIyscbxrgLKXI91G3AncHm1218DrgXuAvoDNwKHXDF3AZYCaa6YzwaigLnVkvQ3gT2u2xNdz00xSinVjOlS6UqpZk9EXgXaG2POd12eCMQZY8pdt68GQo0xCdXukwE8bYx5wnXdAC8aY26uts8iYK8x5moRuRl4AuhmjClw3T4eWAzEG2O2uR57qmufo3U91kn+HW8Bh40xN7muLwFaGGNGVdvnM2CnMeYmEYkHtgDnGmM+qeV4DwNjjDETq21rA+QCI4wxK0UkH7jdGPPayWJTSqnmREewlVLqRBsrk2uXfdhRXGps61hj2/Jarg9wXe4PrK9Mrl2+ASqq7QOQVj25rouIBIvIH0RkvYjkiMhh7Gh3jxq7rq9xfXe1uIe6Hn9xHQ8zHBjnKv047HqMH1239XGd/x14UUS+cMVz+qliV0qpQKcJtlJKnai0xnVTxzZ3vYdW/ymxsJ73+S3wG+Bx7Ih7IvAhUHNiZFPiDgLmu45d/RQPfARgjHkQ+wXhQ2wZynoR+Vk9j6+UUgFJE2yllHKfkbVc3+S6vAkYLCLR1W4fjX0f3sTJlQDBNbadAfzPGPOGMSYV+AHo28B4U12PX9ekxLXY+u6dxphtNU5VI/HGmK3GmKeMMVOBl4CbGhiHUkoFFE2wlVLKfS4SkZtFJF5E7sWOLP/Tddts4Ah24uNgERkHPA+8b4zZdorjZgBjRSRWRNq7tm0BJorIGa6yjKexEzPrzRizBXgHW+JxsYj0EpGxInKNa5dngNbA2yIyQkR6i8jZIjJLRKJFJEJEnhGR8SISJyIjsIn/xobEoZRSgUYTbKWUcp8HgYuxdc+3AjcYY1YBGGOOAJOBVsBKYC62Rrs+5RT3A92xo9QHXNv+7DrOx9hOH4XYJL6hrsV2AnkK+B54FZtUY4zZDYzB1ml/AqRjk+6jrlM50MZ1n83AB65/012NiEMppQKGdhFRSik3cHURudQYM8fpWJRSSjlLR7CVUkoppZRyI02wlVJKKaWUciMtEVFKKaWUUsqNdARbKaWUUkopN9IEWymllFJKKTfSBFsppZRSSik30gRbKaWUUkopN9IEWymllFJKKTfSBFsppZRSSik3+n9d+4+Ek+WvawAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 720x360 with 2 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    }
-   ],
+   "outputs": [],
    "source": [
     "fig, ax3 = plt.subplots(figsize=(10, 5), layout='constrained')\n",
     "fdrCalc.plot(ax3)\n",
@@ -491,7 +445,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 12,
+   "execution_count": 10,
    "id": "fa2e6e96",
    "metadata": {},
    "outputs": [],
diff --git a/python/varspark/hail/lfdrvs.py b/python/varspark/hail/lfdrvs.py
index ccfdc685..8b8d5c69 100644
--- a/python/varspark/hail/lfdrvs.py
+++ b/python/varspark/hail/lfdrvs.py
@@ -40,13 +40,12 @@ def from_imp_table(cls, impTable):
         return LocalFdrVs.from_imp_df(impTable.to_spark(flatten=False).toPandas())
 
     def plot_log_densities(self, ax, min_split_count=1, max_split_count=6, palette='Set1',
-                           find_automatic_best=False, xLabel='log(importance)', yLabel='density'):
+                           xLabel='log(importance)', yLabel='density'):
         """
         Plotting the log densities to visually identify the unimodal distributions.
         :param ax: Matplotlib axis as a canvas for this plot.
         :param min_split_count: n>=1, from which the split count plotting starts.
         :param max_split_count: when to stop the split count filtering.
-        :param find_automatic_best: The user may let the computer highlight the potential best option.
         :param palette: Matplotlib color palette used for the plotting.
         :param xLabel: Label on the x-axis of the plot.
         :param yLabel: Label on the y-axis of the plot.
@@ -65,14 +64,7 @@ def plot_log_densities(self, ax, min_split_count=1, max_split_count=6, palette='
             sns.kdeplot(df.logImportance[df.splitCount >= i],
                         ax=ax, c=c, bw_adjust=0.5) #bw low show sharper distributions
 
-        if find_automatic_best:
-            potential_best = self.find_split_count_th( min_split_count, max_split_count)
-            sns.kdeplot(df.logImportance[df.splitCount >= potential_best],
-                        ax = ax, c=colors[potential_best-1], bw_adjust=0.5, lw=8, linestyle=':')
-            best_split = [str(x) if x != potential_best else str(x)+'*' for x in range(
-                min_split_count, max_split_count+1)]
-        else:
-            best_split = list(range(min_split_count, max_split_count+1))
+        best_split = list(range(min_split_count, max_split_count+1))
 
         ax.legend(title='Minimum split counts in distribution')
         ax.legend(labels=best_split, bbox_to_anchor=(1,1))
diff --git a/src/main/scala/au/csiro/variantspark/algo/DecisionTree.scala b/src/main/scala/au/csiro/variantspark/algo/DecisionTree.scala
index 573655c2..8a5907a3 100644
--- a/src/main/scala/au/csiro/variantspark/algo/DecisionTree.scala
+++ b/src/main/scala/au/csiro/variantspark/algo/DecisionTree.scala
@@ -275,7 +275,7 @@ case class StdVariableSplitter(labels: Array[Int], mTryFraction: Double = 1.0,
     // for impurity)
     // This should obtain a statefule and somehow compartmenalised impurity calculator
     // (Try trhead local perhaps here, but creating a new one (per partition) also fits the bill)
-    new DefStatefullIndexedSpliterFactory(GiniImpurity, labels, nCategories)
+    new DefStatefulIndexedSplitterFactory(GiniImpurity, labels, nCategories)
   }
 
   /** Returns the result of a split based on a variable
@@ -384,7 +384,7 @@ case class AirVariableSplitter(labels: Array[Int], permutationOrder: Array[Int],
     // used for impurity)
     // This should obtain a statefule and somehow compartmenalised impurity calculator
     // (Try trhead local perhaps here, but creating a new one (per partition) also fits the bill)
-    new DefStatefullIndexedSpliterFactory(GiniImpurity, labels, nCategories)
+    new DefStatefulIndexedSplitterFactory(GiniImpurity, labels, nCategories)
   }
 
   /** Returns the result of a split based on a variable
@@ -469,7 +469,7 @@ object DecisionTree extends Logging with Prof {
         // format: off
         indexedData
           .mapPartitions(it => br_splitter.value.splitSubsets(it, br_subsets.value,
-              br_bestSplits.value))
+            br_bestSplits.value))
           .collectAsMap()
         // format: on
       }
diff --git a/src/main/scala/au/csiro/variantspark/algo/GiniImpurity.scala b/src/main/scala/au/csiro/variantspark/algo/GiniImpurity.scala
index b32e8303..9b091c29 100644
--- a/src/main/scala/au/csiro/variantspark/algo/GiniImpurity.scala
+++ b/src/main/scala/au/csiro/variantspark/algo/GiniImpurity.scala
@@ -5,7 +5,7 @@ import au.csiro.variantspark.algo.impurity.GiniImpurityAggregator
 /**
   * Gini impurity measure
   */
-case object GiniImpurity extends ClassficationImpurity {
+case object GiniImpurity extends ClassificationImpurity {
   def createAggregator(nCategories: Int): ClassificationImpurityAggregator =
     new GiniImpurityAggregator(nCategories)
 }
diff --git a/src/main/scala/au/csiro/variantspark/algo/Impurity.scala b/src/main/scala/au/csiro/variantspark/algo/Impurity.scala
index f8ac3fdf..a2e370b6 100644
--- a/src/main/scala/au/csiro/variantspark/algo/Impurity.scala
+++ b/src/main/scala/au/csiro/variantspark/algo/Impurity.scala
@@ -28,8 +28,8 @@ trait ImpurityAggregator {
 }
 
 /**
-  * Mutable class that encapsulates classification impirity calculation.
-  * The state is modified by adding or removing speficic labels.
+  * Mutable class that encapsulates classification impurity calculation.
+  * The state is modified by adding or removing specific labels.
   */
 trait ClassificationImpurityAggregator extends ImpurityAggregator {
   def addLabel(label: Int)
@@ -37,28 +37,43 @@ trait ClassificationImpurityAggregator extends ImpurityAggregator {
 }
 
 /**
-  * Mutatabe class that encapsulates regression impority calculation.
-  * The stat is modified by adding or removing continous values.
+  * Mutable class that encapsulates regression impurity calculation.
+  * The stat is modified by adding or removing continuous values.
   */
 trait RegressionImpurityAggregator extends ImpurityAggregator {
+
   def addValue(value: Double)
   def subValue(value: Double)
 }
 
 /**
-  *  Base trait for representing impurituy measure
+  *  Base trait for representing impurity measure
   */
 trait Impurity
 
 /**
   * Base trait for representing classification impurity measures.
   */
-trait ClassficationImpurity extends Impurity {
+trait ClassificationImpurity extends Impurity {
 
