forked from AtsushiSakai/PythonRobotics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrrt_star.py
289 lines (239 loc) · 9.29 KB
/
rrt_star.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
"""
Path planning Sample Code with RRT*
author: Atsushi Sakai(@Atsushi_twi)
"""
import math
import sys
import matplotlib.pyplot as plt
import pathlib
sys.path.append(str(pathlib.Path(__file__).parent.parent))
from RRT.rrt import RRT
show_animation = True
class RRTStar(RRT):
"""
Class for RRT Star planning
"""
class Node(RRT.Node):
def __init__(self, x, y):
super().__init__(x, y)
self.cost = 0.0
def __init__(self,
start,
goal,
obstacle_list,
rand_area,
expand_dis=30.0,
path_resolution=1.0,
goal_sample_rate=20,
max_iter=300,
connect_circle_dist=50.0,
search_until_max_iter=False,
robot_radius=0.0):
"""
Setting Parameter
start:Start Position [x,y]
goal:Goal Position [x,y]
obstacleList:obstacle Positions [[x,y,size],...]
randArea:Random Sampling Area [min,max]
"""
super().__init__(start, goal, obstacle_list, rand_area, expand_dis,
path_resolution, goal_sample_rate, max_iter,
robot_radius=robot_radius)
self.connect_circle_dist = connect_circle_dist
self.goal_node = self.Node(goal[0], goal[1])
self.search_until_max_iter = search_until_max_iter
self.node_list = []
def planning(self, animation=True):
"""
rrt star path planning
animation: flag for animation on or off .
"""
self.node_list = [self.start]
for i in range(self.max_iter):
print("Iter:", i, ", number of nodes:", len(self.node_list))
rnd = self.get_random_node()
nearest_ind = self.get_nearest_node_index(self.node_list, rnd)
new_node = self.steer(self.node_list[nearest_ind], rnd,
self.expand_dis)
near_node = self.node_list[nearest_ind]
new_node.cost = near_node.cost + \
math.hypot(new_node.x-near_node.x,
new_node.y-near_node.y)
if self.check_collision(
new_node, self.obstacle_list, self.robot_radius):
near_inds = self.find_near_nodes(new_node)
node_with_updated_parent = self.choose_parent(
new_node, near_inds)
if node_with_updated_parent:
self.rewire(node_with_updated_parent, near_inds)
self.node_list.append(node_with_updated_parent)
else:
self.node_list.append(new_node)
if animation:
self.draw_graph(rnd)
if ((not self.search_until_max_iter)
and new_node): # if reaches goal
last_index = self.search_best_goal_node()
if last_index is not None:
return self.generate_final_course(last_index)
print("reached max iteration")
last_index = self.search_best_goal_node()
if last_index is not None:
return self.generate_final_course(last_index)
return None
def choose_parent(self, new_node, near_inds):
"""
Computes the cheapest point to new_node contained in the list
near_inds and set such a node as the parent of new_node.
Arguments:
--------
new_node, Node
randomly generated node with a path from its neared point
There are not coalitions between this node and th tree.
near_inds: list
Indices of indices of the nodes what are near to new_node
Returns.
