-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy path119.pascals-triangle-ii.java
49 lines (48 loc) · 1 KB
/
119.pascals-triangle-ii.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
/*
* @lc app=leetcode id=119 lang=java
*
* [119] Pascal's Triangle II
*
* https://leetcode.com/problems/pascals-triangle-ii/description/
*
* algorithms
* Easy (42.10%)
* Total Accepted: 195.6K
* Total Submissions: 455.8K
* Testcase Example: '3'
*
* Given a non-negative index k where k ≤ 33, return the k^th index row of the
* Pascal's triangle.
*
* Note that the row index starts from 0.
*
*
* In Pascal's triangle, each number is the sum of the two numbers directly
* above it.
*
* Example:
*
*
* Input: 3
* Output: [1,3,3,1]
*
*
* Follow up:
*
* Could you optimize your algorithm to use only O(k) extra space?
*
*/
class Solution {
public List<Integer> getRow(int rowIndex) {
List<Integer> result = new ArrayList<>();
if (rowIndex < 0) return result;
result.add(1);
for (int i = 1; i <= rowIndex; i++) {
for (int j = i - 1; j > 0; j--) {
result.set(j, result.get(j) + result.get(j-1));
}
result.add(1);
}
return result;
}
}