   /**
     * Creates an aggregator for this impurity.
     *
-    * @param nCategories the number of categories (lables) in the response variable.
+    * @param nCategories the number of categories (labels) in the response variable.
     */
   def createAggregator(nCategories: Int): ClassificationImpurityAggregator
 }
+
+/**
+ * Base trait for representing regression impurity measures.
+ */
+trait RegressionImpurity extends Impurity {
+
+  /**
+   * Creates an aggregator for this impurity.
+   *
+   */
+  def createAggregator(): RegressionImpurityAggregator
+}
+
+
diff --git a/src/main/scala/au/csiro/variantspark/algo/PredictiveModel.scala b/src/main/scala/au/csiro/variantspark/algo/PredictiveModel.scala
index 7bf472c7..337d1ce1 100644
--- a/src/main/scala/au/csiro/variantspark/algo/PredictiveModel.scala
+++ b/src/main/scala/au/csiro/variantspark/algo/PredictiveModel.scala
@@ -16,3 +16,17 @@ trait PredictiveModelWithImportance extends PredictiveModel {
   def variableImportance(): Map[Long, Double] = variableImportanceAsFastMap.asScala
   def variableSplitCount(): Map[Long, Long] = variableSplitCountAsFastMap.asScala
 }
+
+
+/** REGRESSION */
+trait RegressionPredictiveModel {
+  def predict(data: RDD[(Feature, Long)]): Array[Double]
+  def printout()
+}
+
+trait RegressionPredictiveModelWithImportance extends RegressionPredictiveModel {
+  def variableImportanceAsFastMap: Long2DoubleOpenHashMap
+  def variableSplitCountAsFastMap: Long2LongOpenHashMap
+  def variableImportance(): Map[Long, Double] = variableImportanceAsFastMap.asScala
+  def variableSplitCount(): Map[Long, Long] = variableSplitCountAsFastMap.asScala
+}
diff --git a/src/main/scala/au/csiro/variantspark/algo/RegressionDecisionTree.scala b/src/main/scala/au/csiro/variantspark/algo/RegressionDecisionTree.scala
new file mode 100644
index 00000000..cb4c3db4
--- /dev/null
+++ b/src/main/scala/au/csiro/variantspark/algo/RegressionDecisionTree.scala
@@ -0,0 +1,941 @@
+package au.csiro.variantspark.algo
+
+import au.csiro.pbdava.ssparkle.common.utils.FastUtilConversions._
+import au.csiro.pbdava.ssparkle.common.utils.{Logging, Prof}
+import au.csiro.pbdava.ssparkle.spark.SparkUtils._
+import au.csiro.variantspark.data.{DataBuilder, DataLike, Feature, StdFeature, VariableType}
+import au.csiro.variantspark.metrics.Gini
+import au.csiro.variantspark.utils.IndexedRDDFunction._
+import au.csiro.variantspark.utils._
+import it.unimi.dsi.fastutil.longs.{Long2DoubleOpenHashMap, Long2LongOpenHashMap}
+import it.unimi.dsi.util.XorShift1024StarRandomGenerator
+import org.apache.commons.lang3.builder.ToStringBuilder
+import org.apache.commons.math3.random.RandomGenerator
+import org.apache.commons.math3.util.MathArrays
+import org.apache.spark.broadcast.Broadcast
+import org.apache.spark.rdd.RDD
+import org.apache.spark.rdd.RDD.rddToPairRDDFunctions
+
+/** Allows for a general description of the construct
+  *
+  * Specify the 'indices', 'impurtity', and 'meanLabel' these values will not be visible
+  * outside the class
+  *
+  * {{{
+  * val subInfo = RegressionSubsetInfo(indices, impurtity, meanLabel)
+  * val subInfoAlt = RegressionSubsetInfo(indices, impurity, labels, nLabels)
+  * }}}
+  *
+  * @constructor creates value based on the indices, impurity, and meanLabel
+  * @param indices: input an array of integers representing the indices of the values
+  * @param impurity: input the value of impurity of the data construct
+  * @param meanLabel: input mean value of all labels in the class
+  */
+case class RegressionSubsetInfo(indices: Array[Int], impurity: Double, meanLabel: Double) {
+
+  // val meanLabel: Double = meanLabel
+
+  /** An alternative constructor for the RegressionSubsetInfo class, use this if the meanLabel
+    * has not already been defined
+    *
+    * Specify the 'indices', 'impurity', 'labels', and 'nLabels'
+    *
+    * {{{
+    * val subInfo = RegressionSubsetInfo(indices, impurity, labels, nLables)
+    * }}}
+    *
+    * @param indices: input an array of integers that contains the indices required
+    * @param impurity: a value based on the gini impurity of the dataset sent in
+    * @param labels: in put an array of integers that contains the labels of the values for each row
+    *
+    */
+  def this(indices: Array[Int], impurity: Double, labels: Array[Double]) {
+    this(indices, impurity, labels.sum / labels.size)
+  }
+
+  def length: Int = indices.length
+  override def toString: String = s"RegressionSubsetInfo(${indices.toList},${impurity})"
+}
+
+/** Class utilized to give an insight into the split data
+  *
+  * Specify the 'variableIndex', 'splitPoint', 'gini', 'leftGini', and 'rightGini'
+  *
+  * @constructor creates information about the split that occured on a specifc variable
+  * @param variableIndex: specifies the index of the variable that the dataset will
+  *                     split on
+  * @param splitPoint: specifies the point in the index of the exact split
+  * @param gini: general gini value of the dataset
+  * @param leftGini: the gini impurity of the left split of the dataset
+  * @param rightGini: the gini impurity of the right split of the dataset
+  */
+case class RegressionVarSplitInfo(variableIndex: Long, splitPoint: Double, impurity: Double,
+    leftImpurity: Double, rightImpurity: Double, isPermuted: Boolean) {
+
+  /** Creates a list of the RegressionSubsetInfos for the dataset split
+    *
+    * @param v: input the specific data construct
+    * @param labels: input an array of integer labels
+    * @param subset: specify the RegressionSubsetInfo class touched on previously at
+    *              [[au.csiro.variantspark.algo.RegressionSubsetInfo]]
+    * @return returns a tupple of the subset information
+    */
+  def split(v: TreeFeature, labels: Array[Double])(
+      subset: RegressionSubsetInfo): (RegressionSubsetInfo, RegressionSubsetInfo) = {
+    val leftIndexes: Array[Int] = subset.indices.filter(v.at(_) <= splitPoint)
+    val rightIndexes: Array[Int] = subset.indices.filter(v.at(_) > splitPoint)
+    (new RegressionSubsetInfo(leftIndexes, leftImpurity, leftIndexes.map(labels)),
+      new RegressionSubsetInfo(rightIndexes, rightImpurity, rightIndexes.map(labels)))
+  }
+  def splitpermuted(v: TreeFeature, labels: Array[Double], permutationOder: Array[Int])(
+      subset: RegressionSubsetInfo): (RegressionSubsetInfo, RegressionSubsetInfo) = {
+    val leftIndexes: Array[Int] =
+      subset.indices.filter(i => v.at(permutationOder(i)) <= splitPoint)
+    val rightIndexes: Array[Int] =
+      subset.indices.filter(i => v.at(permutationOder(i)) > splitPoint)
+    (new RegressionSubsetInfo(leftIndexes, leftImpurity, leftIndexes.map(labels)),
+      new RegressionSubsetInfo(rightIndexes, rightImpurity, rightIndexes.map(labels)))
+  }
+}
+
+/** Utilized to return a RegressionVarSplitInfo object
+  */
+object RegressionVarSplitInfo {
+
+  /** Applies the values obtained from the [[au.csiro.variantspark.algo.SplitInfo]] class to
+    *  create an [[au.csiro.variantspark.algo.RegressionVarSplitInfo]] object
+    *
+    * @param variableIndex: input an index of where the variable split from
+    * @param split: input a [[au.csiro.variantspark.algo.SplitInfo]] object
+    * @return returns a [[au.csiro.variantspark.algo.RegressionVarSplitInfo]] object
+    */
+  def apply(variableIndex: Long, split: SplitInfo, isPermuted: Boolean): RegressionVarSplitInfo =
+    apply(variableIndex, split.splitPoint, split.gini, split.leftGini, split.rightGini,
+      isPermuted)
+}
+
+/** Defines the trait for the case class
+  * [[au.csiro.variantspark.algo.DeterministicRegressionMerger]]
+  */
+trait RegressionMerger {
+
+  /** Operates a merging function utilizing two arrays of the
+    * class [[au.csiro.variantspark.algo.RegressionVarSplitInfo]]
+    *
+    * @param a1: input an array of [[au.csiro.variantspark.algo.RegressionVarSplitInfo]]
+    * @param a2: input an array of [[au.csiro.variantspark.algo.RegressionVarSplitInfo]]
+    * @return Returns an array of [[au.csiro.variantspark.algo.RegressionVarSplitInfo]]
+    */
+  def merge(a1: Array[RegressionVarSplitInfo],
+      a2: Array[RegressionVarSplitInfo]): Array[RegressionVarSplitInfo]
+}
+
+/** Utilizes the Deterministic Decision Tree model found here:
+  * [[https://en.wikipedia.org/wiki/Decision_tree_model#Randomized_decision_tree]]
+  * Extends the [[au.csiro.variantspark.algo.RegressionMerger]] class
+  */
+case class DeterministicRegressionMerger() extends RegressionMerger {
+
+  /** Operates a merging function utilizing two arrays of the
+    * class [[au.csiro.variantspark.algo.RegressionVarSplitInfo]]
+    *
+    * @param a1: input an array of [[au.csiro.variantspark.algo.RegressionVarSplitInfo]]
+    * @param a2: input an array of [[au.csiro.variantspark.algo.RegressionVarSplitInfo]]
+    * @return Returns the merged array a1
+    */
+  def merge(a1: Array[RegressionVarSplitInfo],
+      a2: Array[RegressionVarSplitInfo]): Array[RegressionVarSplitInfo] = {
+
+    /** Takes the [[au.csiro.variantspark.algo.RegressionVarSplitInfo]] from two seperate splits
+      * and returns the value from either s1 or s2 based on the gini impurity
+      *
+      * @param s1: input an [[au.csiro.variantspark.algo.RegressionVarSplitInfo]]
+      * @param s2: input an [[au.csiro.variantspark.algo.RegressionVarSplitInfo]]
+      * @return Returns either s1 or s2 based on the gini impurity calculation
+      */
+    def mergeSplitInfo(s1: RegressionVarSplitInfo, s2: RegressionVarSplitInfo) = {
