Skip to content

Files

Latest commit

 

History

History

Sentiment Analysis

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

Sentiment Analysis using Support Vector Machine (SVM)

This Python script performs sentiment analysis on text data using a Support Vector Machine (SVM) classifier. It reads data from a CSV file, preprocesses the text, and trains an SVM model to classify the sentiment of each text into positive or negative.

Requirements

  • Python 3.x
  • scikit-learn
  • numpy
  • pandas

Install the required libraries using the following command: pip install scikit-learn numpy pandas

Usage

  1. Prepare your data: Create a CSV file (data.csv) with two columns: 'text' containing the text data (sentences, reviews, etc.), and 'label' containing the corresponding sentiment labels (e.g., positive or negative).

  2. Run the script: Execute the Python script Sentiment_Analysis.py to perform sentiment analysis on the data.

Output

The script will print the accuracy and classification report of the SVM model on the test set.

Author(s)

Srujana