------
Node, a copy of new_node
"""
if not near_inds:
return None
# search nearest cost in near_inds
costs = []
for i in near_inds:
near_node = self.node_list[i]
t_node = self.steer(near_node, new_node)
if t_node and self.check_collision(
t_node, self.obstacle_list, self.robot_radius):
costs.append(self.calc_new_cost(near_node, new_node))
else:
costs.append(float("inf")) # the cost of collision node
min_cost = min(costs)
if min_cost == float("inf"):
print("There is no good path.(min_cost is inf)")
return None
min_ind = near_inds[costs.index(min_cost)]
new_node = self.steer(self.node_list[min_ind], new_node)
new_node.cost = min_cost
return new_node
def search_best_goal_node(self):
dist_to_goal_list = [
self.calc_dist_to_goal(n.x, n.y) for n in self.node_list
]
goal_inds = [
dist_to_goal_list.index(i) for i in dist_to_goal_list
if i <= self.expand_dis
]
safe_goal_inds = []
for goal_ind in goal_inds:
t_node = self.steer(self.node_list[goal_ind], self.goal_node)
if self.check_collision(
t_node, self.obstacle_list, self.robot_radius):
safe_goal_inds.append(goal_ind)
if not safe_goal_inds:
return None
safe_goal_costs = [self.node_list[i].cost +
self.calc_dist_to_goal(self.node_list[i].x, self.node_list[i].y)
for i in safe_goal_inds]
min_cost = min(safe_goal_costs)
for i, cost in zip(safe_goal_inds, safe_goal_costs):
if cost == min_cost:
return i
return None
def find_near_nodes(self, new_node):
"""
1) defines a ball centered on new_node
2) Returns all nodes of the three that are inside this ball
Arguments:
---------
new_node: Node
new randomly generated node, without collisions between
its nearest node
Returns:
-------
list
List with the indices of the nodes inside the ball of
radius r
"""
nnode = len(self.node_list) + 1
r = self.connect_circle_dist * math.sqrt(math.log(nnode) / nnode)
# if expand_dist exists, search vertices in a range no more than
# expand_dist
if hasattr(self, 'expand_dis'):
r = min(r, self.expand_dis)
dist_list = [(node.x - new_node.x)**2 + (node.y - new_node.y)**2
for node in self.node_list]
near_inds = [dist_list.index(i) for i in dist_list if i <= r**2]
return near_inds
def rewire(self, new_node, near_inds):
"""
For each node in near_inds, this will check if it is cheaper to
arrive to them from new_node.
In such a case, this will re-assign the parent of the nodes in
near_inds to new_node.
Parameters:
----------
new_node, Node
Node randomly added which can be joined to the tree
near_inds, list of uints
A list of indices of the self.new_node which contains
nodes within a circle of a given radius.
Remark: parent is designated in choose_parent.
"""
for i in near_inds:
near_node = self.node_list[i]
edge_node = self.steer(new_node, near_node)
if not edge_node:
continue
edge_node.cost = self.calc_new_cost(new_node, near_node)
no_collision = self.check_collision(
edge_node, self.obstacle_list, self.robot_radius)
improved_cost = near_node.cost > edge_node.cost
if no_collision and improved_cost:
for node in self.node_list:
if node.parent == self.node_list[i]:
node.parent = edge_node
self.node_list[i] = edge_node
self.propagate_cost_to_leaves(self.node_list[i])
def calc_new_cost(self, from_node, to_node):
d, _ = self.calc_distance_and_angle(from_node, to_node)
return from_node.cost + d
def propagate_cost_to_leaves(self, parent_node):
for node in self.node_list:
if node.parent == parent_node:
node.cost = self.calc_new_cost(parent_node, node)
self.propagate_cost_to_leaves(node)
def main():
print("Start " + __file__)
# ====Search Path with RRT====
obstacle_list = [
(5, 5, 1),
(3, 6, 2),
(3, 8, 2),
(3, 10, 2),
(7, 5, 2),
(9, 5, 2),
(8, 10, 1),
(6, 12, 1),
] # [x,y,size(radius)]
# Set Initial parameters
rrt_star = RRTStar(
start=[0, 0],
goal=[6, 10],
rand_area=[-2, 15],
obstacle_list=obstacle_list,
expand_dis=1,
robot_radius=0.8)
path = rrt_star.planning(animation=show_animation)
if path is None:
print("Cannot find path")
else:
print("found path!!")
# Draw final path
if show_animation:
rrt_star.draw_graph()
plt.plot([x for (x, y) in path], [y for (x, y) in path], 'r--')
plt.grid(True)
plt.show()
if __name__ == '__main__':
main()