+      if (s1 == null) s2
+      else if (s2 == null) s1
+      else if (s1.impurity < s2.impurity) s1
+      else if (s2.impurity < s1.impurity) s2
+      else if (s1.variableIndex < s2.variableIndex) s1
+      else s2
+    }
+    a1.indices.foreach(i => a1(i) = mergeSplitInfo(a1(i), a2(i)))
+    a1
+  }
+}
+
+/**
+  *  UsedsMurmur3 hashing to create random ordering of variables
+  *  dependent on the initial seed and split number.
+  *
+  *  The assumption is that comparing the hashes of variable indexes will produce
+  *  sufficently randomzized orderings given different seeds and split ids.
+  *
+  *   @param seed: input a seed value to initialize the random number generator for rnd
+  */
+case class RandomizingRegressionMergerMurmur3(seed: Long) extends RegressionMerger {
+
+  def hashOrder(varIndex: Long, splitId: Int): Int = {
+    MurMur3Hash.hashLong(varIndex, MurMur3Hash.hashLong(seed, splitId))
+  }
+
+  def chooseEqual(s1: RegressionVarSplitInfo, s2: RegressionVarSplitInfo,
+      id: Int): RegressionVarSplitInfo = {
+    if (hashOrder(s1.variableIndex, id) < hashOrder(s2.variableIndex, id)) s1 else s2
+  }
+
+  /** Operates a merging function utilizing two arrays of the
+    * class [[au.csiro.variantspark.algo.RegressionVarSplitInfo]]
+    *
+    * @param a1: input an array of [[au.csiro.variantspark.algo.RegressionVarSplitInfo]]
+    * @param a2: input an array of [[au.csiro.variantspark.algo.RegressionVarSplitInfo]]
+    * @return Returns the merged array a1
+    */
+  def merge(a1: Array[RegressionVarSplitInfo],
+      a2: Array[RegressionVarSplitInfo]): Array[RegressionVarSplitInfo] = {
+
+    /** Takes the [[au.csiro.variantspark.algo.RegressionVarSplitInfo]] from two seperate splits
+      * and returns the value from either s1 or s2 based on the gini impurity
+      *
+      * @note if the gini values of each split are equal then the value returns one at random
+      *
+      * @param s1: input an [[au.csiro.variantspark.algo.RegressionVarSplitInfo]]
+      * @param s2: input an [[au.csiro.variantspark.algo.RegressionVarSplitInfo]]
+      * @return Returns either s1 or s2 based on the gini impurity calculation
+      */
+    def mergeSplitInfo(s1: RegressionVarSplitInfo, s2: RegressionVarSplitInfo, id: Int) = {
+      if (s1 == null) s2
+      else if (s2 == null) s1
+      else if (s1.impurity < s2.impurity) s1
+      else if (s2.impurity < s1.impurity) s2
+      else chooseEqual(s1, s2, id)
+    }
+    a1.indices.foreach(i => a1(i) = mergeSplitInfo(a1(i), a2(i), i))
+    a1
+  }
+}
+
+trait RegressionVariableSplitter {
+
+  def initialSubset(sample: Sample): RegressionSubsetInfo
+
+  /** Splits the subsets of the RDD and returns a split based on the variable of split index
+    *
+    * @param varData: input an interator containing the dataset and an index
+    * @param subsets: input an array of [[au.csiro.variantspark.algo.RegressionSubsetInfo]]
+    * @param bestSplits: input an array of the [[au.csiro.variantspark.algo.RegressionVarSplitInfo]]
+    * @return returns a flattened iterator
+    */
+  def splitSubsets(varData: Iterator[TreeFeature], subsets: Array[RegressionSubsetInfo],
+      bestSplits: Array[RegressionVarSplitInfo])
+      : Iterator[(Int, (RegressionSubsetInfo, RegressionSubsetInfo))]
+  def findSplitsForVars(varData: Iterator[TreeFeature], splits: Array[RegressionSubsetInfo])(
+      implicit rng: RandomGenerator): Iterator[Array[RegressionVarSplitInfo]]
+  def createRegressionMerger(seed: Long): RegressionMerger
+}
+
+/** This is the main split function
+  *
+  * 1. specifies the number of categories based on the label input
+  * 2. Finds the splits in the data based on the gini value
+  *
+  * @param labels: input an array of labels used by the dataset
+  * @param mTryFraction:  the fraction of variable to try at each split (default to 1.0)
+  * @param randomizeEquality: default to false
+  */
+case class StdRegressionVariableSplitter(labels: Array[Double], mTryFraction: Double = 1.0,
+    randomizeEquality: Boolean = false)
+    extends RegressionVariableSplitter with Logging with Prof {
+
+  def initialSubset(sample: Sample): RegressionSubsetInfo = {
+    val currentSet = sample.indexes
+    // val (totalGini, classCounts) = Gini.giniImpurity(currentSet, labels, nCategories) // TODO
+    val totalImpurity = VarianceImpurity.createAggregator().getValue // TODO: Will it work?
+    RegressionSubsetInfo(currentSet, totalImpurity, labels.sum / labels.size)
+  }
+
+  /** Find the splits in the data based on the gini value
+    *
+    * Specify the 'data' and 'splits' inputs
+    *
+    * @param typedData: input the data from the dataset of generic type V
+    * @param splits: input an array of the [[au.csiro.variantspark.algo.RegressionSubsetInfo]] class
+    * @return returns an array [[au.csiro.variantspark.algo.SplitInfo]]
+    */
+  def findSplits(typedData: TreeFeature, splits: Array[RegressionSubsetInfo],
+      sbf: IndexedSplitterFactory)(implicit rng: RandomGenerator): Array[SplitInfo] = {
+
+    val splitter = sbf.create(typedData)
+    splits.map { RegressionSubsetInfo =>
+      if (rng.nextDouble() <= mTryFraction) {
+        val splitInfo = splitter.findSplit(RegressionSubsetInfo.indices)
+        if (splitInfo != null && splitInfo.gini < RegressionSubsetInfo.impurity) splitInfo
+        else null
+      } else null
+    }
+  }
+
+  def threadSafeSplitterBuilderFactory(labels: Array[Double]): RegressionSplitterFactory = {
+    // TODO: this should be actually passed externally (or at least part of it
+    // as it essentially determines what kind of tree are we building (e.g what is the metric
+    // used for impurity)
+    // This should obtain a stateful and somehow compartmentalised impurity calculator
+    // (Try thread local perhaps here, but creating a new one (per partition) also fits the bill)
+    new RegressionSplitterFactory(VarianceImpurity, labels)
+  }
+
+  /** Returns the result of a split based on a variable
+    *
+    * @param varData: input an Iterator of a tuple containing the dataset and indices
+    * @param splits: input an Array of the [[au.csiro.variantspark.algo.RegressionSubsetInfo]] class
+    * @return takes the varData and maps the value of the dataset
+    */
+  def findSplitsForVars(varData: Iterator[TreeFeature], splits: Array[RegressionSubsetInfo])(
+      implicit rng: RandomGenerator): Iterator[Array[RegressionVarSplitInfo]] = {
+    profIt("Local: splitting") {
+      val sbf = threadSafeSplitterBuilderFactory(labels)
+      val result = varData
+        .map { vi =>
+          val thisVarSplits = findSplits(vi, splits, sbf)
+          thisVarSplits
+            .map(si => if (si != null) RegressionVarSplitInfo(vi.index, si, false) else null)
+        }
+      result
+    }
+  }
+
+  /** Splits the subsets of the RDD and returns a split based on the variable of split index
+    *
+    * @param varData: input an interator containing the dataset and an index
+    * @param subsets: input an array of [[au.csiro.variantspark.algo.RegressionSubsetInfo]]
+    * @param bestSplits: input an array of the [[au.csiro.variantspark.algo.RegressionVarSplitInfo]]
+    * @return returns a flattened iterator
+    */
+  def splitSubsets(varData: Iterator[TreeFeature], subsets: Array[RegressionSubsetInfo],
+      bestSplits: Array[RegressionVarSplitInfo])
+      : Iterator[(Int, (RegressionSubsetInfo, RegressionSubsetInfo))] = {
+
+    val usefulSubsetSplitAndIndex =
+      subsets.zip(bestSplits).filter(_._2 != null).zipWithIndex.toList
+    val splitByVarIndex = usefulSubsetSplitAndIndex.groupBy(_._1._2.variableIndex)
+    varData.flatMap { vi =>
+      splitByVarIndex.getOrElse(vi.index, Nil).map {
+        case ((subsetInfo, splitInfo), si) =>
+          (si, splitInfo.split(vi, labels)(subsetInfo))
+      }
+    }
+  }
+
+  def createRegressionMerger(seed: Long): RegressionMerger =
+    if (randomizeEquality) RandomizingRegressionMergerMurmur3(seed)
+    else DeterministicRegressionMerger()
+
+}
+
+/** This is the main split function
+  *
+  * 1. specifies the number of categories based on the label input
+  * 2. Finds the splits in the data based on the gini value
+  *
+  * @param labels: input an array of labels used by the dataset
+  * @param mTryFraction:  the fraction of variable to try at each split (default to 1.0)
+  * @param randomizeEquality: default to false
+  */
+case class RegressionAirVariableSplitter(labels: Array[Double], permutationOrder: Array[Int],
+    mTryFraction: Double, randomizeEquality: Boolean)
+    extends RegressionVariableSplitter with Logging with Prof {
+
+  lazy val permutedLabels: Array[Double] = permutationOrder.map(labels(_))
+
+  def initialSubset(sample: Sample): RegressionSubsetInfo = {
+    val currentSet = sample.indexes
+    // val (totalGini, classCounts) = Gini.giniImpurity(currentSet, labels, nCategories) // TODO
+    val totalImpurity = VarianceImpurity.createAggregator().getValue // TODO: Will it work?
+    RegressionSubsetInfo(currentSet, totalImpurity, labels.sum / labels.size)
+  }
+
+  /** Find the splits in the data based on the gini value
+    *
+    * Specify the 'data' and 'splits' inputs
+    *
+    * @param typedData: input the data from the dataset of generic type V
+    * @param splits: input an array of the [[au.csiro.variantspark.algo.RegressionSubsetInfo]] class
+    * @return returns an array [[au.csiro.variantspark.algo.SplitInfo]]
+    */
+  def findSplits(typedData: TreeFeature, splits: Array[RegressionSubsetInfo],
