forked from andandandand/OACC
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathBDM2D.R
103 lines (72 loc) · 2.66 KB
/
BDM2D.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#load 4 x 4 CTM values
fourByFourCTM <- read.csv("./data/K-4x4.csv",
stringsAsFactors=FALSE,
colClasses =
c("character", "numeric"),
header = FALSE)
colnames(fourByFourCTM) <- c("square", "CTM")
rownames(fourByFourCTM) <- fourByFourCTM$square
fourByFourCTM$square <- NULL
#load 3 x 3 CTM values
threeByThreeCTM <- read.csv("./data/K-3x3.csv",
stringsAsFactors=FALSE,
colClasses =
c("character", "numeric"),
header = FALSE)
colnames(threeByThreeCTM) <- c("square", "CTM")
rownames(threeByThreeCTM) <- threeByThreeCTM$square
threeByThreeCTM$square <- NULL
##split matrices in blocks
require(purrr)
ind <- function(matDim, blockSize, offset) {
Map(`:`, seq(1, matDim-blockSize+1, by = offset),
seq(blockSize, matDim, by = offset))
}
# this is a helper function that generates subset indexing
# according to dimension of the
# matrix, the first sequence constructs the starting point of the subset index considering
# the offset while the second sequence constructs
# the ending point of the subset index
myPartition <- function(mat, blockSize, offset) {
lapply(cross2(ind(nrow(mat),blockSize,offset),
ind(ncol(mat),blockSize,offset)),
function(i) mat[i[[1]], i[[2]]])
}
#used to lookup entries in fourByFourCTM and threeByThreeCTM
stringify <- function(smallBlock){
paste0(c(t(smallBlock)), collapse ="")
}
blockEntropy <- function(mat, blockSize, offset){
parts <- myPartition(mat, blockSize, offset)
flatSquares <- unlist(lapply(parts, stringify))
squaresTally <- as.data.frame(table(flatSquares))
rownames(squaresTally) <- squaresTally$flatSquare
squaresTally$flatSquares <- NULL
probs = squaresTally[, 1]/nrow(squaresTally)
return(-sum(probs*log2(probs)))
}
bdm2D <- function(mat, blockSize, offset){
parts <- myPartition(mat, blockSize, offset)
flatSquares <- unlist(lapply(parts, stringify))
squaresTally <- as.data.frame(table(flatSquares))
rownames(squaresTally) <- squaresTally$flatSquares
squaresTally$flatSquares <- NULL
if(blockSize == 4){
bdm <- (sum(fourByFourCTM[rownames(squaresTally),])
+ sum(log2(squaresTally$Freq)))
} else{
bdm <- (sum(threeByThreeCTM[rownames(squaresTally),])
+ sum(log2(squaresTally$Freq)))
}
return(bdm)
}
## tests
# set.seed(42)
# m99 <- apply(matrix(0, 9, 9), c(1,2), function(x) sample(c(0,1),1))
# m99
# testResult1 <- bdm2D(m88, 4, 4)
# testResult1
#
#
# testResult2 <- bdm2D(m99, 3, 3)
# testResult2