+      sbf: IndexedSplitterFactory, permutedSbf: IndexedSplitterFactory,
+      permSubsets: Array[Array[Int]])(
+      implicit rng: RandomGenerator): Array[RegressionVarSplitInfo] = {
+
+    val splitter = sbf.create(typedData)
+    val permutedSplitter = permutedSbf.create(typedData)
+
+    splits.zip(permSubsets).map {
+      case (subsetInfo, permIndexes) =>
+        val rnd = rng.nextDouble()
+        if (rnd <= mTryFraction) {
+          // check wheter to use informative or permuted labels
+          val permuted = rnd > mTryFraction / 2
+          val selectedSplitter = if (!permuted) splitter else permutedSplitter
+          val indices = if (!permuted) subsetInfo.indices else permIndexes
+          val splitInfo = selectedSplitter.findSplit(indices)
+          if (splitInfo != null && splitInfo.gini < subsetInfo.impurity) {
+            RegressionVarSplitInfo(typedData.index, splitInfo, permuted)
+          } else { null }
+        } else null
+    }
+  }
+
+  def threadSafeSplitterBuilderFactory(labels: Array[Double]): IndexedSplitterFactory = {
+    // TODO: this should be actually passed externally (or at least part of it
+    // as it essentially determines what kind of tree are we bulding (e.g what is the metric
+    // used for impurity)
+    // This should obtain a statefule and somehow compartmenalised impurity calculator
+    // (Try trhead local perhaps here, but creating a new one (per partition) also fits the bill)
+    new RegressionSplitterFactory(VarianceImpurity, labels)
+  }
+
+  /** Returns the result of a split based on a variable
+    *
+    * @param varData: input an Iterator of a tuple containing the dataset and indices
+    * @param splits: input an Array of the [[au.csiro.variantspark.algo.RegressionSubsetInfo]] class
+    * @return takes the varData and maps the value of the dataset
+    */
+  def findSplitsForVars(varData: Iterator[TreeFeature], splits: Array[RegressionSubsetInfo])(
+      implicit rng: RandomGenerator): Iterator[Array[RegressionVarSplitInfo]] = {
+    profIt("Local: splitting") {
+      val sbf = threadSafeSplitterBuilderFactory(labels)
+      val permutedSbf = threadSafeSplitterBuilderFactory(permutedLabels)
+
+      // TODO: [Performance] maybe there is not need to permutata all the splits up front
+
+      val permSubsets = splits.map(s => ArraysUtils.permutate(s.indices, permutationOrder))
+      varData.map(vi => findSplits(vi, splits, sbf, permutedSbf, permSubsets))
+    }
+  }
+
+  /** Splits the subsets of the RDD and returns a split based on the variable of split index
+    *
+    * @param varData: input an interator containing the dataset and an index
+    * @param subsets: input an array of [[au.csiro.variantspark.algo.RegressionSubsetInfo]]
+    * @param bestSplits: input an array of the [[au.csiro.variantspark.algo.RegressionVarSplitInfo]]
+    * @return returns a flattened iterator
+    */
+  def splitSubsets(varData: Iterator[TreeFeature], subsets: Array[RegressionSubsetInfo],
+      bestSplits: Array[RegressionVarSplitInfo])
+      : Iterator[(Int, (RegressionSubsetInfo, RegressionSubsetInfo))] = {
+
+    val usefulSubsetSplitAndIndex =
+      subsets.zip(bestSplits).filter(_._2 != null).zipWithIndex.toList
+    val splitByVarIndex = usefulSubsetSplitAndIndex.groupBy(_._1._2.variableIndex)
+    varData.flatMap { vi =>
+      splitByVarIndex.getOrElse(vi.index, Nil).map {
+        case ((subsetInfo, splitInfo), si) =>
+          if (!splitInfo.isPermuted) {
+            (si, splitInfo.split(vi, labels)(subsetInfo))
+          } else {
+            (si, splitInfo.splitpermuted(vi, labels, permutationOrder)(subsetInfo))
+          }
+      }
+    }
+  }
+
+  def createRegressionMerger(seed: Long): RegressionMerger =
+    if (randomizeEquality) RandomizingRegressionMergerMurmur3(seed)
+    else DeterministicRegressionMerger()
+
+}
+
+object RegressionAirVariableSplitter {
+  def apply(labels: Array[Double], seed: Long, mTryFraction: Double = 1.0,
+      randomizeEquality: Boolean = false): RegressionAirVariableSplitter = {
+    val rng = new XorShift1024StarRandomGenerator(seed)
+    val permutationOrder = labels.indices.toArray
+    MathArrays.shuffle(permutationOrder, rng)
+    RegressionAirVariableSplitter(labels, permutationOrder, mTryFraction, randomizeEquality)
+  }
+}
+
+/** Object utilized with the RegressionDecisionTreeModel class
+  */
+object RegressionDecisionTree extends Logging with Prof {
+
+  /** Returns the splitted subsets input through the indexedData param and outputs a list of
+    * the Splitted Subsets
+    *
+    * @param indexedData: input an RDD of the dataset plus indexes of type long
+    * @param bestSplits: input an Array containing
+    *                  the [[au.csiro.variantspark.algo.RegressionVarSplitInfo]] class
+    * @param br_subsets: input a Broadcast of Arrays containing
+    *                  the [[au.csiro.variantspark.algo.RegressionSubsetInfo]] class
+    * @param br_splitter: Broadcast of the [[au.csiro.variantspark.algo.RegressionVariableSplitter]]
+    * @return Returns an indexed list of splited subsets
+    */
+  def splitSubsets(indexedData: RDD[TreeFeature], bestSplits: Array[RegressionVarSplitInfo],
+      br_subsets: Broadcast[Array[RegressionSubsetInfo]],
+      br_splitter: Broadcast[RegressionAirVariableSplitter]): List[RegressionSubsetInfo] = {
+    profIt("REM: splitSubsets") {
+      val indexedSplittedSubsets = withBroadcast(indexedData)(bestSplits) { br_bestSplits =>
+        // format: off
+        indexedData
+          .mapPartitions(it => br_splitter.value.splitSubsets(it, br_subsets.value,
+            br_bestSplits.value))
+          .collectAsMap()
+        // format: on
+      }
+      indexedSplittedSubsets
+        .foldLeft(Array.fill[RegressionSubsetInfo](indexedSplittedSubsets.size * 2)(null)) {
+          case (a, (i, st)) =>
+            a(2 * i) = st._1
+            a(2 * i + 1) = st._2
+            a
+        }
+        .toList
+    }
+  }
+
+  /** Returns an indexed
+    *
+    * @param treeFeatures: input an RDD of tree features
+    * @param br_splits  : input a broadcast containing an array of
+    *                    the [[au.csiro.variantspark.algo.RegressionSubsetInfo]] class
+    * @param br_splitter : input a broadcast containing
+    *                    the [[au.csiro.variantspark.algo.RegressionVariableSplitter]] class of
+    *                    the dataset
+    * @return Returns the indexedData variable that contains the indexed best splits
+    */
+  def findBestSplits(treeFeatures: RDD[TreeFeature],
+      br_splits: Broadcast[Array[RegressionSubsetInfo]],
+      br_splitter: Broadcast[RegressionAirVariableSplitter])(
+      implicit rng: RandomGenerator): Array[RegressionVarSplitInfo] = {
+    val seed = rng.nextLong()
+    val RegressionMerger = br_splitter.value.createRegressionMerger(seed)
+    profIt("REM: findBestSplits") {
+      treeFeatures
+        .mapPartitionsWithIndex {
+          case (pi, it) =>
+            br_splitter.value.findSplitsForVars(it,
+              br_splits.value)(new XorShift1024StarRandomGenerator(seed ^ pi))
+        }
+        .fold(Array.fill(br_splits.value.length)(null))(RegressionMerger.merge)
+    }
+  }
+}
+
+@SerialVersionUID(1L)
+abstract class RegressionDecisionTreeNode(val meanLabel: Double, val size: Int,
+    val nodeImpurity: Double)
+    extends Serializable {
+  def isLeaf: Boolean
+
+  def printout(level: Int)
+  def impurityContribution: Double = nodeImpurity * size
+  def traverse(f: RegressionSplitNode => Boolean): RegressionLeafNode = this match {
+    case leaf: RegressionLeafNode => leaf
+    case split: RegressionSplitNode => (if (f(split)) split.left else split.right).traverse(f)
+  }
+  def toStream: Stream[RegressionDecisionTreeNode]
+  def splitsToStream: Stream[RegressionSplitNode] =
+    toStream.filter(!_.isLeaf).asInstanceOf[Stream[RegressionSplitNode]]
+  def leafsToStream: Stream[RegressionLeafNode] =
+    toStream.filter(_.isLeaf).asInstanceOf[Stream[RegressionLeafNode]]
+}
+
+@SerialVersionUID(1L)
+case class RegressionLeafNode(override val meanLabel: Double, override val size: Int,
+    override val nodeImpurity: Double)
+    extends RegressionDecisionTreeNode(meanLabel, size, nodeImpurity) {
+  val isLeaf: Boolean = true
+
+  def printout(level: Int) {
+    print(new String(Array.fill(level)(' ')))
+    val nodeType = "leaf"
+    println(s"${nodeType}[${meanLabel}, ${size}, ${nodeImpurity}]")
+  }
+
+  override def toString: String = s"leaf[${meanLabel}, ${size}, ${nodeImpurity}]"
+
+  def toStream: Stream[RegressionDecisionTreeNode] = this #:: Stream.empty
+}
+
+object RegressionLeafNode {
+  def apply(subset: RegressionSubsetInfo): RegressionLeafNode =
+    apply(subset.meanLabel, subset.length, subset.impurity)
+
+  /**
+    * Create a tree leaf for a standard classifier tree with voting information onlu
+    * @param meanLabel
+    * @param size
+    * @param nodeImpurity
+    * @return
+    */
+  def voting(meanLabel: Double, size: Int, nodeImpurity: Double): RegressionLeafNode = {
+    RegressionLeafNode(meanLabel, size, nodeImpurity)
+  }
+
+}
+
+@SerialVersionUID(1L)
+case class RegressionSplitNode(override val meanLabel: Double, override val size: Int,
+    override val nodeImpurity: Double, splitVariableIndex: Long, splitPoint: Double,
+    impurityReduction: Double, left: RegressionDecisionTreeNode,
+    right: RegressionDecisionTreeNode, isPermuted: Boolean = false)
+    extends RegressionDecisionTreeNode(meanLabel, size, nodeImpurity) {
+
+  val isLeaf: Boolean = false
+
+  def printout(level: Int) {
+    print(new String(Array.fill(level)(' ')))
+    val nodeType = "split"
+    println(
+        s"${nodeType}[${splitVariableIndex}, ${splitPoint}, ${meanLabel},"
+          + s" ${size}, ${impurityReduction}, ${nodeImpurity}]")
+    left.printout(level + 1)
+    right.printout(level + 1)
+  }
+  override def toString: String =
+    (s"split[${splitVariableIndex}, ${splitPoint}, ${meanLabel}, ${size},"
+      + s" ${impurityReduction}, ${nodeImpurity}]")
+
+  def childFor(value: Double): RegressionDecisionTreeNode =
+    if (value <= splitPoint) left else right
+
+  def impurityDelta: Double = {
+    val deltaAbs = impurityContribution - (left.impurityContribution + right.impurityContribution)
+    if (isPermuted) -deltaAbs else deltaAbs
+  }
+  def toStream: Stream[RegressionDecisionTreeNode] = this #:: left.toStream #::: right.toStream
+}
+
+object RegressionSplitNode {
+  def apply(subset: RegressionSubsetInfo, split: RegressionVarSplitInfo,
+      left: RegressionDecisionTreeNode, right: RegressionDecisionTreeNode): RegressionSplitNode =
+    apply(subset.meanLabel, subset.length, subset.impurity, split.variableIndex, split.splitPoint,
+      subset.impurity - split.impurity, left, right, split.isPermuted)
+
+  def voting(meanLabel: Int, size: Int, nodeImpurity: Double, splitVariableIndex: Long,
+      splitPoint: Double, impurityReduction: Double, left: RegressionDecisionTreeNode,
+      right: RegressionDecisionTreeNode, isPermuted: Boolean = false): RegressionSplitNode = {
+    RegressionSplitNode(meanLabel, size, nodeImpurity, splitVariableIndex, splitPoint,
+      impurityReduction, left, right, isPermuted)
+  }
+
+}
+
+@SerialVersionUID(1L)
+case class RegressionDecisionTreeModel(rootNode: RegressionDecisionTreeNode)
+    extends RegressionPredictiveModelWithImportance with Logging with Serializable {
+
+  def splitVariableIndexes: Set[Long] = rootNode.splitsToStream.map(_.splitVariableIndex).toSet
+
+  def predict[T](indexedData: RDD[(T, Long)], variableType: VariableType)(
+      implicit db: DataBuilder[T]): Array[Double] = {
+    predict(indexedData.map({ case (v, i) => (StdFeature.from(null, variableType, v), i) }))
+  }
+
+  def predict(indexedData: RDD[(Feature, Long)]): Array[Double] = {
+    val treeVariableData = indexedData.collectAtIndexes(splitVariableIndexes)
+    Range(0, indexedData.size)
+      .map(i =>
+          rootNode
+            .traverse(s => treeVariableData(s.splitVariableIndex).at(i) <= s.splitPoint)
+            .meanLabel)
+      .toArray
+  }
+
+  def printout() {
+    rootNode.printout(0)
+  }
+
+  def printoutByLevel() {
+    @scala.annotation.tailrec
+    def printLevel(levelNodes: Seq[RegressionDecisionTreeNode]) {
+      if (levelNodes.nonEmpty) {
+        println(levelNodes.mkString(" "))
+        printLevel(levelNodes.flatMap(_ match {
+          case t: RegressionSplitNode => List(t.left, t.right)
+          case _ => Nil
+        }))
+      }
+    }
+    printLevel(Seq(rootNode))
+  }
+
+  override def variableImportanceAsFastMap: Long2DoubleOpenHashMap = {
+    rootNode.splitsToStream.foldLeft(new Long2DoubleOpenHashMap()) {
+      case (m, splitNode) =>
+        m.increment(splitNode.splitVariableIndex, splitNode.impurityDelta)
+    }
+  }
+
+  override def variableSplitCountAsFastMap: Long2LongOpenHashMap = {
+    rootNode.splitsToStream.foldLeft(new Long2LongOpenHashMap()) {
+      case (m, splitNode) =>
+        m.increment(splitNode.splitVariableIndex, 1L)
+    }
+  }
+
+  def impurity: List[Double] = rootNode.toStream.map(_.nodeImpurity).toList
+  def variables: List[Long] = rootNode.splitsToStream.map(_.splitVariableIndex).toList
+  def thresholds: List[Double] = rootNode.splitsToStream.map(_.splitPoint).toList
+
+}
+
+/** Contains the object for the [[au.csiro.variantspark.algo.RegressionDecisionTreeModel]] class
+  */
+object RegressionDecisionTreeModel {
+
+  /** Returns the resolved list of the split nodes and indices
+    *
+    * @param indexedData: input an RDD of tuples with the valeus in the dataset and the index
+    * @param RegressionSplitNodes: input a list of tuples with the
+    *                  [[au.csiro.variantspark.algo.RegressionSplitNode]] class and an index
+    * @return returns a List of the resolved [[au.csiro.variantspark.algo.RegressionSplitNode]]
+    *         class and it's index
+    */
+  def resolveRegressionSplitNodes(indexedData: RDD[(DataLike, Long)],
+      RegressionSplitNodes: List[(RegressionSplitNode, Int)])
+      : List[(RegressionDecisionTreeNode, Int)] = {
+    val varsAndIndexesToCollect = RegressionSplitNodes
+      .asInstanceOf[List[(RegressionSplitNode, Int)]]
+      .map { case (n, i) => (n.splitVariableIndex, i) }
+      .zipWithIndex
+      .toArray
+    val varValuesForSplits = withBroadcast(indexedData)(varsAndIndexesToCollect) {
+      br_varsAndIndexesToCollect =>
+        indexedData.mapPartitions { it =>
+          val varsAndIndexesToCollectMap =
+            br_varsAndIndexesToCollect.value.toList.groupBy(_._1._1)
+          it.flatMap {
+            case (v, vi) =>
+              varsAndIndexesToCollectMap.getOrElse(vi, Nil).map {
+                case (n, si) => (si, v.at(n._2))
+              }
+          }
+        }.collectAsMap
+    }
+    RegressionSplitNodes.asInstanceOf[List[(RegressionSplitNode, Int)]].zipWithIndex.map {
+      case ((n, i), v) => (n.childFor(varValuesForSplits(v)), i)
+    }
+  }
+
+  def batchPredict(indexedData: RDD[(DataLike, Long)], trees: Seq[RegressionDecisionTreeModel],
+      indexes: Seq[Array[Int]]): Seq[Array[Double]] = {
+
+    /** Takes the decision tree nodes and outputs the leaf nodes
+      * Partitions the nodesAndIndexes variable and recursively iterates through each
+      * model until a leaf node is reached
+      *
+      * @param nodesAndIndexes: input a list of tuples of tuple
+      * @return a list of tuples of tuple
+      */
+    def predict(nodesAndIndexes: List[((RegressionDecisionTreeNode, Int), Int)])
+        : List[((RegressionLeafNode, Int), Int)] = {
+      val (leaves, splits) = nodesAndIndexes.partition(_._1._1.isLeaf)
+      if (splits.isEmpty) {
+        leaves.asInstanceOf[List[((RegressionLeafNode, Int), Int)]]
+      } else {
+        val (bareSplits, splitIndexes) = splits.unzip
+        val transformedSplits =
+          resolveRegressionSplitNodes(indexedData,
+            bareSplits.asInstanceOf[List[(RegressionSplitNode, Int)]])
+            .zip(splitIndexes)
+        leaves.asInstanceOf[List[((RegressionLeafNode, Int), Int)]] ::: predict(transformedSplits)
+      }
+    }
+
+    val rootNodesAndIndexes = trees
+      .map(_.rootNode)
+      .zip(indexes)
+      .flatMap { case (n, idx) => idx.map(i => (n, i)) }
+      .zipWithIndex
+      .toList
+    val leaveNodesAndIndexes = predict(rootNodesAndIndexes)
+
+    val orderedPredictions = leaveNodesAndIndexes.sortBy(_._2).map(_._1).map(_._1.meanLabel)
+    val orderedPredictionsIter = orderedPredictions.toIterator
+
+    indexes.map(a => Array.fill(a.length)(orderedPredictionsIter.next()))
+  }
+}
+
+/** Class for the Decision tree model
+  *
+  * Specify the 'params' using the [[au.csiro.variantspark.algo.DecisionTreeParams]]
+  *
+  * {{{
+  *
+  * val maxDepth = 5
+  * val minNodeSize = 10
+  * val seed = 1
+  * val randomizeEquality = false
+  *
+  * val params = DecisionTreeParams(maxDepth, minNodeSize, seed, randomizeEquality)
+  * val model = RegressionDecisionTree(params)
+  *
+  * }}}
+  *
+  * @param params: input the [[au.csiro.variantspark.algo.DecisionTreeParams]] class
+  *              containing the main aspects of the model
+  */
+class RegressionDecisionTree(val params: DecisionTreeParams = DecisionTreeParams(),
+    val trf: TreeRepresentationFactory = DefTreeRepresentationFactory)
+    extends Logging with Prof {
+
+  implicit lazy val rnd: XorShift1024StarRandomGenerator =
+    new XorShift1024StarRandomGenerator(params.seed)
+
+  implicit def toRepresenation(indexedFeatures: RDD[(Feature, Long)]): RDD[TreeFeature] =
+    trf.createRepresentation(indexedFeatures)
+
+  /** Basic training operation taking the in the data, the type, and the labels
+    *
+    * @param indexedData: input an RDD of the dataset
+    * @param labels: input an array of integers changed to an integer representation
+    */
+  def train(indexedData: RDD[(Feature, Long)],
+      labels: Array[Double]): RegressionDecisionTreeModel =
+    train(indexedData, labels, 1.0, Sample.all(indexedData.first._1.size))
+
+  /** Alternative train function
+    *
+    * @param indexedData: input an RDD of the values of the dataset with the indices
+    * @param labels: input an array of integers changed to an integer representation
+    * @param nvarFraction: fraction of variable to test at each split
+    * @param sample: input the [[au.csiro.variantspark.utils.Sample]] class that
+    *              contains the size and the indices
+    */
+  def train(indexedData: RDD[(Feature, Long)], labels: Array[Double], nvarFraction: Double,
+      sample: Sample): RegressionDecisionTreeModel =
+    batchTrain(indexedData, labels, nvarFraction, List(sample)).head
+
+  /** Trains all the trees for specified samples at the same time
+    *
+    * @param indexedFeatures: input an RDD of the values of the dataset with the indices
+    * @param labels: input an array of integers changed to an integer representation
+    * @param nvarFraction: fraction of variable to test for each split
+    * @param sample: input the [[au.csiro.variantspark.utils.Sample]] class that
+    *              contains the size and the indices
+    * @return Returns a Sequence of [[au.csiro.variantspark.algo.RegressionDecisionTreeModel]]
+    *         classes containing the dataset
+    */
+  def batchTrain(indexedFeatures: RDD[(Feature, Long)], labels: Array[Double],
+      nvarFraction: Double, sample: Seq[Sample]): Seq[RegressionDecisionTreeModel] = {
+    batchTrainInt(trf.createRepresentation(indexedFeatures), labels, nvarFraction, sample)
+  }
+
+  /** Trains all the trees for specified samples at the same time
+    *
+    * @param features: input an RDD of the internal tree feature representation
+    * @param labels: input an array of integers changed to an integer representation
+    * @param nvarFraction: fraction of variable to test for each split
+    * @param sample: input the [[au.csiro.variantspark.utils.Sample]] class that
+    *              contains the size and the indices
+    * @return Returns a Sequence of [[au.csiro.variantspark.algo.RegressionDecisionTreeModel]]
+    *         classes containing the dataset
+    */
+  def batchTrainInt(features: RDD[TreeFeature], labels: Array[Double], nvarFraction: Double,
+      sample: Seq[Sample]): Seq[RegressionDecisionTreeModel] = {
+
+    // manage persistence here - cache the features if not already cached
+    withCached(features) { cachedFeatures =>
+      val splitter: RegressionAirVariableSplitter =
+        RegressionAirVariableSplitter(labels,
+          if (params.airRandomSeed != 0L) params.airRandomSeed else params.seed, nvarFraction,
+          randomizeEquality = params.randomizeEquality)
+      val subsets = sample.map(splitter.initialSubset).toList
+      val rootNodes = withBroadcast(cachedFeatures)(splitter) { br_splitter =>
+        buildSplit(cachedFeatures, subsets, br_splitter, 0)
+      }
+      rootNodes.map(new RegressionDecisionTreeModel(_))
+    }
+  }
+
+  private def summarize(subsets: List[RegressionSubsetInfo]): String = {
+    s"#${subsets.size} => ${subsets.map(_.length)}"
+  }
+
+  /** Builds (recursively) the decision tree level by level
+    *
+    * @param indexedTypedData: input an RDD of tree features
+    * @param subsets: input an Array containing the
+    * [[au.csiro.variantspark.algo.RegressionVarSplitInfo]] class
+    * @param br_splitter: input a Broadcast of Arrays containing
+    *                   the [[au.csiro.variantspark.algo.RegressionSubsetInfo]] class
+    * @param treeLevel: specify the current level of the tree being built
+    * @return Returns a subset of the splits
+    */
+  private def buildSplit(indexedTypedData: RDD[TreeFeature], subsets: List[RegressionSubsetInfo],
+      br_splitter: Broadcast[RegressionAirVariableSplitter],
+      treeLevel: Int): List[RegressionDecisionTreeNode] = {
+
+    logDebug(s"Building level ${treeLevel}")
+    logDebug(s"Initial subsets: ${summarize(subsets)}")
+    logTrace(s"Initial subsets (details): ${subsets}")
+
+    profReset()
+
+    val subsetsToSplit = subsets.zipWithIndex.filter {
+      case (si, _) =>
+        si.length >= params.minNodeSize && treeLevel < params.maxDepth
+    }
+    logDebug(s"Splittable subsets: ${summarize(subsetsToSplit.map(_._1))}")
+    logTrace(s"Splittable subsets (details): ${subsetsToSplit}")
+
+    val (bestSplits, nextLevelSubsets) =
+      findBestSplitsAndSubsets(indexedTypedData, subsetsToSplit.map(_._1), br_splitter)
+    logDebug(s"Best splits: ${bestSplits.toList}")
+    logDebug(s"Next level subsets ${summarize(nextLevelSubsets)}")
+    logTrace(s"Next level subsets (details): ${nextLevelSubsets}")
+
+    profPoint("Best splits and splitting done")
+
+    val nextLevelNodes =
+      if (nextLevelSubsets.nonEmpty) {
+        buildSplit(indexedTypedData, nextLevelSubsets, br_splitter, treeLevel + 1)
+      } else { List() }
+
+    profPoint("Sublevels done")
+
+    val (usefulSplits, usefulSplitsIndices) =
+      bestSplits.zip(subsetsToSplit.map(_._2)).filter(_._1 != null).unzip
+    val subsetIndexToSplitIndexMap = usefulSplitsIndices.zipWithIndex.toMap
+    val result = subsets.zipWithIndex.map {
+      case (subset, i) =>
+        // format: off
+        subsetIndexToSplitIndexMap
+          .get(i)
+          .map(splitIndex => RegressionSplitNode(subset, usefulSplits(splitIndex),
+            nextLevelNodes(2 * splitIndex), nextLevelNodes(2 * splitIndex + 1)))
+          .getOrElse(RegressionLeafNode(subset))
+      // format: on
+    }
+    profPoint("building done")
+
+    result
+  }
+
+  /** Finds the best split using the [[au.csiro.variantspark.algo.RegressionDecisionTree]]
+    * class's findBestSplits function then broadcast to the bestSplits variable
+    *
+    * @param treeFeatures: input an RDD of tree freatures
+    * @param subsetsToSplit: input a list of [[au.csiro.variantspark.algo.RegressionSubsetInfo]]
+    * @param br_splitter: input a Broadcast of Arrays containing
+    *                   the [[au.csiro.variantspark.algo.RegressionSubsetInfo]] class
+    */
+  private def findBestSplitsAndSubsets(treeFeatures: RDD[TreeFeature],
+      subsetsToSplit: List[RegressionSubsetInfo],
+      br_splitter: Broadcast[RegressionAirVariableSplitter]) = {
+    profIt("findBestSplitsAndSubsets") {
+      val subsetsToSplitAsIndices = subsetsToSplit.toArray
+      withBroadcast(treeFeatures)(subsetsToSplitAsIndices) { br_splits =>
+        val bestSplits =
+          RegressionDecisionTree.findBestSplits(treeFeatures, br_splits, br_splitter)
+        (bestSplits,
+          RegressionDecisionTree.splitSubsets(treeFeatures, bestSplits, br_splits, br_splitter))
+      }
+    }
+  }
+}
diff --git a/src/main/scala/au/csiro/variantspark/algo/RegressionRandomForest.scala b/src/main/scala/au/csiro/variantspark/algo/RegressionRandomForest.scala
new file mode 100644
index 00000000..c879bedb
--- /dev/null
+++ b/src/main/scala/au/csiro/variantspark/algo/RegressionRandomForest.scala
@@ -0,0 +1,321 @@
+package au.csiro.variantspark.algo
+
+import au.csiro.pbdava.ssparkle.common.utils.FastUtilConversions._
+import au.csiro.pbdava.ssparkle.common.utils.Logging
+import au.csiro.pbdava.ssparkle.common.utils.Timed._
+import au.csiro.variantspark.data.Feature
+import au.csiro.variantspark.metrics.Metrics
+import au.csiro.variantspark.utils.IndexedRDDFunction._
+import au.csiro.variantspark.utils.{Sample, defRng}
+import it.unimi.dsi.fastutil.longs.{Long2DoubleOpenHashMap, Long2LongOpenHashMap}
+import it.unimi.dsi.util.XorShift1024StarRandomGenerator
+import org.apache.commons.lang3.builder.ToStringBuilder
+import org.apache.spark.rdd.RDD
+
+/** Allows for normalization(scaling)of the input map values
+  */
+trait VarImportanceNormalizer {
+  def normalize(varImportance: Map[Long, Double]): Map[Long, Double]
+}
+
+/** Defines normalization variable conditionally
+  */
+case object RawVarImportanceNormalizer extends VarImportanceNormalizer {
+  override def normalize(varImportance: Map[Long, Double]): Map[Long, Double] = varImportance
+}
+
+/** Implements normalization variable scaling
+  */
+class StandardImportanceNormalizer(val scale: Double) extends VarImportanceNormalizer {
+  override def normalize(varImportance: Map[Long, Double]): Map[Long, Double] = {
+    val total = varImportance.values.sum * scale
+    varImportance.mapValues(_ / total)
+  }
+}
+
+/** Defines two different scaling values conditionally - 100% and 1%
+  */
+case object To100ImportanceNormalizer extends StandardImportanceNormalizer(100.0)
+case object ToOneImportanceNormalizer extends StandardImportanceNormalizer(1.0)
+
+/*
+TODO: IMPLEMENT THE RIGHT Voting aggregator
+*/
+
+
+/** Implements voting aggregator conditionally
+  *
+  * @param nLabels the number of labels
+  * @param nSamples the number of samples
+  */
+
+/*
+case class VotingAggregator(nSamples: Int) {
+  lazy val votes: Array[Array[Int]] = Array.fill(nSamples)(Array.fill(nLabels)(0))
+
+  /** Adds a vote with predictions and indexes
+    * @param predictions the number of predictions
+    * @param indexes the number of indexes
+    */
+  def addVote(predictions: Array[Int], indexes: Iterable[Int]) {
+    require(predictions.length <= nSamples, "Valid number of samples")
+    predictions.zip(indexes).foreach { case (v, i) => votes(i)(v) += 1 }
+  }
+
+  /** Adds a vote with predictions
+    * @param predictions the number of predictions
+    */
+  def addVote(predictions: Array[Int]): VotingAggregator = {
+    require(predictions.length == nSamples, "Full prediction range")
+    predictions.zipWithIndex.foreach { case (v, i) => votes(i)(v) += 1 }
+    this
+  }
+
+  /** Maps votes to predictions
+    *
+    */
+  def predictions: Array[Int] = votes.map(v => v.indices.maxBy(v))
+
+  /**
+    * Computes class probabilities.
+    * The result is an array with one item per sample, where
+    * each item is a vector with class probabilities for this sample.
+    * @return predicted class probabilities for each sample.
+    */
+  def classProbabilities: Array[Array[Double]] = {
+    votes.map { row =>
+      val sampleTotal = row.sum.toDouble
+      row.map(classCount => classCount / sampleTotal)
+    }
+  }
+}
+*/
+
+/** Implements random forest members conditionally
+  * @param predictor the predictor model
+  * @param oobIndexes an array of out-of-bag index values
+  */
+@SerialVersionUID(2L)
+case class RandomForestMember(predictor: PredictiveModelWithImportance,
+    oobIndexes: Array[Int] = null, oobPred: Array[Int] = null) {}
+
+/** Implements random forest models conditionally
+  * @param members the RF members
+  * @param labelCount the label count
+  * @param oobErrors the out-of-bag errors
+  */
+@SerialVersionUID(2L)
+case class RegressionRandomForestModel(members: List[RandomForestMember],
+    oobErrors: List[Double] = List.empty, params: RandomForestParams = null) {
+
+  def oobError: Double = oobErrors.last
+
+  def printout() {
+    trees.zipWithIndex.foreach {
+      case (tree, index) =>
+        println(s"Tree: ${index}")
+        tree.printout()
+    }
+  }
+
+  def trees: List[PredictiveModelWithImportance] = members.map(_.predictor)
+
+  def normalizedVariableImportance(
+      norm: VarImportanceNormalizer = To100ImportanceNormalizer): Map[Long, Double] =
+    norm.normalize(variableImportance)
+
+  /** Sets the variable importance by averaging the importance of each variable over all trees
+    *  if a variable is not used in a tree it's importance for this tree is assumed to be 0
+    */
+  def variableImportance: Map[Long, Double] = {
+
+    trees
+      .map(_.variableImportanceAsFastMap)
+      .foldLeft(new Long2DoubleOpenHashMap())(_.addAll(_))
+      .asScala
+      .mapValues(_ / size)
+  }
+
+  /**
+    * Computes the number of time each of the variables appears as the splitting variable
+    * in the forest.
+    * @return map variableIndex -> variableSplitCount
+    */
+  def variableSplitCount: Map[Long, Long] = {
+    trees
+      .map(_.variableSplitCountAsFastMap)
+      .foldLeft(new Long2LongOpenHashMap())(_.addAll(_))
+      .asScala
+  }
+
+  def size: Int = members.size
+
+  def predict(indexedData: RDD[(Feature, Long)]): Array[Int] =
+    predict(indexedData, indexedData.size)
+
+  def predict(indexedData: RDD[(Feature, Long)], nSamples: Int): Array[Int] = {
+    trees
+      .map(_.predict(indexedData))
+      .foldLeft(VotingAggregator(nSamples))(_.addVote(_))
+      .predictions
+  }
+
+  def predictProb(indexedData: RDD[(Feature, Long)]): Array[Array[Double]] =
+    predictProb(indexedData, indexedData.size)
+
+  def predictProb(indexedData: RDD[(Feature, Long)], nSamples: Int): Array[Array[Double]] = {
+    val treeVotes = trees
+      .map(_.predict(indexedData))
+      .foldLeft(VotingAggregator(nSamples))(_.addVote(_))
+    treeVotes.classProbabilities
+  }
+}
+
+/** Implements random forest params conditionally
+  * @param oob the out-of-bag value
+  * @param nTryFraction the n-try fraction value
+  * @param bootstrap the bootstrap value
+  * @param subsample the subsample value
+  * @param seed the seed value
+  * @param maxDepth the maxDepth value
+  * @param minNodeSize the minNodeSize value
+  */
+case class RandomForestParams(oob: Boolean = true, nTryFraction: Double = Double.NaN,
+    bootstrap: Boolean = true, subsample: Double = Double.NaN, randomizeEquality: Boolean = true,
+    seed: Long = defRng.nextLong, maxDepth: Int = Int.MaxValue, minNodeSize: Int = 1,
+    correctImpurity: Boolean = false, airRandomSeed: Long = 0L) {
+  def resolveDefaults(nSamples: Int, nVariables: Int): RandomForestParams = {
+    RandomForestParams(oob = oob,
+      nTryFraction =
+        if (!nTryFraction.isNaN) nTryFraction else Math.sqrt(nVariables.toDouble) / nVariables,
+      bootstrap = bootstrap,
+      subsample = if (!subsample.isNaN) subsample else if (bootstrap) 1.0 else 0.666,
+      randomizeEquality = randomizeEquality, seed = seed, maxDepth = maxDepth,
+      minNodeSize = minNodeSize, correctImpurity = correctImpurity, airRandomSeed = airRandomSeed)
+  }
+  def toDecisionTreeParams(seed: Long): DecisionTreeParams = {
+    DecisionTreeParams(seed = seed, randomizeEquality = randomizeEquality, maxDepth = maxDepth,
+      minNodeSize = minNodeSize, correctImpurity = correctImpurity, airRandomSeed = airRandomSeed)
+  }
+  override def toString: String = ToStringBuilder.reflectionToString(this)
+}
+
+object RandomForestParams {
+  def fromOptions(oob: Option[Boolean] = None, mTryFraction: Option[Double] = None,
+      bootstrap: Option[Boolean] = None, subsample: Option[Double] = None,
+      seed: Option[Long] = None, maxDepth: Option[Int] = None, minNodeSize: Option[Int] = None,
+      correctImpurity: Option[Boolean] = None,
+      airRandomSeed: Option[Long] = None): RandomForestParams =
+    RandomForestParams(oob.getOrElse(true), mTryFraction.getOrElse(Double.NaN),
+      bootstrap.getOrElse(true), subsample.getOrElse(Double.NaN), true,
+      seed.getOrElse(defRng.nextLong), maxDepth.getOrElse(Int.MaxValue), minNodeSize.getOrElse(1),
+      correctImpurity.getOrElse(false), airRandomSeed.getOrElse(0L))
+}
+
+trait RandomForestCallback {
+  def onParamsResolved(actualParams: RandomForestParams) {}
+  def onTreeComplete(nTrees: Int, oobError: Double, elapsedTimeMs: Long) {}
+}
+
+// REGRESSION
+
+// TODO (Design): Avoid using type cast change design
+trait BatchRegressionTreeModel {
+  def batchTrain(indexedData: RDD[TreeFeature], labels: Array[Double], nTryFraction: Double,
+      samples: Seq[Sample]): Seq[RegressionPredictiveModelWithImportance]
+
+  def batchPredict(indexedData: RDD[TreeFeature], models: Seq[PredictiveModelWithImportance],
+      indexes: Seq[Array[Int]]): Seq[Array[Int]]
+}
+
+object RegressionRandomForest {
+  type ModelBuilderFactory = DecisionTreeParams => BatchRegressionTreeModel
+  val defaultBatchSize: Int = 10
+
+  def wideDecisionTreeBuilder(params: DecisionTreeParams): BatchRegressionTreeModel = {
+    val decisionTree = new RegressionDecisionTree(params)
+    new BatchRegressionTreeModel() {
+      override def batchTrain(indexedData: RDD[TreeFeature], labels: Array[Double],
+          nTryFraction: Double,
+          samples: Seq[Sample]): Seq[RegressionPredictiveModelWithImportance] =
+        decisionTree.batchTrainInt(indexedData, labels, nTryFraction, samples)
+
+      override def batchPredict(indexedData: RDD[TreeFeature],
+          models: Seq[PredictiveModelWithImportance], indexes: Seq[Array[Int]]): Seq[Array[Int]] =
+        DecisionTreeModel.batchPredict(indexedData.map(tf => (tf, tf.index)),
+          models.asInstanceOf[Seq[DecisionTreeModel]], indexes)
+    }
+  }
+}
+
+/** Implements random forest
+  * @param params the RF params
+  * @param modelBuilderFactory the type of model, i.e. 'wide decision tree builder'
+  */
+class RegressionRandomForest(params: RandomForestParams = RandomForestParams(),
+    modelBuilderFactory: RegressionRandomForest.ModelBuilderFactory =
+      RegressionRandomForest.wideDecisionTreeBuilder,
+    trf: TreeRepresentationFactory = DefTreeRepresentationFactory)
+    extends Logging {
+
+  // TODO (Design):make this class keep random state (could be externalised to implicit random)
+  implicit lazy val rng: XorShift1024StarRandomGenerator =
+    new XorShift1024StarRandomGenerator(params.seed)
+  def batchTrain(indexedData: RDD[(Feature, Long)], labels: Array[Double], nTrees: Int,
+      nBatchSize: Int = RandomForest.defaultBatchSize): RegressionRandomForestModel = {
+    val treeFeatures: RDD[TreeFeature] = trf.createRepresentation(indexedData)
+    batchTrainTyped(treeFeatures, labels, nTrees, nBatchSize)
+  }
+
+  // TODO (Design): Make a param rather then an extra method
+  // TODO (Func): Add OOB Calculation
+  def batchTrainTyped(treeFeatures: RDD[TreeFeature], labels: Array[Double], nTrees: Int,
+      nBatchSize: Int)(
+      implicit callback: RandomForestCallback = null): RegressionRandomForestModel = {
+
+    require(nBatchSize > 0)
+    require(nTrees > 0)
+    val nSamples = labels.length
+    val nVariables = treeFeatures.count().toInt
+    val nLabels = labels.max + 1
+
+    logDebug(s"Data:  nSamples:${nSamples}, nVariables: ${nVariables}, nLabels:${nLabels}")
+
+    val actualParams = params.resolveDefaults(nSamples, nVariables)
+
+    Option(callback).foreach(_.onParamsResolved(actualParams))
+    logDebug(s"Parameters: ${actualParams}")
+    logDebug(s"Batch Training: ${nTrees} with batch size: ${nBatchSize}")
+
+    // TODO: Implement oob for regression
+    val oobAggregator = None
+
+    val builder = modelBuilderFactory(actualParams.toDecisionTreeParams(rng.nextLong))
+    val allSamples = Stream
+      .fill(nTrees)(Sample.fraction(nSamples, actualParams.subsample, actualParams.bootstrap))
+
+    val (allTrees, errors) = allSamples
+      .sliding(nBatchSize, nBatchSize)
+      .flatMap { samplesStream =>
+        time {
+
+          val samples = samplesStream.toList
+          val predictors = List.empty
+          val members = predictors.map(RandomForestMember(_))
+          val oobError = List.empty
+          members.zip(oobError)
+
+        }.withResultAndTime {
+          case (treesAndErrors, elapsedTime) =>
+            logDebug(s"Trees: ${treesAndErrors.size} >> oobError: ${treesAndErrors.last._2}, "
+                + s"time: ${elapsedTime}")
+            Option(callback).foreach(_.onTreeComplete(treesAndErrors.size, 0.0, elapsedTime))
+        }.result
+      }
+      .toList
+      .unzip
+
+    RegressionRandomForestModel(allTrees, errors, actualParams)
+  }
+
+}
diff --git a/src/main/scala/au/csiro/variantspark/algo/Split.scala b/src/main/scala/au/csiro/variantspark/algo/Split.scala
index 30810e0a..8062e106 100644
--- a/src/main/scala/au/csiro/variantspark/algo/Split.scala
+++ b/src/main/scala/au/csiro/variantspark/algo/Split.scala
@@ -14,7 +14,7 @@ case class SplitInfo(splitPoint: Double, gini: Double, leftGini: Double, rightGi
 
 /**
   * An aggregator for calculating split impurity for two sets of labels or values
-  * indireclty referenced by theid indexes.
+  * indirectly referenced by their indexes.
   */
 trait IndexedSplitAggregator {
   def left: ImpurityAggregator
@@ -70,7 +70,7 @@ class ClassificationSplitAggregator private (val labels: Array[Int],
 }
 
 object ClassificationSplitAggregator {
-  def apply(impurity: ClassficationImpurity, labels: Array[Int],
+  def apply(impurity: ClassificationImpurity, labels: Array[Int],
       nCategories: Int): ClassificationSplitAggregator =
     new ClassificationSplitAggregator(labels, impurity.createAggregator(nCategories),
       impurity.createAggregator(nCategories))
@@ -83,7 +83,7 @@ object ClassificationSplitAggregator {
 class ConfusionAggregator private (val matrix: Array[ClassificationImpurityAggregator],
     val labels: Array[Int]) {
 
-  def this(impurity: ClassficationImpurity, size: Int, nCategories: Int, labels: Array[Int]) {
+  def this(impurity: ClassificationImpurity, size: Int, nCategories: Int, labels: Array[Int]) {
     this(Array.fill(size)(impurity.createAggregator(nCategories)), labels)
   }
 
@@ -111,7 +111,7 @@ trait IndexedSplitter {
 }
 
 /**
-  * A helper trait for IndexedSplitter that select the actual implementaiton
+  * A helper trait for IndexedSplitter that select the actual implementation
   * base on the set of indexes themselves.
   */
 trait SwitchingIndexedSplitter extends IndexedSplitter {
@@ -133,7 +133,7 @@ trait SplitterProvider {
 trait FastSplitterProvider extends SplitterProvider {
 
   /**
-    * The size of the required confusino aggregator
+    * The size of the required confusion aggregator
     */
   def confusionSize: Int
   def createSplitter(impCalc: IndexedSplitAggregator,
@@ -150,18 +150,18 @@ trait IndexedSplitterFactory {
 /**
   * Depending on weather the fast memory consuming splitter can be created
   * and the size of the current subset select either the fast memory consuming option
-  * slower but memory efficien one
+  * slower but memory efficient one
   * The way ranger does it is
   *  if (sampleSize/numOfUniqueValues < Q_THRESHOLD {
-  *    useSlowAlgorirm()
+  *    useSlowAlgorithm()
   *  else {
-  *   useFastAltorithm() if (available I assume)
+  *   useFastAlgorithm() if (available I assume)
   *
   *  The value of Q_THRESHOLD is 0.02
   */
 case class ThresholdIndexedSplitter(fastSplitter: IndexedSplitter, confusionSize: Int,
     defaultSplitter: IndexedSplitter,
-    qThreshold: Double = ThresholdIndexesSplitter.DefaultQThredhold)
+    qThreshold: Double = ThresholdIndexesSplitter.DefaultQThreshold)
     extends SwitchingIndexedSplitter {
 
   override def select(splitIndices: Array[Int]): IndexedSplitter = {
@@ -171,16 +171,16 @@ case class ThresholdIndexedSplitter(fastSplitter: IndexedSplitter, confusionSize
 }
 
 object ThresholdIndexesSplitter {
-  val DefaultQThredhold: Double = 0.02
+  val DefaultQThreshold: Double = 0.02
 }
 
 /**
   * The default implementation of the {{IndexedSplitterFactory}} for classification
   *
   */
-class DefStatefullIndexedSpliterFactory(val impurity: ClassficationImpurity,
+class DefStatefulIndexedSplitterFactory(val impurity: ClassificationImpurity,
     val labels: Array[Int], val nCategories: Int, val maxConfusionSize: Int = 10,
-    val qThreshold: Double = ThresholdIndexesSplitter.DefaultQThredhold)
+    val qThreshold: Double = ThresholdIndexesSplitter.DefaultQThreshold)
     extends IndexedSplitterFactory {
 
   lazy val splitAggregator: ClassificationSplitAggregator =
@@ -197,3 +197,45 @@ class DefStatefullIndexedSpliterFactory(val impurity: ClassficationImpurity,
     }
   }
 }
+
+/** REGRESSION SECTION */
+
+
+/**
+  * Split aggregator for classification. The indexes refer to nominal labels.
+  */
+class RegressionSplitterFactory(
+    val impurity: RegressionImpurity, val labels: Array[Double])
+    extends IndexedSplitterFactory {
+
+  lazy val splitAggregator: RegressionSplitAggregator =
+    RegressionSplitAggregator(impurity, labels)
+
+  def create(sf: SplitterProvider): IndexedSplitter = {
+    sf.createSplitter(splitAggregator)
+  }
+}
+
+class RegressionSplitAggregator private (val labels: Array[Double],
+    val left: RegressionImpurityAggregator, val right: RegressionImpurityAggregator)
+    extends IndexedSplitAggregator {
+
+  def initLabel(value: Double) {
+    right.addValue(value)
+  }
+
+  def updateLabel(value: Double) {
+    left.addValue(value)
+    right.subValue(value)
+  }
+
+  override def init(index: Int): Unit = initLabel(labels(index))
+
+  override def update(index: Int): Unit = updateLabel(labels(index))
+}
+
+object RegressionSplitAggregator {
+  def apply(impurity: RegressionImpurity, labels: Array[Double]): RegressionSplitAggregator =
+    new RegressionSplitAggregator(labels, impurity.createAggregator(),
+      impurity.createAggregator())
+}
diff --git a/src/main/scala/au/csiro/variantspark/algo/VarianceImpurity.scala b/src/main/scala/au/csiro/variantspark/algo/VarianceImpurity.scala
new file mode 100644
index 00000000..2b886928
--- /dev/null
+++ b/src/main/scala/au/csiro/variantspark/algo/VarianceImpurity.scala
@@ -0,0 +1,11 @@
+package au.csiro.variantspark.algo
+
+import au.csiro.variantspark.algo.impurity.VarianceImpurityAggregator
+
+/**
+  * Variance impurity measure
+  */
+case object VarianceImpurity extends RegressionImpurity {
+  def createAggregator(): RegressionImpurityAggregator =
+    new VarianceImpurityAggregator()
+}
\ No newline at end of file